1
|
Justice JL, Greco TM, Hutton JE, Reed TJ, Mair ML, Botas J, Cristea IM. Multi-epitope immunocapture of huntingtin reveals striatum-selective molecular signatures. Mol Syst Biol 2025; 21:492-522. [PMID: 40169779 PMCID: PMC12048488 DOI: 10.1038/s44320-025-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder affecting an individual's cognitive and motor abilities. HD is caused by a mutation in the huntingtin gene producing a toxic polyglutamine-expanded protein (mHTT) and leading to degeneration in the striatum and cortex. Yet, the molecular signatures that underlie tissue-specific vulnerabilities remain unclear. Here, we investigate this aspect by leveraging multi-epitope protein interaction assays, subcellular fractionation, thermal proteome profiling, and genetic modifier assays. The use of human cell, mouse, and fly models afforded capture of distinct subcellular pools of epitope-enriched and tissue-dependent interactions linked to dysregulated cellular pathways and disease relevance. We established an HTT association with nearly all subunits of the transcriptional regulatory Mediator complex (20/26), with preferential enrichment of MED15 in the tail domain. Using HD and KO models, we find HTT modulates the subcellular localization and assembly of the Mediator. We demonstrated striatal enriched and functional interactions with regulators of calcium homeostasis and chromatin remodeling, whose disease relevance was supported by HD fly genetic modifiers assays. Altogether, we offer insights into tissue- and localization-dependent (m)HTT functions and pathobiology.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Megan L Mair
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
2
|
Brulé B, Alcalá-Vida R, Penaud N, Scuto J, Mounier C, Seguin J, Khodaverdian SV, Cosquer B, Birmelé E, Le Gras S, Decraene C, Boutillier AL, Merienne K. Accelerated epigenetic aging in Huntington's disease involves polycomb repressive complex 1. Nat Commun 2025; 16:1550. [PMID: 39934111 DOI: 10.1038/s41467-025-56722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 01/29/2025] [Indexed: 02/13/2025] Open
Abstract
Loss of epigenetic information during physiological aging compromises cellular identity, leading to de-repression of developmental genes. Here, we assessed the epigenomic landscape of vulnerable neurons in two reference mouse models of Huntington neurodegenerative disease (HD), using cell-type-specific multi-omics, including temporal analysis at three disease stages via FANS-CUT&Tag. We show accelerated de-repression of developmental genes in HD striatal neurons, involving histone re-acetylation and depletion of H2AK119 ubiquitination and H3K27 trimethylation marks, which are catalyzed by polycomb repressive complexes 1 and 2 (PRC1 and PRC2), respectively. We further identify a PRC1-dependent subcluster of bivalent developmental transcription factors that is re-activated in HD striatal neurons. This mechanism likely involves progressive paralog switching between PRC1-CBX genes, which promotes the upregulation of normally low-expressed PRC1-CBX2/4/8 isoforms in striatal neurons, alongside the down-regulation of predominant PRC1-CBX isoforms in these cells (e.g., CBX6/7). Collectively, our data provide evidence for PRC1-dependent accelerated epigenetic aging in HD vulnerable neurons.
Collapse
Affiliation(s)
- Baptiste Brulé
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Rafael Alcalá-Vida
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Instituto de Neurociencias (Universidad Miguel Hernández - Consejo Superior de Investigaciones Científicas). Av. Santiago Ramón y Cajal s/n. Sant Joan d'Alacant, Alicante, Spain
| | - Noémie Penaud
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jil Scuto
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Coline Mounier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Jonathan Seguin
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | - Brigitte Cosquer
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Etienne Birmelé
- University of Strasbourg, Strasbourg, France
- IRMA, Strasbourg, France
| | - Stéphanie Le Gras
- University of Strasbourg, Strasbourg, France
- Institut de Genetique et de Biologie Moleculaire et Cellulaire, Strasbourg, France
- CNRS UMR7104, Strasbourg, France
- INSERM U1258, Strasbourg, France
| | - Charles Decraene
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Strasbourg, France.
- Centre National de la Recherche Scientifique (CNRS, UMR 7364), Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Gao B, Jing Y, Li X, Cong S. Ubiquitin specific peptidase 11 knockdown slows Huntington's disease progression via regulating mitochondrial dysfunction and neuronal damage depending on PTEN-mediated AKT pathway. Mol Med 2025; 31:7. [PMID: 39780069 PMCID: PMC11715466 DOI: 10.1186/s10020-024-01061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear. METHODS To interfere with USP11 expression, adeno-associated viruses 2 containing USP11-specific shRNA were injected into the bilateral striatum of 12-week-old R6/1 and WT mice. In vitro, the inducible PC12 cell model of HD was used in which the expression of an N-terminal truncation of huntingtin, with either wild type (Q23) or expanded polyglutamine (Q74) can be induced by the doxycycline. USP11 was knocked down to study its role in HD. The protein expression patterns in Q74 cells were quantified by label-free proteomics to further explore the target protein of USP11. Detecting the association between USP11 and Phosphatase and Tensin Homolog (PTEN) through Co-IP. RESULTS Herein, USP11 was found to be upregulated in the striatum of R6/1 mice (an HD model with gradual development of symptoms) in an age-dependent manner. The spontaneous HD was alleviated by silencing USP11, as evidenced by improved locomotor activity and spatial memory, attenuated striatal atrophy in R6/1 mice, reduced accumulation of mutant huntingtin protein, and restored mitochondrial function in vitro and in vivo. The results of label-free proteomics revealed a significant change in the protein expression profile. Through functional enrichment, we focused on PTEN, known as a negative regulator of the AKT pathway. We demonstrated that USP11 downregulation promoted ubiquitination modification of PTEN and activated the AKT pathway, and PTEN overexpression reversed the effects of USP11 knockdown. CONCLUSIONS Collectively, USP11 knockdown protects R6/1 mouse neurons from oxidative stress by alleviating mitochondrial dysfunction, thereby preventing the HD progression. This is achieved by inhibiting PTEN expression, which in turn activates the AKT pathway. This study suggests that USP11-PTEN-AKT signaling pathway may be a new attractive therapeutic target for HD.
Collapse
Affiliation(s)
- Bai Gao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuchen Jing
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xi Li
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Sapp E, Boudi A, Iwanowicz A, Belgrad J, Miller R, O’Reilly D, Yamada K, Deng Y, Joni M, Li X, Kegel-Gleason K, Khvorova A, Reiner A, Aronin N, DiFiglia M. Detection of HTTex1p by western blot and immunostaining of HD human and mouse brain using neo-epitope antibody P90 highlights impact of CAG repeat expansion on its size, solubility, and response to MSH3 silencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630891. [PMID: 39803497 PMCID: PMC11722249 DOI: 10.1101/2024.12.31.630891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
HTT1a has been identified in human and mouse HD brain as the pathogenic exon 1 mRNA generated from aberrant splicing between exon 1 and 2 that contributes to aggregate formation and neuronal dysfunction (Sathasivam et al., 2013). Detection of the HTT exon 1 protein (HTTex1p) has been accomplished with surrogate antibodies in fluorescence-based reporter assays (MSD, HTRF), and immunoprecipitation assays, in HD postmortem cerebellum and knock-in mice but direct detection by SDS-PAGE and western blot assay has been lacking. Here proteins in subcellular fractions prepared from human and mouse HD brain were separated by SDS-PAGE and probed by western blot with neo-epitope monoclonal antibodies (P90-1B12 and 11G2) directed to the C-terminal 8 residues of HTTex1p. In human HD putamen and cortex, HTTex1p migrated at 56-60 kD and at higher molecular masses (HMM) consistent with the presence of CAG repeat expansion in HTT1a. HTTex1p in control brain was low or undetectable. Immunofluorescence labeling of human HD cortex using P90-11G2 revealed small aggregates that sparsely populated the neuropil in layers 3 and 5. In caudate putamen of 6 month old HD knock-in mice (Q50, Q80, Q111, Q140 and Q175) HTTex1p migration was inversely correlated with CAG repeat length and appeared as a SDS soluble high molecular mass (HMM) smear in HD Q111, Q140 and Q175 mice but not in Q50 and Q80 mice indicating a CAG repeat size threshold for detecting HTTex1p aggregation. Migration of HTTex1p and HMM smear changed with age in caudate putamen of Q111, Q175 and YAC128 mice. Treating HD Q111 mice with siRNA to MSH3, a modifier of CAG repeat expansion, significantly reduced levels of the HMM smear indicating that the effects of curbing CAG repeat expansion was quantifiable. These results show that P90 antibodies can be used in western blot assays and immunostaining to track and quantify HTTex1p levels, subcellular localization, and solubility.
Collapse
Affiliation(s)
- Ellen Sapp
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Andrew Iwanowicz
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | - Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Rachael Miller
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Daniel O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Marion Joni
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Xueyi Li
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| | | | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129
| |
Collapse
|
5
|
Sogorb-Gonzalez M, Landles C, Caron NS, Stam A, Osborne G, Hayden MR, Howland D, van Deventer S, Bates GP, Vallès A, Evers M. Exon 1-targeting miRNA reduces the pathogenic exon 1 HTT protein in Huntington's disease models. Brain 2024; 147:4043-4055. [PMID: 39155061 PMCID: PMC11629698 DOI: 10.1093/brain/awae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease caused by a trinucleotide repeat expansion in exon 1 of the huntingtin gene (HTT) that results in toxic gain of function and cell death. Despite its monogenic cause, the pathogenesis of HD is highly complex, and increasing evidence indicates that, in addition to the full-length (FL) mutant HTT protein, the expanded exon 1 HTT (HTTexon1) protein that is translated from the HTT1a transcript generated by aberrant splicing is prone to aggregate and might contribute to HD pathology. This finding suggests that reducing the expression of HTT1a might achieve a greater therapeutic benefit than targeting only FL mutant HTT. Conversely, strategies that exclusively target FL HTT might not completely prevent the pathogenesis of HD. We have developed an engineered microRNA targeting the HTT exon 1 sequence (miHTT), delivered via adeno-associated virus serotype 5 (AAV5). The target sequence of miHTT is present in both FL HTT and HTT1a transcripts. Preclinical studies with AAV5-miHTT have demonstrated efficacy in several rodent and large animal models by reducing FL HTT mRNA and protein and rescuing HD-like phenotypes and have been the rationale for phase I/II clinical studies now ongoing in the USA and Europe. In the present study, we evaluated the ability of AAV5-miHTT to reduce the levels of aberrantly spliced HTT1a mRNA and the HTTexon1 protein in the brain of two mouse models of HD (heterozygous zQ175 knock-in mice and humanized Hu128/21 mice). Polyadenylated HTT1a mRNA and HTTexon1 protein were detected in the striatum and cortex of heterozygous zQ175 knock-in mice, but not in wild-type littermate control mice. Intrastriatal administration of AAV5-miHTT resulted in dose-dependent expression of mature miHTT microRNA in cortical brain regions, accompanied by significant lowering of both FL HTT and HTT1a mRNA expression at 2 months postinjection. Mutant HTT and HTTexon1 protein levels were also significantly reduced in the striatum and cortex of heterozygous zQ175 knock-in mice at 2 months after AAV5-miHTT treatment and in humanized Hu128/21 mice 7 months post-treatment. The effects were confirmed in primary Hu128/21 neuronal cultures. These results demonstrate that AAV5-miHTT gene therapy is an effective approach to lower both FL HTT and the pathogenic HTTexon1 levels, which could potentially have an additive therapeutic benefit in comparison to other HTT-targeting modalities.
Collapse
Affiliation(s)
- Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Anouk Stam
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Georgina Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - David Howland
- CHDI Management/CHDI Foundation, Princeton, NJ 08540, USA
| | - Sander van Deventer
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Astrid Vallès
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| | - Melvin Evers
- Department of Research & Development, uniQure Biopharma BV, Amsterdam 1105 BP, The Netherlands
| |
Collapse
|
6
|
Hana TA, Mousa VG, Lin A, Haj-Hussein RN, Michael AH, Aziz MN, Kamaridinova SU, Basnet S, Ormerod KG. Developmental and physiological impacts of pathogenic human huntingtin protein in the nervous system. Neurobiol Dis 2024; 203:106732. [PMID: 39542221 PMCID: PMC12067449 DOI: 10.1016/j.nbd.2024.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder, part of the nine identified inherited polyglutamine (polyQ) diseases. Most commonly, HD pathophysiology manifests in middle-aged adults with symptoms including progressive loss of motor control, cognitive decline, and psychiatric disturbances. Associated with the pathophysiology of HD is the formation of insoluble fragments of the huntingtin protein (htt) that tend to aggregate in the nucleus and cytoplasm of neurons. To track both the intracellular progression of the aggregation phenotype as well as the physiological deficits associated with mutant htt, two constructs of human HTT were expressed in the Drosophila melanogaster nervous system with varying polyQ lengths, non-pathogenic-htt (NP-htt) and pathogenic-htt (P-htt), with an N-terminal RFP tag for in vivo visualization. P-htt aggregates accumulate in the ventral nerve cord cell bodies as early as 24 h post hatching and significant aggregates form in the segmental nerve branches at 48 h post hatching. Organelle trafficking up- and downstream of aggregates formed in motor neurons showed severe deficits in trafficking dynamics. To explore putative downstream deficits of htt aggregation, ultrastructural changes of presynaptic motor neurons and muscles were assessed, but no significant effects were observed. However, the force and kinetics of muscle contractions were severely affected in P-htt animals, reminiscent of human chorea. Reduced muscle force production translated to altered locomotory behavior. A novel HD aggregation model was established to track htt aggregation throughout adulthood in the wing, showing similar aggregation patterns with larvae. Expressing P-htt in the adult nervous system resulted in significantly reduced lifespan, which could be partially rescued by feeding flies the mTOR inhibitor rapamycin. These findings advance our understanding of htt aggregate progression as well the downstream physiological impacts on the nervous system and peripheral tissues.
Collapse
Affiliation(s)
- Tadros A Hana
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Veronika G Mousa
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Alice Lin
- Brown University, Neuroscience Graduate Program, Warren Alpert Medical School, Providence, RI 02906, United States of America
| | - Rawan N Haj-Hussein
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Andrew H Michael
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Madona N Aziz
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Sevinch U Kamaridinova
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Sabita Basnet
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America
| | - Kiel G Ormerod
- Middle Tennessee State University, Biology Department, Murfreesboro, TN 37132, United States of America.
| |
Collapse
|
7
|
Landles C, Osborne GF, Phillips J, Canibano-Pico M, Nita IM, Ali N, Bobkov K, Greene JR, Sathasivam K, Bates GP. Mutant huntingtin protein decreases with CAG repeat expansion: implications for therapeutics and bioassays. Brain Commun 2024; 6:fcae410. [PMID: 39713241 PMCID: PMC11660907 DOI: 10.1093/braincomms/fcae410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Huntington's disease is an inherited neurodegenerative disorder caused by a CAG repeat expansion that encodes a polyglutamine tract in the huntingtin (HTT) protein. The mutant CAG repeat is unstable and expands in specific brain cells and peripheral tissues throughout life. Genes involved in the DNA mismatch repair pathways, known to act on expansion, have been identified as genetic modifiers; therefore, it is the rate of somatic CAG repeat expansion that drives the age of onset and rate of disease progression. In the context of an expanded CAG repeat, the HTT pre-mRNA can be alternatively processed to generate the HTT1a transcript that encodes the aggregation prone and highly pathogenic HTT1a protein. This may be a mechanism through which somatic CAG repeat expansion exerts its pathogenic effects, as the longer the CAG repeat, the more HTT1a and HTT1a is produced. The allelic series of knock-in mouse models, HdhQ20, HdhQ50, HdhQ80, HdhQ111, CAG140 and zQ175 with polyglutamine expansions of 20, 50, 80, 111, 140 and ∼190, can be used to model the molecular and cellular consequences of CAG repeat expansion within a single neuron. By western blot of cortical lysates, we found that mutant HTT levels decreased with increasing CAG repeat length; mutant HTT was only 23 and 10% of wild-type levels in CAG140 and zQ175 cortices, respectively. To identify the optimal bioassays for detecting the full-length HTT and HTT1a isoforms, we interrogated the pairwise combinations of seven well-characterized antibodies on both the 'homogeneous time-resolved fluorescence' and 'Meso Scale Discovery' platforms. We tested 32 assays on each platform to detect 'full-length mutant HTT', HTT1a, 'total mutant HTT' (full-length HTT and HTT1a) and 'total full-length HTT' (mutant and wild type). None of these assays recapitulated the full-length mutant HTT levels as measured by western blot. We recommend using isoform- and species-specific assays that detect full-length mutant HTT, HTT1a or wild-type HTT as opposed to those that detect more than one isoform simultaneously. Our finding that as the CAG repeat expands, full-length mutant HTT levels decrease, while HTT1a and HTT1a levels increase has implications for therapeutic strategies. If mutant HTT levels in cells containing (CAG)200 are only 10% of wild-type, HTT-lowering strategies targeting full-length HTT at sequences 3' to Intron 1 HTT will predominantly lower wild-type HTT, as mutant HTT levels in these cells are already depleted. These data support a therapeutic strategy that lowers HTT1a and depletes levels of the HTT1a protein.
Collapse
Affiliation(s)
- Christian Landles
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Georgina F Osborne
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jemima Phillips
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Maria Canibano-Pico
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Iulia M Nita
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Nadira Ali
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | | | - Kirupa Sathasivam
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Gillian P Bates
- Department of Neurodegenerative Disease, Huntington’s Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
8
|
Pupak A, Rodríguez-Navarro I, Sathasivam K, Singh A, Essmann A, Del Toro D, Ginés S, Mouro Pinto R, Bates GP, Vang Ørom UA, Martí E, Brito V. m 6A modification of mutant huntingtin RNA promotes the biogenesis of pathogenic huntingtin transcripts. EMBO Rep 2024; 25:5026-5052. [PMID: 39394467 PMCID: PMC11549361 DOI: 10.1038/s44319-024-00283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024] Open
Abstract
In Huntington's disease (HD), aberrant processing of huntingtin (HTT) mRNA produces HTT1a transcripts that encode the pathogenic HTT exon 1 protein. The mechanisms behind HTT1a production are not fully understood. Considering the role of m6A in RNA processing and splicing, we investigated its involvement in HTT1a generation. Here, we show that m6A methylation is increased before the cryptic poly(A) sites (IpA1 and IpA2) within the huntingtin RNA in the striatum of Hdh+/Q111 mice and human HD samples. We further assessed m6A's role in mutant Htt mRNA processing by pharmacological inhibition and knockdown of METTL3, as well as targeted demethylation of Htt intron 1 using a dCas13-ALKBH5 system in HD mouse cells. Our data reveal that Htt1a transcript levels are regulated by both METTL3 and the methylation status of Htt intron 1. They also show that m6A methylation in intron 1 depends on expanded CAG repeats. Our findings highlight a potential role for m6A in aberrant splicing of Htt mRNA.
Collapse
Affiliation(s)
- Anika Pupak
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Irene Rodríguez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Kirupa Sathasivam
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Ankita Singh
- Department for Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Amelie Essmann
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel Del Toro
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Silvia Ginés
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Mouro Pinto
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gillian P Bates
- Department of Neurodegenerative Disease, Huntington's Disease Centre and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, WC1N 3BG, UK
| | | | - Eulàlia Martí
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Verónica Brito
- Departament de Biomedicina, Facultat de Medicina, Institut de Neurosciències, Universitat de Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
9
|
Solem MA, Pelzel R, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Enhanced Hippocampal Spare Capacity in Q175DN Mice Despite Elevated mHTT Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618355. [PMID: 39464002 PMCID: PMC11507687 DOI: 10.1101/2024.10.14.618355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disease resulting in devastating motor, cognitive, and psychiatric deficits. The striatum is a brain region that controls movement and some forms of cognition and is most significantly impacted in HD. However, despite well-documented deficits in learning and memory in HD, knowledge of the potential implication of other brain regions such as the hippocampus remains limited. Objective Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models. Methods We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density. Results We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT than hippocampal neurons in Q175DN despite high levels of mHTT in both regions. Contrary to the pathology seen in the striatum, Q175DN hippocampus presented enhanced spare capacity showing increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175. Conclusions Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ross Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas B. Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Vasilkovska T, Verschuuren M, Pustina D, van den Berg M, Van Audekerke J, Pintelon I, Cachope R, De Vos WH, Van der Linden A, Adhikari MH, Verhoye M. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington's disease mouse model. Clin Transl Med 2024; 14:e70055. [PMID: 39422700 PMCID: PMC11488302 DOI: 10.1002/ctm2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is marked by irreversible loss of neuronal function for which currently no availability for disease-modifying treatment exists. Advances in the understanding of disease progression can aid biomarker development, which in turn can accelerate therapeutic discovery. METHODS We characterised the progression of altered dynamics of whole-brain network states in the zQ175DN mouse model of HD using a dynamic functional connectivity (FC) approach to resting-state fMRI and identified quasi-periodic patterns (QPPs) of brain activity constituting the most prominent resting-state networks. RESULTS The occurrence of the normative QPPs, as observed in healthy controls, was reduced in the HD model as the phenotype progressed. This uncovered progressive cessation of synchronous brain activity with phenotypic progression, which is not observed with the conventional static FC approaches. To better understand the potential underlying cause of the observed changes in these brain states, we further assessed how mutant huntingtin (mHTT) protein deposition affects astrocytes and pericytes - one of the most important effectors of neurovascular coupling, along phenotypic progression. Increased cell-type dependent mHTT deposition was observed at the age of onset of motor anomalies, in the caudate putamen, somatosensory and motor cortex, regions that are prominently involved in HD pathology as seen in humans. CONCLUSION Our findings provide meaningful insights into the development and progression of altered functional brain dynamics in this HD model and open new avenues in assessing the dynamics of whole brain states, through QPPs, in clinical HD research. HIGHLIGHTS Hyperactivity in the LCN-linked regions within short QPPs observed before motor impairment onset. DMLN QPP presents a progressive decrease in DMLN activity and occurrence along HD-like phenotype development. Breakdown of the LCN DMLN state flux at motor onset leads to a subsequent absence of the LCN DMLN QPP at an advanced HD-like stage.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marlies Verschuuren
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Dorian Pustina
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Monica van den Berg
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Johan Van Audekerke
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Isabel Pintelon
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Roger Cachope
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Winnok H. De Vos
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Annemie Van der Linden
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Mohit H. Adhikari
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marleen Verhoye
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
11
|
Shirguppe S, Gapinske M, Swami D, Gosstola N, Acharya P, Miskalis A, Joulani D, Szkwarek MG, Bhattacharjee A, Elias G, Stilger M, Winter J, Woods WS, Anand D, Lim CKW, Gaj T, Perez-Pinera P. In vivo CRISPR base editing for treatment of Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.602282. [PMID: 39005280 PMCID: PMC11245100 DOI: 10.1101/2024.07.05.602282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Huntington's disease (HD) is an inherited and ultimately fatal neurodegenerative disorder caused by an expanded polyglutamine-encoding CAG repeat within exon 1 of the huntingtin (HTT) gene, which produces a mutant protein that destroys striatal and cortical neurons. Importantly, a critical event in the pathogenesis of HD is the proteolytic cleavage of the mutant HTT protein by caspase-6, which generates fragments of the N-terminal domain of the protein that form highly toxic aggregates. Given the role that proteolysis of the mutant HTT protein plays in HD, strategies for preventing this process hold potential for treating the disorder. By screening 141 CRISPR base editor variants targeting splice elements in the HTT gene, we identified platforms capable of producing HTT protein isoforms resistant to caspase-6-mediated proteolysis via editing of the splice acceptor sequence for exon 13. When delivered to the striatum of a rodent HD model, these base editors induced efficient exon skipping and decreased the formation of the N-terminal fragments, which in turn reduced HTT protein aggregation and attenuated striatal and cortical atrophy. Collectively, these results illustrate the potential for CRISPR base editing to decrease the toxicity of the mutant HTT protein for HD.
Collapse
|
12
|
Aldous SG, Smith EJ, Landles C, Osborne GF, Cañibano-Pico M, Nita IM, Phillips J, Zhang Y, Jin B, Hirst MB, Benn CL, Bond BC, Edelmann W, Greene JR, Bates GP. A CAG repeat threshold for therapeutics targeting somatic instability in Huntington's disease. Brain 2024; 147:1784-1798. [PMID: 38387080 PMCID: PMC11068328 DOI: 10.1093/brain/awae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
The Huntington's disease mutation is a CAG repeat expansion in the huntingtin gene that results in an expanded polyglutamine tract in the huntingtin protein. The CAG repeat is unstable and expansions of hundreds of CAGs have been detected in Huntington's disease post-mortem brains. The age of disease onset can be predicted partially from the length of the CAG repeat as measured in blood. Onset age is also determined by genetic modifiers, which in six cases involve variation in DNA mismatch repair pathways genes. Knocking-out specific mismatch repair genes in mouse models of Huntington's disease prevents somatic CAG repeat expansion. Taken together, these results have led to the hypothesis that somatic CAG repeat expansion in Huntington's disease brains is required for pathogenesis. Therefore, the pathogenic repeat threshold in brain is longer than (CAG)40, as measured in blood, and is currently unknown. The mismatch repair gene MSH3 has become a major focus for therapeutic development, as unlike other mismatch repair genes, nullizygosity for MSH3 does not cause malignancies associated with mismatch repair deficiency. Potential treatments targeting MSH3 currently under development include gene therapy, biologics and small molecules, which will be assessed for efficacy in mouse models of Huntington's disease. The zQ175 knock-in model carries a mutation of approximately (CAG)185 and develops early molecular and pathological phenotypes that have been extensively characterized. Therefore, we crossed the mutant huntingtin allele onto heterozygous and homozygous Msh3 knockout backgrounds to determine the maximum benefit of targeting Msh3 in this model. Ablation of Msh3 prevented somatic expansion throughout the brain and periphery, and reduction of Msh3 by 50% decreased the rate of expansion. This had no effect on the deposition of huntingtin aggregation in the nuclei of striatal neurons, nor on the dysregulated striatal transcriptional profile. This contrasts with ablating Msh3 in knock-in models with shorter CAG repeat expansions. Therefore, further expansion of a (CAG)185 repeat in striatal neurons does not accelerate the onset of molecular and neuropathological phenotypes. It is striking that highly expanded CAG repeats of a similar size in humans cause disease onset before 2 years of age, indicating that somatic CAG repeat expansion in the brain is not required for pathogenesis. Given that the trajectory for somatic CAG expansion in the brains of Huntington's disease mutation carriers is unknown, our study underlines the importance of administering treatments targeting somatic instability as early as possible.
Collapse
Affiliation(s)
- Sarah G Aldous
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Edward J Smith
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Christian Landles
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Georgina F Osborne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Maria Cañibano-Pico
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Iulia M Nita
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jemima Phillips
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Yongwei Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Bo Jin
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Caroline L Benn
- LoQus23 Therapeutics, Riverside, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Brian C Bond
- Prism Training and Consultancy Limited, St John’s Innovation Centre, Cambridge, CB4 0WS, UK
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
13
|
Bondulich MK, Phillips J, Cañibano-Pico M, Nita IM, Byrne LM, Wild EJ, Bates GP. Translatable plasma and CSF biomarkers for use in mouse models of Huntington's disease. Brain Commun 2024; 6:fcae030. [PMID: 38370446 PMCID: PMC10873584 DOI: 10.1093/braincomms/fcae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 02/20/2024] Open
Abstract
Huntington's disease is an inherited neurodegenerative disorder for which a wide range of disease-modifying therapies are in development and the availability of biomarkers to monitor treatment response is essential for the success of clinical trials. Baseline levels of neurofilament light chain in CSF and plasma have been shown to be effective in predicting clinical disease status, subsequent clinical progression and brain atrophy. The identification of further sensitive prognostic fluid biomarkers is an active research area, and total-Tau and YKL-40 levels have been shown to be increased in CSF from Huntington's disease mutation carriers. The use of readouts with clinical utility in the preclinical assessment of potential therapeutics should aid in the translation of new treatments. Here, we set out to determine how the concentrations of these three proteins change in plasma and CSF with disease progression in representative, well-established mouse models of Huntington's disease. Plasma and CSF were collected throughout disease progression from R6/2 transgenic mice with CAG repeats of 200 or 90 codons (R6/2:Q200 and R6/2:Q90), zQ175 knock-in mice and YAC128 transgenic mice, along with their respective wild-type littermates. Neurofilament light chain and total-Tau concentrations were quantified in CSF and plasma using ultrasensitive single-molecule array (Quanterix) assays, and a novel Quanterix assay was developed for breast regression protein 39 (mouse homologue of YKL-40) and used to quantify breast regression protein 39 levels in plasma. CSF levels of neurofilament light chain and plasma levels of neurofilament light chain and breast regression protein 39 increased in wild-type biofluids with age, whereas total-Tau remained constant. Neurofilament light chain and breast regression protein 39 were elevated in the plasma and CSF from Huntington's disease mouse models, as compared with wild-type littermates, at presymptomatic stages, whereas total-Tau was only increased at the latest disease stages analysed. Levels of biomarkers that had been measured in the same CSF or plasma samples taken at the latest stages of disease were correlated. The demonstration that breast regression protein 39 constitutes a robust plasma biomarker in Huntington's disease mouse models supports the further investigation of YKL-40 as a CSF biomarker for Huntington's disease mutation carriers. Neurofilament light chain and Tau are considered markers of neuronal damage, and breast regression protein 39 is a marker of inflammation; the similarities and differences in the levels of these proteins between mouse models may provide future insights into their underlying pathology. These data will facilitate the use of fluid biomarkers in the preclinical assessment of therapeutic agents for Huntington's disease, providing readouts with direct relevance to clinical trials.
Collapse
Affiliation(s)
- Marie K Bondulich
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Jemima Phillips
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - María Cañibano-Pico
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Iulia M Nita
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Lauren M Byrne
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Edward J Wild
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| | - Gillian P Bates
- Huntington’s Disease Centre, Department of Neurodegenerative Disease and UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London WC1N 3BG, UK
| |
Collapse
|