1
|
Diao JS, Du HC, Wu J, Han XN, Wu ML, Lai RG, Rahman MA, Shu MG. CD147 inhibition reduced fibronectin expression in TGF-β1-induced keloid fibroblasts by targeting Smad2 signaling pathway. Burns 2025; 51:107472. [PMID: 40319830 DOI: 10.1016/j.burns.2025.107472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND CD147 is closely involved in the progression of fibrosis and tumor formation in various tissues, however, its role in keloid formation remains unknown. In this study, we investigate the expression of CD147 in keloids and explore its functional roles. METHODS CD147 expression in human keloid tissues was assessed using immunohistopathology and western blot analysis. Human keloid fibroblasts (KFs) were cultured and treated with TGF-β1 alone or in combination with the CD147 inhibitor AC-73. Western blot and immunofluorescence were employed to examine CD147 and fibronectin expression levels in KFs post-treatment. Additionally, the effect of CD147 inhibitor on Smad2 phosphorylation and fibronectin protein levels in TGF-β1-induced KFs was evaluated by western blot. Finally, a keloid-bearing nude mouse model was established to investigate the therapeutic effect of AC-73 in vivo. RESULTS CD147 expression was significantly higher in keloid tissues compared to normal skin. TGF-β1 treatment upregulated CD147 and fibronectin expressions in cultured KFs. Inhibition of CD147 with AC-73 reduced the expression levels of both CD147 and fibronectin in KFs. Additionally, AC-73 markedly attenuated TGF-β1-induced fibronectin expression and suppressed Smad2 phosphorylation. In the nude mouse model, AC-73 significantly reduced the gross weight of xenotransplanted keloid tissues. CONCLUSION These findings suggest that CD147 is closely involved in keloid progression. Inhibition of CD147 downregulates TGF-β1-induced fibronectin expression in KFs by targeting Smad2 signaling pathway. Thus, CD147 may serve as a promising therapeutic target for keloid treatment.
Collapse
Affiliation(s)
- Jian-Sheng Diao
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui-Cong Du
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Juan Wu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin-Nan Han
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Meng-Lu Wu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Rong-Guang Lai
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Md Atiqur Rahman
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Plastic Surgery, East West Medical College and Hospital, Turag, Dhaka, Bangladesh
| | - Mao-Guo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Zhang W, Yin L, Wang H, Long C, Liu J, Deng P, Yue Y, Li J, He M, Lu Y, Luo Y, Chen S, Tao J, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Gao P, Pi H. Multiomics analysis elucidated the role of inflammatory response and bile acid metabolism disturbance in electric shock-induced liver injury in mice. Chin J Traumatol 2025:S1008-1275(24)00182-2. [PMID: 39827045 DOI: 10.1016/j.cjtee.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 01/22/2025] Open
Abstract
PURPOSE Organ damage caused by electric shock has attracted great attention. Some animal investigations and clinical cases have suggested that electric shock can induce liver injury. This study aimed to investigate the potential mechanism of liver injury induced by electric shock. METHODS Healthy male C57BL/6J mice aged 6-8 weeks were romandly divided into two groups: control group and electric shock group. Mice in the electric shock group were shocked on the top of the skull with an electric baton (20 kV) for 5 sec, while mice in the control group were exposed to only the acoustic and light stimulation produced by the electric baton. The effect of electric shock on liver function was evaluated by histological and biochemical analysis, and a metabolomics and transcriptomics study was performed to investigate how electric shock might induce liver damage. All data of this study were analyzed using a two-tailed unpaired Student's t-test in SPSS 22.0 Statistical Package. RESULTS The electric shock group had significantly higher serum aspartate aminotransferase and alanine aminotransferase levels than the control group (p < 0.001), and the shock notably caused cytoplasmic swelling and vacuolization, mild inflammatory cell (mainly macrophages and monocytes) infiltration and acute focal necrosis in hepatocytes (p < 0.001). A total of 47 differential metabolites and 249 differentially expressed genes (DEGs) were detected using metabolomic and transcriptomic analyses. These differential metabolites were significantly enriched in primary bile acid biosynthesis (p < 0.05). Gene ontology functional analysis of the DEGs revealed that electric shock disturbed a key biological process involved in the inflammatory response in the mouse liver, and a significant number of DEGs were enriched in Kyoto Encyclopedia of Genes and Genomes-identified pathways related to inflammation, such as the interleukin-17, tumor necrosis factor and mitogen-activated protein kinase signalling pathway. Transcriptomic and metabolomic analyses revealed that bile acid metabolism disturbance including up-regulation of the taurochenodesoxycholic acid, chenodeoxycholic acid and taurocholic acid, and down-regulation of chenodeoxycholic acid clycine conjugate may contribute to the electric shock-induced inflammatory response. CONCLUSION Electric shock can induce liver inflammatory injury through the interleukin-17, tumor necrosis factor, and mitogen-activated protein kinase signaling pathway, and the bile acid metabolism disturbance including up-regulation of the taurochenodesoxycholic acid, chenodeoxycholic acid and taurocholic acid, and down-regulation of chenodeoxycholic acid clycine conjugate may contribute to inflammatory liver injury following electric shock.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Luncai Yin
- Department of Oncology, Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, 402360, China
| | - Hui Wang
- Nuclear Medicine Department, General Hospital of Tibet Military Area Command, Lhasa, 850007, Xizang, China
| | - Ce Long
- General Hospital of Xizang Military Area Command, Lhasa, 850007, Xizang, China
| | - Jin Liu
- Cardiovascular Department, General Hospital of Xizang Military Area Command, Lhasa, 850007, Xizang, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Siyu Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Jiawen Tao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Chen J, Shao F, Zhang S, Qian Y, Chen M. A pan-cancer analysis of the oncogenic role of N-acetyltransferase 8 like in human cancer. Discov Oncol 2024; 15:792. [PMID: 39692770 DOI: 10.1007/s12672-024-01605-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND N-Acetyltransferase 8 Like (NAT8L) inhibits natural killer (NK)/T-cell cytotoxicity by impairing the formation of the immunological synapse via N-acetylaspartate (NAA). Existing research has predominantly focused on the metabolic functions of NAT8L, particularly in adipose tissues and myelination in the brain. However, in contrast to other N-acetyltransferases such as NAT1 and NAT2, the role of NAT8L in cancer has been less extensively studied. In this study, we conducted a comprehensive pan-cancer analysis to investigate the carcinogenic role of NAT8L in human cancers. METHODS We utilized the standardized TCGA pan-cancer dataset to analyze differential expression, clinical prognosis, gene mutation, immune infiltration, epigenetic modification, tumor stemness, and heterogeneity. Additionally, we evaluated the sensitivity of NAT8L to small molecule drugs using the GDSC and CTRP databases. RESULTS In this study, we identified that NAT8L expression was upregulated in 6 cancers and downregulated in 12 compared to normal tissues. We analyzed its prognostic value in 5 tumor types (KIRP, COAD, COADREAD, GBMLGG, LUSC) and found correlations with overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI). Furthermore, NAT8L expression was significantly correlated with levels of most immune checkpoints, immunomodulators, and immune cell infiltration. The mutation frequencies for bladder cancer (BLCA), glioblastoma multiforme and glioma (GBMLGG), lower-grade glioma (LGG), and KIRP were 1.2%, 0.9%, 0.8%, and 0.4%, respectively. CONCLUSION Our findings suggest that NAT8L may serve as a potential prognostic marker and therapeutic target across a variety of cancers, particularly in KIRP, COAD, COADREAD, GBMLGG, and lung squamous cell carcinoma (LUSC).
Collapse
Affiliation(s)
- Jiamin Chen
- Institute of Clinical Pathology& Department of Pathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | | | - Shuxia Zhang
- Research Core Facilities, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Youliang Qian
- Department of Urology, Chengdu Second People's Hospital, Chengdu, China.
| | - Mei Chen
- Department of Urology, Yaan People's Hospital, Yaan, China.
| |
Collapse
|
4
|
Chen P, Su Q, Lin X, Zhou X, Yao W, Hua X, Huang Y, Xie R, Liu H, Wang C. Construction of ceRNA Network and Disease Diagnosis Model for Keloid Based on Tumor Suppressor ERRFI1. Exp Dermatol 2024; 33:e70004. [PMID: 39563082 DOI: 10.1111/exd.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 11/21/2024]
Abstract
The aim of this study is to identify the key biomarker of keloid (KD) with significant diagnostic value and to construct the related competing endogenous RNA (ceRNA) network and disease diagnostic model to provide new ideas for the early diagnosis and prevention of KD. Public databases were used to identify the key gene of KD. Enrichment analysis and immune cell infiltration (ICI) analysis revealed its functional and immune characteristics. Then, a ceRNA network was constructed to explore the potential pathways of it. Random forest (RF) analysis was applied to construct a predictive model for the disease diagnosis of KD. Finally, immunohistochemistry (IHC) and RT-qPCR were used to verify the differential expression of key gene. ERRFI1 was identified as a key biomarker in KD and was lowly expressed in KD. The ceRNA network revealed that H0TAIRM1-has-miR-148a-3p-ERRFI1 may be a potential pathway in KD. Finally, a 2-gene diagnostic prediction model (ERRFI1, HSD3B7) was constructed and externally validated and the results suggested that the model had good diagnostic performance. ERRFI1 is a downregulated gene in KD and is expected to be a promising predictive marker and disease diagnostic gene. ICI may play a role in the progression of KD. The ceRNA network may provide new clues to the potential pathogenesis of KD. Finally, the new KD diagnostic model could be an effective tool for assessing the risk of KD development.
Collapse
Affiliation(s)
- Pengsheng Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Qingfu Su
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Xingong Lin
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Xianying Zhou
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Wanting Yao
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Xiaxinqiu Hua
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Yanyan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Rongrong Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Huiyong Liu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| | - Chaoyang Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, China
| |
Collapse
|
5
|
Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J, Huang C, Luo G, He W. Macrophage plasticity: signaling pathways, tissue repair, and regeneration. MedComm (Beijing) 2024; 5:e658. [PMID: 39092292 PMCID: PMC11292402 DOI: 10.1002/mco2.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Macrophages are versatile immune cells with remarkable plasticity, enabling them to adapt to diverse tissue microenvironments and perform various functions. Traditionally categorized into classically activated (M1) and alternatively activated (M2) phenotypes, recent advances have revealed a spectrum of macrophage activation states that extend beyond this dichotomy. The complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications orchestrates macrophage polarization, allowing them to respond to various stimuli dynamically. Here, we provide a comprehensive overview of the signaling cascades governing macrophage plasticity, focusing on the roles of Toll-like receptors, signal transducer and activator of transcription proteins, nuclear receptors, and microRNAs. We also discuss the emerging concepts of macrophage metabolic reprogramming and trained immunity, contributing to their functional adaptability. Macrophage plasticity plays a pivotal role in tissue repair and regeneration, with macrophages coordinating inflammation, angiogenesis, and matrix remodeling to restore tissue homeostasis. By harnessing the potential of macrophage plasticity, novel therapeutic strategies targeting macrophage polarization could be developed for various diseases, including chronic wounds, fibrotic disorders, and inflammatory conditions. Ultimately, a deeper understanding of the molecular mechanisms underpinning macrophage plasticity will pave the way for innovative regenerative medicine and tissue engineering approaches.
Collapse
Affiliation(s)
- Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Jue Wang
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Xin Cai
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Han‐Ming Shen
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospitaland West China School of Basic Medical Sciences and Forensic MedicineSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| | - Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Damage Repair and RegenerationChongqingChina
| |
Collapse
|
6
|
Feng J, Fang J. HOXC6-mediated transcriptional activation of ENO2 promotes oral squamous cell carcinoma progression through the Warburg effect. J Biochem Mol Toxicol 2024; 38:e23752. [PMID: 38923759 DOI: 10.1002/jbt.23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Oral squamous cell carcinoma (OSCC) requires an in-depth exploration of its molecular mechanisms. The Warburg effect, along with the oncogenes enolase 2 (ENO2) and homeobox C6 (HOXC6), plays a central role in cancer. However, the specific interaction between ENO2 and HOXC6 in driving the Warburg effect and OSCC progression remains poorly understood. Through differential gene expression analysis in head and neck squamous cell carcinomas using Gene Expression Profiling Interactive Analysis, we identified upregulated ENO2 in OSCC. Silencing ENO2 in OSCC cells revealed its involvement in migration, invasion, and aerobic glycolysis of OSCC cells. Further exploration of ENO2's regulatory network identified HOXC6 as a potential transcriptional regulator. Subsequently, HOXC6 was silenced in OSCC cells, and expressions of ENO2 were assessed to validate its relationship with ENO2. Chromatin Immunoprecipitation and luciferase assays were utilized to investigate the direct transcriptional activation of ENO2 by HOXC6. A rescue assay co-overexpressing ENO2 and silencing HOXC6 in OSCC cells affirmed HOXC6's role in ENO2-associated glycolysis. High ENO2 expression in OSCC was validated through quantitative real-time polymerase chain reaction, Western blot, and immunohistochemistry analyses, which correlated with poor patient survival. Functional assays demonstrated that ENO2 silencing inhibited glycolysis and attenuated the aggressiveness of OSCC cells. In vivo studies confirmed the oncogenic role of ENO2 in OSCC growth. Notably, HOXC6 exhibited a positive correlation with ENO2 expression in clinical samples. Mechanistically, HOXC6 was identified as a direct transcriptional activator of ENO2, orchestrating the Warburg effect in OSCC cells. This study reveals the intricate link between HOXC6-mediated ENO2 transcriptional activation and the Warburg effect in OSCC, offering a potential therapeutic target for treating OSCC patients.
Collapse
Affiliation(s)
- Jing Feng
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jin Fang
- Department of Stomatology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
7
|
Ningsih SS, Fadilah F, Jusman SWA, Syaidah R, Yashiro T. Profibrotic Inflammatory Cytokines and Growth Factors Are Predicted as the Key Targets of Uncaria gambir (Hunter) Roxb. in Keloids: An Epistatic and Molecular Simulation Approach. Pharmaceuticals (Basel) 2024; 17:662. [PMID: 38931330 PMCID: PMC11206663 DOI: 10.3390/ph17060662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
Keloid is characterized as the fibrotic tissue resulting from the increase of fibroblast activity. Uncaria gambir (Hunter) Roxb. possesses bioactive compounds that have potential as antifibrotic agents, while the mechanism of action in keloid has not yet been elucidated. The aim of this study was to investigate the interaction of gambir bioactive compounds with keloid target proteins using an epistatic and molecular simulation approach. The known bioactive compounds of gambir targets and keloid-related protein targets were screened using databases. The network was constructed and analyzed to obtain the core protein targets. The targets were enriched to describe the Gene Ontology (GO) and pathway related to the proteins. Eleven targets were defined as the main targets of gambir bioactive compounds related to keloid disease. Gambiriin C, Isogambirine, and Procyanidin B1 were identified as the most promising compounds with the highest binding energy to transforming growth factor beta 1 (TGFβ1), AKT serine/threonine kinase 1 (AKT1), and matrix metallopeptidase 1 (MMP1) as the target proteins. GO enrichment and pathway analysis found that gambir bioactive compounds may act on keloid-related target proteins to regulate cell proliferation, migration, transcription, and signal transduction activity via profibrotic cytokine and growth factor signaling pathways. This study provides a reference for potential targets, compounds, and pathways to explain the mechanism of gambir against keloid.
Collapse
Affiliation(s)
- Sri Suciati Ningsih
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (S.S.N.); (F.F.)
- Faculty of Medicine, Universitas Muhammadiyah Prof. Dr. Hamka, Jakarta 12130, Indonesia
| | - Fadilah Fadilah
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (S.S.N.); (F.F.)
- Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Sri Widia A. Jusman
- Department of Biochemistry, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia;
- Center of Hypoxia and Oxidative Stress Studies, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Rahimi Syaidah
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia; (S.S.N.); (F.F.)
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Takashi Yashiro
- Department of Histology, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan;
| |
Collapse
|
8
|
Zhong Y, Zhang Y, Lu B, Deng Z, Zhang Z, Wang Q, Zhang J. Hydrogel Loaded with Components for Therapeutic Applications in Hypertrophic Scars and Keloids. Int J Nanomedicine 2024; 19:883-899. [PMID: 38293605 PMCID: PMC10824614 DOI: 10.2147/ijn.s448667] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Hypertrophic scars and keloids are common fibroproliferative diseases following injury. Patients with pathologic scars suffer from impaired quality of life and psychological health due to appearance disfiguration, itch, pain, and movement disorders. Recently, the advancement of hydrogels in biomedical fields has brought a variety of novel materials, methods and therapeutic targets for treating hypertrophic scars and keloids, which exhibit broad prospects. This review has summarized current research on hydrogels and loaded components used in preventing and treating hypertrophic scars and keloids. These hydrogels attenuate keloid and hypertrophic scar formation and progression by loading organic chemicals, drugs, or bioactive molecules (such as growth factors, genes, proteins/peptides, and stem cells/exosomes). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favoured by researchers. In addition, combining hydrogels and current therapy (such as laser or radiation therapy, etc.) could improve the treatment of hypertrophic scars and keloids. Then, the difficulties and limitations of the current research and possible suggestions for improvement are listed. Moreover, we also propose novel strategies for facilitating the construction of target multifunctional hydrogels in the future.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Beibei Lu
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| | - Zhiwen Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
9
|
Yang X, Wang J, Dai X, Ma N, Cheng H, Guo H, Chen S, Huang Y, Wu J. The mechanism and targeted intervention of the HIF-1 pathway in improving atherosclerotic heart's sensitivity to ischemic postconditioning. Free Radic Biol Med 2023; 208:494-509. [PMID: 37660838 DOI: 10.1016/j.freeradbiomed.2023.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND IPoC possesses a preventive effect against IR injury in healthy myocardium, but IPoC's protective effect on atherosclerotic myocardium is controversial. The current investigation aims to determine whether IPoC remains protective in atherosclerotic myocardium subjected to ischemia-reperfusion (IR) injury; to explore the specific mechanisms by which IPoC exerts cardioprotection; to explore whether HIF-1 upregulation combined with IPoC could further the provide cardioprotection; and to gaze at the specific mechanism whereby combined treatment expert the cardioprotection. METHODS ApoE-/- mice fed with a high-fat diet (HFD) were used to develop a model of atherosclerosis. The myocardial IR model was induced by occlusion of the left anterior descending (LAD) artery for 45 min, followed by reperfusion for 120 min. The protection of IPoC in both healthy and atherosclerotic myocardium was evaluated by measuring oxidative stress, apoptosis, infarct size, pathology, mitochondrial dysfunction and morphology of myocardium. The specific mechanism by which IPoC exerts cardioprotection in healthy and atherosclerotic myocardium was observed by measuring the expression of proteins involved in HIF-1, APMK and RISK pathways. The effect of HIF-1α overexpression on the cardioprotection by IPoC was observed by intravenous AAV9 -HIF-1α injection. RESULTS In healthy ischemic myocardium, IPoC exerted myocardial protective effects (antioxidant, anti-apoptosis, and improved mitochondrial function) through the activation of HIF-1, AMPK and RISK pathways. In atherosclerotic ischemic myocardium, IPoC exerted cardioprotection only through the activation of HIF-1 pathway; however, HIF-1 overexpression combined IPoC restored the activation of AMPK and RISK pathways, thereby further alleviating the myocardial IR injury. CONCLUSIONS In the atherosclerotic state, the HIF-1 pathway is the intrinsic mechanism by which IPoC exerts cardioprotective effects. The combination of HIF-1 upregulation and IPoC has a significant effect in reducing myocardial injury, which is worth being promoted and advocated. In addition, HIF-1-AMPK and HIF-1-RISK may be two endogenous cardioprotective signalling pathways with great value, which deserve to be thoroughly investigated in the future.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaowen Dai
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hu Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hai Guo
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Siyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yidan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
10
|
Zhong Y, Zhang Y, Yu A, Zhang Z, Deng Z, Xiong K, Wang Q, Zhang J. Therapeutic role of exosomes and conditioned medium in keloid and hypertrophic scar and possible mechanisms. Front Physiol 2023; 14:1247734. [PMID: 37781228 PMCID: PMC10536244 DOI: 10.3389/fphys.2023.1247734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Exosomes, ranging from 40 to 160 nm in diameter, are extracellular lipid bilayer microvesicles that regulate the body's physiological and pathological processes and are secreted by cells that contain proteins, nucleic acids, amino acids and other metabolites. Previous studies suggested that mesenchymal stem cell (MSC)-derived exosomes could either suppress or support keloid and hypertrophic scar progression. Although previous research has identified the potential value of MSC-exosomes in keloid and hypertrophic scar, a comprehensive analysis of different sources of MSC-exosome in keloid and hypertrophic scar is still lacking. This review mainly discusses different insights regarding the roles of MSC-exosomes in keloid and hypertrophic scar treatment and summarizes possible underlying mechanisms.
Collapse
Affiliation(s)
- Yixiu Zhong
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Youfan Zhang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Aijiao Yu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwen Zhang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenjun Deng
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Kaifen Xiong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Tai Y, Zheng L, Liao J, Wang Z, Zhang L. Roles of the HIF-1α pathway in the development and progression of keloids. Heliyon 2023; 9:e18651. [PMID: 37636362 PMCID: PMC10448433 DOI: 10.1016/j.heliyon.2023.e18651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Keloids, a pathological scar that is induced by the consequence of aberrant wound healing, is still a major global health concern for its unsatisfactory treatment outcomes. HIF-1α, a main regulator of hypoxia, mainly acts through some proteins or signaling pathways and plays important roles in a variety of biological processes. Accumulating evidence has shown that HIF-1α played a crucial role in the process of keloid formation. In this review, we attempted to summarize the current knowledge on the association between HIF-1α expression and the development and progression of keloids. Through a comprehensive analysis, the molecular mechanisms underlying HIF-1α in keloids were shown to be correlated to the proliferation of fibroblasts, angiogenesis, and collagen deposits. The affected proteins and the signaling pathways were multiple. For instance, HIF-1α was reported to promote keloids formation by enhancing angiogenesis, fibroblast proliferation, and collagen deposition through the activation of periostin PI3K/Akt, TGF-β/Smad and TLR4/MyD88/NF-κB pathway. However, the specific effects of HIF-1α on keloids keloid illnesses in clinical practice is are entirely unclear, and further studies in clinical trials are still warranted. Therefore, an in-depth understanding of the biological mechanisms of HIF-1α in keloid formation is significant to develop promising therapeutic targets for the treatment of keloids in clinical practice.
Collapse
Affiliation(s)
- Yuncheng Tai
- Department of Burn Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, Zhejiang, China
| | - Liying Zheng
- Postgraduate Department, First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Jiao Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314000, Zhejiang, China
| | - Zixiong Wang
- Department of Burn and Plastic Surgery, Xinjiang Military General Hospital, Urumqi, 830063, Xinjiang, China
| | - Lai Zhang
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, Zhejiang, China
| |
Collapse
|
12
|
Serror K, Ferrero L, Boismal F, Sintes M, Thery M, Vianay B, Henry E, Gentien D, DE LA Grange P, Boccara D, Mimoun M, Bouaziz JD, Benssussan A, Michel L. Evidence of inter- and intra-keloid heterogeneity through analysis of dermal fibroblasts: A new insight in deciphering keloid physiopathology. Exp Dermatol 2023. [PMID: 37148203 DOI: 10.1111/exd.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/29/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Keloid scars are hypertrophic and proliferating pathological scars extending beyond the initial lesion and without tendency to regression. Usually, keloids are considered and treated as a single entity but clinical observations suggest heterogeneity in keloid morphologies with distinction of superficial/extensive and nodular entities. Within a keloid, heterogeneity could also be detected between superficial and deep dermis or centre and periphery. Focusing on fibroblasts as main actors of keloid formation, we aimed at evaluating intra- and inter-keloid fibroblast heterogeneity by analysing their gene expression and functional capacities (proliferation, migration, traction forces), in order to improve our understanding of keloid pathogenesis. Fibroblasts were obtained from centre, periphery, papillary and reticular dermis from extensive or nodular keloids and were compared to control fibroblasts from healthy skin. Transcriptional profiling of fibroblasts identified a total of 834 differentially expressed genes between nodular and extensive keloids. Quantification of ECM-associated gene expression by RT-qPCR brought evidence that central reticular fibroblasts of nodular keloids are the population which synthesize higher levels of mature collagens, TGFβ, HIF1α and αSMA as compared to control skin, suggesting that this central deep region is the nucleus of ECM production with a centrifuge extension in keloids. Although no significant variations were found for basal proliferation, migration of peripheral fibroblasts from extensive keloids was higher than that of central ones and from nodular cells. Moreover, these peripheral fibroblasts from extensive keloids exhibited higher traction forces than central cells, control fibroblasts and nodular ones. Altogether, studying fibroblast features demonstrate keloid heterogeneity, leading to a better understanding of keloid pathophysiology and treatment adaptation.
Collapse
Affiliation(s)
- Kévin Serror
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Lauren Ferrero
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Françoise Boismal
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
| | - Maxime Sintes
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
| | - Manuel Thery
- Paris University, Paris, France
- INSERM UMR_S 976, CEA CytoMorphoLab, Saint-Louis Hospital, Paris, France
| | - Benoit Vianay
- Paris University, Paris, France
- INSERM UMR_S 976, CEA CytoMorphoLab, Saint-Louis Hospital, Paris, France
| | - Emilie Henry
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - David Gentien
- Genomics Platform, Translational Research Department, Research Center, Institut Curie, Paris Sciences et Lettres (PSL) Research University, Paris, France
| | | | - David Boccara
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Maurice Mimoun
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Department of Reconstructive and Plastic Surgery, Saint-Louis Hospital, Paris, France
| | - Jean-David Bouaziz
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| | - Armand Benssussan
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
| | - Laurence Michel
- INSERM UMR_S 976, Skin Research Center, Saint-Louis Hospital, Paris, France
- Paris University, Paris, France
- Dermatology Department, Saint-Louis Hospital, Paris, France
| |
Collapse
|