1
|
Guo R, Zhang R, Xin Y, Wang Z, Xu Z, Qiu J. Recent developments in photothermal therapy: a bibliometric and visual analysis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:892-912. [PMID: 39645603 DOI: 10.1080/09205063.2024.2434308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
Photothermal therapy (PTT) has recently garnered significant attention as a prominent noninvasive treatment modality for a broad spectrum of diseases. Despite the increasing volume of scholarly output over the last 20 years, a holistic synthesis that delineates worldwide research trajectories remains elusive. We undertook a bibliometric analysis of the literature from 2004 to 2023, aiming to delineate the prevailing focal points and illuminate prospective research avenues. Research articles on PTT were retrieved from the Web of Science Core Collection. Using tools such as CiteSpace, VOSviewer, and Bibliometrix, we comprehensively analyzed and visualized 11,184 published academic PTT papers. China has the highest number of publications. Journals related to PTT are primarily comprised of interdisciplinary and comprehensive journals. Research associated with PTT has focused primarily on its antitumor properties. Current focal areas in this domain include the synergistic combination of PTT with photodynamic therapy, immunological mechanisms of PTT to enhance its therapeutic efficacy, integrated use of PTT with nanoenzyme catalysis, and the role of PTT in antimicrobial applications. This bibliometric analysis provides an initial comprehensive examination of the medical applications of PTT, offering insights into the global research landscape, key areas of interest, and emerging trends, thereby serving as a valuable reference for future studies in this field.
Collapse
Affiliation(s)
- Runying Guo
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Rongrong Zhang
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Yuqi Xin
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Zhonghao Wang
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Zichen Xu
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Medical College, Nanchang University, Nanchang, China
| | - Jiaxuan Qiu
- Jiangxi Provincial Key Laboratory of Oral Diseases, Department of Stomatology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Chen Z, Zhang R, Wang T, Peng Y, Zhou Q, Cao P, Xiao X, Li F, Wei Z, Wang Y, Xu D, Qiao B, Cheng S, Wu Q, Niu L. Nanosheet-shaped WS 2/ICG nanocomposite for photodynamic/photothermal synergistic bacterial clearance and cutaneous regeneration on infectious wounds. BIOMATERIALS ADVANCES 2025; 169:214192. [PMID: 39854997 DOI: 10.1016/j.bioadv.2025.214192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Bacterial infections present a significant threat to human health, a challenge that is intensified by the slow pace of novel antibiotic development and the swift emergence of bacterial resistance. The development of novel antibacterial agents is crucial. Indocyanine green (ICG), a widely used imaging dye, efficiently generates reactive oxygen species (ROS) and heat for treating bacterial infections but suffers from aggregation and instability, limiting its efficacy. In this study, tungsten disulfide (WS₂) nanosheet with a high surface area was used to load ICG, creating a multifunctional nanocomposite, WS2/ICG, aimed at treating bacteria-infected wounds. The two-dimensional surface structure of WS₂ provides dispersible binding sites for ICG, and the synthesized nanocomposite exhibits excellent stability. Under near-infrared (NIR) laser excitation, the generated heat further synergistically enhances the yield of singlet oxygen. Additionally, the WS₂/ICG nanoplatform synergistically combines photothermal effect with photodynamic effect, achieving a "1 + 1 > 2" enhancement. Upon NIR laser excitation, the nanocomposite disrupts bacterial cell membranes through localized heating and ROS accumulation, leading to energy metabolism system disruption and subsequent bacterial lysis and death. The findings demonstrate WS₂/ICG's outstanding antibacterial properties and biocompatibility, effectively treating skin infections and promoting tissue regeneration, providing a simple and promising solution for bacteria-infected wounds.
Collapse
Affiliation(s)
- Zhiling Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Rui Zhang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China
| | - Tao Wang
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China; School of Public Health, Hainan Medical University, Haikou 571199, China
| | - Yanan Peng
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China
| | - Qionglin Zhou
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Peipei Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Xinxin Xiao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China
| | - Fengling Li
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Ziming Wei
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China
| | - Yuanyuan Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Dan Xu
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, International Joint Research Center of Human-machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou 571199, China
| | - Bin Qiao
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Shaowen Cheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China; Department of Wound Repair, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China.
| | - Qiang Wu
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou 571199, China; Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China.
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, School of Basic Medical Sciences and Life Sciences, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
3
|
Fan Y, Zheng J, Tan Y, Huang L, Yan Q, Wang J, Weng Q. Selection of biofilm-inhibiting ssDNA aptamers against antibiotic-resistant Edwardsiella tarda by inhibition-SELEX and interaction with their binding proteins. Int J Biol Macromol 2025; 299:140041. [PMID: 39832592 DOI: 10.1016/j.ijbiomac.2025.140041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Biofilms can increase bacterial resistance to antibiotic therapies. Edwardsiella tarda with biofilm is highly resistant to antibacterial treatment, especially for the antibiotic-resistant strain. In this study, we obtained biofilm-inhibiting aptamers against antibiotic-resistant E. tarda via a novel systematic evolution of ligands by exponential enrichment (SELEX) technique, called inhibition-SELEX. After four rounds of screening and validation, we identified aptamers IB1, IB2, and IB3, which demonstrated biofilm-inhibition and biofilm-degradation rates of 69 %, 75 %, and 62 % and 51 %, 63 %, and 45 % at 2 μmol/L, respectively, against antibiotic-resistant E. tarda. Magnetic separation, SDS-PAGE, and mass spectrometry analyses revealed that all three aptamers could bind to glyceraldehyde-3-phosphate dehydrogenase (GAPDH), while IB2 could also bind to formate C-acetyltransferase (FA). Through molecular docking and molecular dynamics simulations, it was found that the four complexes primarily interact through hydrogen bonding. Among them, IB1-GAPDH exhibited the strongest stability, followed by IB2-FA, then IB2-GAPDH, and IB3-GAPDH was the least stable. Our results suggest that IB1, IB2, and IB3 may inhibit and degrade E. tarda biofilm by interfering with the synthesis, secretion, and transportation of its extracellular polysaccharides and proteins by interacting with GAPDH and FA.
Collapse
Affiliation(s)
- Yunting Fan
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
| | - Jiang Zheng
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China.
| | - Ying Tan
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
| | - Lixing Huang
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
| | - Qingpi Yan
- State Key Laboratory of Mariculture Breeding, Engineering Research Centre of the Modern Technology for Eel Industry, Ministry of Education, Fisheries College of Jimei University, Xiamen 361021, China
| | - Jiaen Wang
- National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou 350200, China
| | - Qibiao Weng
- National Research and Development Center for Eel Processing Technology, Key Laboratory of Eel Aquaculture and Processing of Fujian Province, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou 350200, China
| |
Collapse
|
4
|
Song S, Yang N, Nawaz MAH, He D, Han W, Sun B, Steinmann C, Qi H, Li Y, Shen X, Yu C. BODIPY-based nanoparticles for highly efficient photothermal/gas synergistic therapy against drug-resistant bacterial infection. JOURNAL OF MATERIALS SCIENCE 2024; 59:19628-19641. [DOI: 10.1007/s10853-024-10351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/12/2024] [Indexed: 01/04/2025]
|
5
|
Ling Y, Duan M, Lyu W, Yang J, Liu Y, Ren S, Wu W. Electrospun L-Lysine/Amorphous Calcium Phosphate Loaded Core-Sheath Nanofibers for Managing Oral Biofilm Infections and Promoting Periodontal Tissue Repairment. Int J Nanomedicine 2024; 19:2917-2938. [PMID: 38525010 PMCID: PMC10961091 DOI: 10.2147/ijn.s453702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction Periodontitis, a chronic inflammatory disease prevalent worldwide, is primarily treated through GTR for tissue regeneration. The efficacy of GTR, however, remains uncertain due to potential infections and the intricate microenvironment of periodontal tissue. Herein, We developed a novel core-shell structure multifunctional membrane using a dual-drug-loaded coaxial electrospinning technique (Lys/ACP-CNF), contains L-lysine in the outer layer to aid in controlling biofilms after GTR regenerative surgery, and ACP in the inner layer to enhance osteogenic performance for accelerating alveolar bone repair. Methods The biocompatibility and cell adhesion were evaluated through CCK-8 and fluorescence imaging, respectively. The antibacterial activity was assessed using a plate counting assay. ALP, ARS, and RT-qPCR were used to examine osteogenic differentiation. Additionally, an in vivo experiment was conducted on a rat model with acute periodontal defect and infection. Micro-CT and histological analysis were utilized to analyze the in vivo alveolar bone regeneration. Results Structural and physicochemical characterization confirmed the successful construction of the core-shell fibrous structure. Additionally, the Lys/ACP-CNF showed strong antibacterial coaggregation effects and induced osteogenic differentiation of PDLSCs in vitro. The in vivo experiment confirmed that Lys/ACP-CNF promotes new bone formation. Conclusion Lys/ACP-CNF rapidly exhibited excellent antibacterial activity, protected PDLSCs from infection, and was conducive to osteogenesis, demonstrating its potential application for clinical periodontal GTR surgery.
Collapse
Affiliation(s)
- Yufeng Ling
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Menglu Duan
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Wen Lyu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Jie Yang
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Yu Liu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Department of Senior Specialist, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Shuangshuang Ren
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| | - Wenlei Wu
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
- Department of Senior Specialist, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, People’s Republic of China
| |
Collapse
|