1
|
Bellamri M, Walmsley SJ, Turesky RJ. Metabolism and biomarkers of heterocyclic aromatic amines in humans. Genes Environ 2021; 43:29. [PMID: 34271992 PMCID: PMC8284014 DOI: 10.1186/s41021-021-00200-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
Heterocyclic aromatic amines (HAAs) form during the high-temperature cooking of meats, poultry, and fish. Some HAAs also arise during the combustion of tobacco. HAAs are multisite carcinogens in rodents, inducing cancer of the liver, gastrointestinal tract, pancreas, mammary, and prostate glands. HAAs undergo metabolic activation by N-hydroxylation of the exocyclic amine groups to produce the proposed reactive intermediate, the heteroaryl nitrenium ion, which is the critical metabolite implicated in DNA damage and genotoxicity. Humans efficiently convert HAAs to these reactive intermediates, resulting in HAA protein and DNA adduct formation. Some epidemiologic studies have reported an association between frequent consumption of well-done cooked meats and elevated cancer risk of the colorectum, pancreas, and prostate. However, other studies have reported no associations between cooked meat and these cancer sites. A significant limitation in epidemiology studies assessing the role of HAAs and cooked meat in cancer risk is their reliance on food frequency questionnaires (FFQ) to gauge HAA exposure. FFQs are problematic because of limitations in self-reported dietary history accuracy, and estimating HAA intake formed in cooked meats at the parts-per-billion level is challenging. There is a critical need to establish long-lived biomarkers of HAAs for implementation in molecular epidemiology studies designed to assess the role of HAAs in health risk. This review article highlights the mechanisms of HAA formation, mutagenesis and carcinogenesis, the metabolism of several prominent HAAs, and the impact of critical xenobiotic-metabolizing enzymes on biological effects. The analytical approaches that have successfully biomonitored HAAs and their biomarkers for molecular epidemiology studies are presented.
Collapse
Affiliation(s)
- Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Scott J Walmsley
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA.,Institute of Health Informatics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Robert J Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th Street, Minneapolis, MN, 55455, USA. .,Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Yang J, Yu J. The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein Cell 2018; 9:474-487. [PMID: 29713943 PMCID: PMC5960467 DOI: 10.1007/s13238-018-0543-6] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/10/2018] [Indexed: 12/15/2022] Open
Abstract
Despite the success of colonoscopy screening and recent advances in cancer treatment, colorectal cancer (CRC) still remains one of the most commonly diagnosed and deadly cancers, with a significantly increased incidence in developing countries where people are adapting to Western lifestyle. Diet has an important impact on risk of CRC. Multiple epidemiological studies have suggested that excessive animal protein and fat intake, especially red meat and processed meat, could increase the risk of developing CRC while fiber could protect against colorectal tumorigenesis. Mechanisms have been investigated by animal studies. Diet could re-shape the community structure of gut microbiota and influence its function by modulating the production of metabolites. Butyrate, one of the short-chain fatty acids (SCFAs), which act as a favorable source for colonocytes, could protect colonic epithelial cells from tumorigenesis via anti-inflammatory and antineoplastic properties through cell metabolism, microbiota homeostasis, antiproliferative, immunomodulatory and genetic/epigenetic regulation ways. In contrast, protein fermentation and bile acid deconjugation, which cause damage to colonic cells through proinflammatory and proneoplastic ways, lead to increased risk of developing CRC. In conclusion, a balanced diet with an increased abundance of fiber should be adopted to reduce the risk and prevent CRC.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
3
|
Steinberg P, Behnisch PA, Besselink H, Brouwer AA. Screening of molecular cell targets for carcinogenic heterocyclic aromatic amines by using CALUX® reporter gene assays. Cell Biol Toxicol 2016; 33:283-293. [DOI: 10.1007/s10565-016-9373-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 12/02/2016] [Indexed: 12/31/2022]
|
4
|
Wang H, Zhou H, Liu A, Guo X, Yang CS. Genetic analysis of colon tumors induced by a dietary carcinogen PhIP in CYP1A humanized mice: Identification of mutation of β-catenin/Ctnnb1 as the driver gene for the carcinogenesis. Mol Carcinog 2014; 54:1264-74. [PMID: 25131582 DOI: 10.1002/mc.22199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 01/08/2023]
Abstract
Replacing mouse Cyp1a with human CYP1A enables the humanized CYP1A mice to mimic human metabolism of the dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), by N(2) -hydroxylation to a proximate carcinogen. Our previous study demonstrated that PhIP, combined with the dextrin sulfate sodium (DSS)-induced colitis, induces colon carcinogenesis in hCYP1A mice. Here, we employed whole exome sequencing and found multiple gene mutations in PhIP/DSS-induced colon tumors. Mutations in the exon 3 of Ctnnb1/β-catenin, however, were the predominant events. We further sequenced the key fragments of Apc, Ctnnb1, and Kras, because mutations of these genes in the humans are commonly found as the drivers of colorectal cancer. Mutations on either codon 32 or 34 in the exon 3 of Ctnnb1 were found in 39 out of 42 tumors, but no mutation was found in either Apc or Kras. The sequence context of codons 32 and 34 suggests that PhIP targets +3G in a TGGA motif of Ctnnb1. Since mutations that activate Wnt signal is a major driving force for human colorectal cancers, we conclude that the mutated β-catenin is the driver in PhIP/DSS-induced colon carcinogenesis. This result suggests that the colon tumors in hCYP1A mice mimic human colorectal carcinogenesis not only in the dietary etiology involving PhIP, but also in the aberrant activation of the Wnt signaling pathway as the driving force.
Collapse
Affiliation(s)
- Hong Wang
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hong Zhou
- Department of Mathematics, University of Saint Joseph, West Hartford, Connecticut
| | - Anna Liu
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Xiangyi Guo
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Chung S Yang
- Susan L. Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
5
|
Scholtka B, Schneider M, Melcher R, Katzenberger T, Friedrich D, Berghof-Jäger K, Scheppach W, Steinberg P. A gene marker panel covering the Wnt and the Ras-Raf-MEK-MAPK signalling pathways allows to detect gene mutations in 80% of early (UICC I) colon cancer stages in humans. Cancer Epidemiol 2009; 33:123-9. [DOI: 10.1016/j.canep.2009.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 02/06/2023]
|
6
|
Zhang L, Rechkoblit O, Wang L, Patel DJ, Shapiro R, Broyde S. Mutagenic nucleotide incorporation and hindered translocation by a food carcinogen C8-dG adduct in Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): modeling and dynamics studies. Nucleic Acids Res 2006; 34:3326-37. [PMID: 16820532 PMCID: PMC1500869 DOI: 10.1093/nar/gkl425] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Bulky carcinogen-DNA adducts commonly cause replicative polymerases to stall, leading to a switch to bypass polymerases. We have investigated nucleotide incorporation opposite the major adduct of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the DinB family polymerase, Dpo4, using molecular modeling and molecular dynamics (MD) simulations. PhIP, the most prevalent heterocyclic aromatic amine formed by cooking of proteinaceous food, is mutagenic in mammalian cells and is implicated in mammary and colon tumors. Our results show that the dG-C8-PhIP adduct can be accommodated in the spacious major groove Dpo4 open pocket, with Dpo4 capable of incorporating dCTP, dTTP or dATP opposite the adduct reasonably well. However, the PhIP ring system on the minor groove side would seriously disturb the active site, regardless of the presence and identity of dNTP. Furthermore, the simulations indicate that dATP and dTTP are better incorporated in the damaged system than in their respective mismatched but unmodified controls, suggesting that the PhIP adduct enhances incorporation of these mismatches. Finally, bulky C8-dG adducts, situated in the major groove, are likely to impede translocation in this polymerase (Rechkoblit et al. (2006), PLoS Biol., 4, e11). However, N2-dG adducts, which can reside on the minor groove side, appear to cause less hindrance when in this position.
Collapse
Affiliation(s)
| | - Olga Rechkoblit
- Structural Biology Program, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | - Lihua Wang
- Department of Biology, New York UniversityNew York, NY, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer CenterNew York, NY, USA
| | | | - Suse Broyde
- Department of Biology, New York UniversityNew York, NY, USA
- To whom correspondence should be addressed. Tel: +1 212 998 8231; Fax: +1 212 995 4015;
| |
Collapse
|
7
|
Zhang L, Shapiro R, Broyde S. Molecular dynamics of a food carcinogen-DNA adduct in a replicative DNA polymerase suggest hindered nucleotide incorporation and extension. Chem Res Toxicol 2005; 18:1347-63. [PMID: 16167826 DOI: 10.1021/tx050132b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is the most abundant of the carcinogenic heterocyclic aromatic amines in the human diet, and the major mutagenic effect of dietary PhIP is G-->T transversions. The major PhIP-derived DNA adduct is to C8 of guanine. We have investigated this adduct in a PhIP-induced mutational hotspot 5'-GGGA-3' of the Apc tumor suppressor gene, frequently mutated in mammalian colon tumors. We have carried out a molecular dynamics study to elucidate on a structural level nucleotide incorporation and extension opposite this major adduct during replication. The PhIP adduct was modeled into the ternary complex closed conformation of DNA polymerase RB69, at incorporation and extension positions, with normal cytosine or mismatched partner adenine. RB69 polymerase is a member of the B family as are most replicative eukaryotic DNA polymerases such as DNA polymerase alpha. These systems were subjected to molecular dynamics simulations with AMBER. Our results show that the adduct can reside on the major groove side of the modified DNA template opposite an incoming dCTP or dATP. In the case of the normal partner, disturbance to the active site is observed at the incorporation step, but there is less perturbance in the extension simulation. In the case of the mismatched partner, a less disturbed active site is observed during the incorporation step, but extension appears to be more difficult. Disturbances include adverse impacts on Watson-Crick hydrogen bonding in the nascent base pair, on the distance between the alpha-phosphate of the incoming dNTP and the primer terminus 3'-OH, and on critical protein interactions with the dNTP. However, in all of these cases, a near reaction ready distance (within 3.5 angstroms) between the 3'-terminal oxygen of the primer and the Palpha of the incoming nucleotide triphosphate is sampled occasionally (0.4-23.5% of the time). Thus, error-free bypass or the induction of a G-->T transversion mutation could occur at times and contribute to an extent to the mutagenic effect of PhIP. Polymerase stalling would be the more common outcome and in vivo could lead to switch to an error-prone bypass polymerase.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | |
Collapse
|
8
|
Sugimura T, Wakabayashi K, Nakagama H, Nagao M. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci 2004; 95:290-9. [PMID: 15072585 PMCID: PMC11159436 DOI: 10.1111/j.1349-7006.2004.tb03205.x] [Citation(s) in RCA: 453] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/01/2004] [Accepted: 03/05/2004] [Indexed: 12/13/2022] Open
Abstract
Research leading to the discovery of a series of mutagenic and carcinogenic heterocyclic amines (HCAs) was inspired by the idea that smoke produced during cooking of food, especially meat or fish, might be carcinogenic. More than ten kinds of HCAs, actually produced by cooking or heating of meat or fish, have now been isolated and their structures determined, most being previously unregistered compounds. They are highly mutagenic towards Salmonella typhimurium in the presence of S9 mix and are also mutagenic in vitro and in vivo toward mammalian cells. HCAs have now been chemically synthesized in quantity and subjected to long-term animal testing. When HCAs were fed in the diet, rodents developed cancers in many organs, including the colon, breast and prostate, and one HCA produced hepatomas in monkeys. The lesions exhibited alteration in genes including Apc, beta-catenin and Ha-ras, and these changes provide clues to the induction mechanisms. The HCAs are oxidized to hydroxyamino derivatives by cytochrome P450s, and further converted to ester forms by acetyltransferase and sulfotransferase. Eventually, they produce DNA adducts through the formation of N-C bonds at guanine bases. There are HCA-sensitive and resistant strains of rodents and a search for the responsible genes is now under way. While the content of HCAs in dishes consumed in ordinary life is low and not sufficient in itself to explain human cancer, the coexistence of many other mutagens/carcinogens of either autobiotic or xenobiotic type and the possibility that HCAs induce genomic instability and heightened sensitivity to tumor promoters suggest that avoidance of exposure to HCAs or reduction of HCAs' biological effects as far as possible are to be highly recommended. Usage of microwave ovens for cooking and supplementation of the diet, for example with soy-isoflavones, which have been found to suppress the occurrence of HCA-induced breast cancers, should be encouraged. Advice to the general public about how to reduce the carcinogenic load imposed by HCAs would be an important contribution to cancer prevention.
Collapse
|
9
|
Møllersen L, Vikse R, Andreassen A, Steffensen IL, Mikalsen A, Paulsen JE, Alexander J. Adenomatous polyposis coli truncation mutations in 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-induced intestinal tumours of multiple intestinal neoplasia mice. Mutat Res 2004; 557:29-40. [PMID: 14706516 DOI: 10.1016/j.mrgentox.2003.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces intestinal tumours in C57BL/6J-multiple intestinal neoplasia (Min)/+ mice. The main mechanism for PhIP-induced tumour induction in Min/+ mice is loss of the wild-type adenomatous polyposis coli (Apc) allele, i.e. loss of heterozygosity (LOH). In this study, single injections of either 10, 17.5 or 25 mg/kg PhIP on days 3-6 after birth all increased the mean number of small intestinal tumours two to three-fold, from 37.7 in controls to 124.8 in the PhIP-treated Min/+ mice. In total, we analysed 292 small intestinal tumours and 253 of these had LOH. The frequency of LOH in the Apc gene was 88, 93, 83 and 84% in tumours of 0, 10, 17.5 and 25 mg/kg PhIP-treated mice, respectively. Therefore, these lower doses of PhIP did not reduce the frequency of LOH, as found in our previous study with a single injection of 50 mg/kg PhIP (Mutat. Res. 1-2 (2002) 157). In the second part of this study, we wanted to characterise Apc truncation mutations from tumour samples apparently retaining the Apc wild-type allele from this and two previous experiments with PhIP-exposed Min/+ mice. In the first half of exon 15 in Apc, we verified 25 mutations from 804 tumour samples of PhIP-treated mice. Of these were 60% G-->T transversions, and 16% G deletions, indicating that these are the predominant types of PhIP-induced truncation mutations in the Apc gene in Min/+ mice. Most of the mutations were located between codon 989 and 1156 corresponding to the first part of the beta-catenin binding region. We also identified two Apc truncation mutations from 606 spontaneously formed intestinal tumours from untreated Min/+ mice, one C-->T transition and one T insertion, which were different from those induced by PhIP.
Collapse
Affiliation(s)
- Linda Møllersen
- Department of Food Toxicology, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
10
|
Genter MB, Burman DM, Vijayakumar S, Ebert CL, Aronow BJ. Genomic analysis of alachlor-induced oncogenesis in rat olfactory mucosa. Physiol Genomics 2002; 12:35-45. [PMID: 12419858 DOI: 10.1152/physiolgenomics.00120.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alachlor induces olfactory mucosal tumors in rats in a highly ordered temporal process. We used GeneChip analysis to test the hypothesis that histological progression and oncogenic transformation are accompanied by gene expression changes that might yield clues as to the molecular pathogenesis of tumor formation. Acute alachlor exposure caused upregulation of matrix metalloproteinases (MMP)-2 and -9, tissue inhibitor of metalloproteinase-1, carboxypeptidase Z, and other genes related to extracellular matrix homeostasis. Heme oxygenase was upregulated acutely and maintained elevated expression. Expression of ebnerin, related to the putative human tumor suppressor gene DMBT1, progressively increased in alachlor-treated olfactory mucosa. Progression from adenomas to adenocarcinoma was correlated with upregulation of genes in the wnt signaling pathway. Activated wnt signaling was confirmed by immunohistochemical localization of beta-catenin to nuclei of adenocarcinomas, but not earlier lesions. These observations suggest that initiation and progression of alachlor-induced olfactory mucosal tumors is associated with alterations in extracellular matrix components, induction of oxidative stress, upregulation of ebnerin, and final transformation to a malignant state by wnt pathway activation.
Collapse
Affiliation(s)
- Mary Beth Genter
- Departmet of Environmental Health, University of Cincinnati, Cincinnati, Ohio 45267-0056, USA.
| | | | | | | | | |
Collapse
|
11
|
Weisburger JH. Comments on the history and importance of aromatic and heterocyclic amines in public health. Mutat Res 2002; 506-507:9-20. [PMID: 12351140 DOI: 10.1016/s0027-5107(02)00147-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The carcinogenic risk of aromatic amines in humans was first discovered when a physician related the occurrence of urinary bladder cancer to the occupation of his patients. They were employed in the dyestuff industry, chronically exposed to large amounts of intermediate arylamines. Laboratory investigations disclosed that rats and mice administered specific azo dyes arylamines or derivatives developed cancer, primarily in the liver. Also, at that time, a possible pesticide, 2-aminofluorene, was tested for chronic toxicity, revealing that it rapidly induced cancers in several organs of rodents. This led to investigations on the mode of action of this class of chemicals, including their metabolic conversion. Biochemical activation to more reactive N-hydroxy compounds was found to occur, mostly in the liver, through what is now known as the cytochrome p450 enzyme systems, and also through prostaglandin synthetases. There were species differences. Guinea pigs were resistant to carcinogenesis because of the low titer of the necessary activating enzymes. In target tissues, a second essential reaction was necessary, namely acylation or sulfate ester formation. The reactive compounds produced display attributes of genotoxicity in appropriate test systems. Interest in this class of compounds increased when of Sugimura and colleagues discovered the formation of mutagens at the surface of cooked meat or fish, that were identified as heterocyclic amines (HCAs). These compounds undergo the same type of activation reactions, as do other arylamines. Epidemiological data suggest that meat eaters may have a higher risk of breast and colon cancer. HCAs induced cancer in rats in these organs and also in the prostate and the pancreas. In addition, there is some evidence that they affect the vascular system. The formation of HCAs during cooking can be decreased by natural and synthetic antioxidants, by tryptophan or proline, or by removing the essential creatine through brief microwave cooking prior to frying or broiling. The amounts of HCAs in cooked foods are small, but other components in diet such as omega-6-polyunsaturated oils have powerful promoting effects in target organs of HCAs. On the other hand, the action of HCAs may be decreased by foods containing antioxidants, such as vegetables, soy, and tea. Some constituents in foods also induce phase II enzymes that detoxify reactive HCA metabolites. Additional mechanisms involved decreased growth of neoplasms by intake of protective foods. Possibly, the carcinogenic effect of HCAs is accompanied by the presence of reactive oxygen species (ROS), which are also inhibited by antioxidants. World-wide, there have been many contributors to knowledge in this field. Adequate information may permit now to adjust lifestyle and lower the risk of human disease stemming from this entire class of aryl and HCA.
Collapse
|
12
|
Miturski R, Bogusiewicz M, Ciotta C, Bignami M, Gogacz M, Burnouf D. Mismatch repair genes and microsatellite instability as molecular markers for gynecological cancer detection. Exp Biol Med (Maywood) 2002; 227:579-86. [PMID: 12192099 DOI: 10.1177/153537020222700805] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Due to major developments in genetics over the past decade, molecular biology tests are serving promising tools in early diagnosis and follow-up of cancer patients. Recent epidemiological studies revealed that the risk for each individual to develop cancer is closely linked to his/her own genetic potentialities. Some populations that are defective in DNA repair processes, for example in Xeroderma pigmentosum or in the Lynch syndrome, are particularly prone to cancer due to the accumulation of mutations within the genome. Such populations would benefit from the development of tests aimed at identifying people who are particularly at risk. Here, we review some data suggesting that the inactivation of mismatch repair is often found in endometrial cancer and we discuss molecular-based strategies that would help to identify the affected individuals in families with cases of glandular malignancies.
Collapse
Affiliation(s)
- Roman Miturski
- Second Department of Gynecological Surgery, University School of Medicine, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Turesky RJ. Heterocyclic aromatic amine metabolism, DNA adduct formation, mutagenesis, and carcinogenesis. Drug Metab Rev 2002; 34:625-50. [PMID: 12214671 DOI: 10.1081/dmr-120005665] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heterocyclic aromatic amines (HAAs) are carcinogenic compounds formed in meats, fish, and poultry prepared under common household cooking practices. Some HAAs are also formed in tobacco smoke condensate. Because of the widespread occurrence of HAAs in these daily staples, health concerns have been raised regarding the potential role of HAAs in the etiology of some human cancers associated with frequent consumption of these products. In this review, the metabolism of HAAs to biologically active metabolites that bind to DNA and provoke mutations and cancer in various biological systems is discussed. Some of the current analytical and molecular methods that are used to measure biomarkers of HAA exposure and genetic damage in experimental animal models and humans are also presented. These biochemical data combined may help to better assess the role that HAAs may have in the development of some common forms of human cancers.
Collapse
Affiliation(s)
- Robert J Turesky
- Division of Chemistry, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|