1
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Mirra D, Esposito R, Spaziano G, Sportiello L, Panico F, Squillante A, Falciani M, Cerqua I, Gallelli L, Cione E, D’Agostino B. MicroRNA Monitoring in Human Alveolar Macrophages from Patients with Smoking-Related Lung Diseases: A Preliminary Study. Biomedicines 2024; 12:1050. [PMID: 38791013 PMCID: PMC11118114 DOI: 10.3390/biomedicines12051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is commonly considered to be a potent driver of non-small cell lung cancer (NSCLC) development and related mortality. A growing body of evidence supports a role of the immune system, mainly played by alveolar macrophages (AMs), in key axes regulating the development of COPD or NSCLC phenotypes in response to harmful agents. MicroRNAs (miRNAs) are small non-coding RNAs that influence most biological processes and interfere with several regulatory pathways. The purpose of this study was to assess miRNA expression patterns in patients with COPD, NSCLC, and ever- or never-smoker controls to explore their involvement in smoking-related diseases. Bronchoalveolar lavage (BAL) specimens were collected from a prospective cohort of 43 sex-matched subjects to determine the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p and 106a-5p by RT-PCR. In addition, a bioinformatic analysis of miRNA target genes linked to cancer was performed. Distinct and common miRNA expression levels were identified in each pathological group, suggesting their possible role as an index of NSCLC or COPD microenvironment. Moreover, we identified miRNA targets linked to carcinogenesis using in silico analysis. In conclusion, this study identified miRNA signatures in AMs, allowing us to understand the molecular mechanisms underlying smoking-related conditions and potentially providing new insights for diagnosis or pharmacological treatment.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Department of Experimental Medicine-Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | - Ida Cerqua
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy;
| | - Luca Gallelli
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| |
Collapse
|
3
|
Rajpurohit YS, Sharma DK, Lal M, Soni I. A perspective on tumor radiation resistance following high-LET radiation treatment. J Cancer Res Clin Oncol 2024; 150:226. [PMID: 38696003 PMCID: PMC11065934 DOI: 10.1007/s00432-024-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
High-linear energy transfer (LET) radiation is a promising alternative to conventional low-LET radiation for therapeutic gain against cancer owing to its ability to induce complex and clustered DNA lesions. However, the development of radiation resistance poses a significant barrier. The potential molecular mechanisms that could confer resistance development are translesion synthesis (TLS), replication gap suppression (RGS) mechanisms, autophagy, epithelial-mesenchymal transition (EMT) activation, release of exosomes, and epigenetic changes. This article will discuss various types of complex clustered DNA damage, their repair mechanisms, mutagenic potential, and the development of radiation resistance strategies. Furthermore, it highlights the importance of careful consideration and patient selection when employing high-LET radiotherapy in clinical settings.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India.
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India.
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Mitu Lal
- Molecular Biology Division, Bhabha Atomic Research Centre, 2-46-S, Modular Lab, A-Block, Mumbai, 400085, India
| | - Ishu Soni
- Homi Bhabha National Institute, DAE- Deemed University, Mumbai, 400094, India
| |
Collapse
|
4
|
Tomsia M, Cieśla J, Śmieszek J, Florek S, Macionga A, Michalczyk K, Stygar D. Long-term space missions' effects on the human organism: what we do know and what requires further research. Front Physiol 2024; 15:1284644. [PMID: 38415007 PMCID: PMC10896920 DOI: 10.3389/fphys.2024.1284644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Space has always fascinated people. Many years have passed since the first spaceflight, and in addition to the enormous technological progress, the level of understanding of human physiology in space is also increasing. The presented paper aims to summarize the recent research findings on the influence of the space environment (microgravity, pressure differences, cosmic radiation, etc.) on the human body systems during short-term and long-term space missions. The review also presents the biggest challenges and problems that must be solved in order to extend safely the time of human stay in space. In the era of increasing engineering capabilities, plans to colonize other planets, and the growing interest in commercial space flights, the most topical issues of modern medicine seems to be understanding the effects of long-term stay in space, and finding solutions to minimize the harmful effects of the space environment on the human body.
Collapse
Affiliation(s)
- Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Śmieszek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Szymon Florek
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Macionga
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Michalczyk
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
- SLU University Animal Hospital, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Ji X, Chu G, Chen Y, Jiao J, Lv T, Yao Q. Comprehensive analysis of novel prognosis-related proteomic signature effectively improve risk stratification and precision treatment for patients with cervical cancer. Arch Gynecol Obstet 2023; 307:903-917. [PMID: 35713693 DOI: 10.1007/s00404-022-06642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE Cervical cancer (CC) is one of the most common types of malignant female cancer, and its incidence and mortality are not optimistic. Protein panels can be a powerful prognostic factor for many types of cancer. The purpose of our study was to investigate a proteomic panel to predict the survival of patients with common CC. METHODS AND RESULTS The protein expression and clinicopathological data of CC were downloaded from The Cancer Proteome Atlas and The Cancer Genome Atlas database, respectively. We selected the prognosis-related proteins (PRPs) by univariate Cox regression analysis and found that the results of functional enrichment analysis were mainly related to apoptosis. We used Kaplan-Meier analysis and multivariable Cox regression analysis further to screen PRPs to establish a prognostic model, including BCL2, SMAD3, and 4EBP1-pT70. The signature was verified to be independent predictors of OS by Cox regression analysis and the area under curves. Nomogram and subgroup classification were established based on the signature to verify its clinical application. Furthermore, we looked for the co-expressed proteins of three-protein panel as potential prognostic proteins. CONCLUSION A proteomic signature independently predicted OS of CC patients, and the predictive ability was better than the clinicopathological characteristics. This signature can help improve prediction for clinical outcome and provides new targets for CC treatment.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Guangdi Chu
- Department of Urology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, China
| | - Yulong Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Jinwen Jiao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Teng Lv
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China
| | - Qin Yao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Qingdao, 266000, China.
| |
Collapse
|
6
|
Sikdar S. Robust meta-analysis for large-scale genomic experiments based on an empirical approach. BMC Med Res Methodol 2022; 22:43. [PMID: 35144554 PMCID: PMC8832678 DOI: 10.1186/s12874-022-01530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background Recent high-throughput technologies have opened avenues for simultaneous analyses of thousands of genes. With the availability of a multitude of public databases, one can easily access multiple genomic study results where each study comprises of significance testing results of thousands of genes. Researchers currently tend to combine this genomic information from these multiple studies in the form of a meta-analysis. As the number of genes involved is very large, the classical meta-analysis approaches need to be updated to acknowledge this large-scale aspect of the data. Methods In this article, we discuss how application of standard theoretical null distributional assumptions of the classical meta-analysis methods, such as Fisher’s p-value combination and Stouffer’s Z, can lead to incorrect significant testing results, and we propose a robust meta-analysis method that empirically modifies the individual test statistics and p-values before combining them. Results Our proposed meta-analysis method performs best in significance testing among several meta-analysis approaches, especially in presence of hidden confounders, as shown through a wide variety of simulation studies and real genomic data analysis. Conclusion The proposed meta-analysis method produces superior meta-analysis results compared to the standard p-value combination approaches for large-scale simultaneous testing in genomic experiments. This is particularly useful in studies with large number of genes where the standard meta-analysis approaches can result in gross false discoveries due to the presence of unobserved confounding variables. Supplementary Information The online version contains supplementary material available at 10.1186/s12874-022-01530-y.
Collapse
Affiliation(s)
- Sinjini Sikdar
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
7
|
DU X, Xiao J, Fu X, Xu B, Han H, Wang Y, Pei X. A proteomic analysis of Bcl-2 regulation of cell cycle arrest: insight into the mechanisms. J Zhejiang Univ Sci B 2021; 22:839-855. [PMID: 34636187 PMCID: PMC8505462 DOI: 10.1631/jzus.b2000802] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/11/2021] [Indexed: 01/01/2023]
Abstract
B cell lymphoma 2 (Bcl-2) is an important antiapoptotic gene that plays a dual role in the maintenance of the dynamic balance between the survival and death of cancer cells. In our previous study, Bcl-2 was shown to delay the G0/G1 to S phase entry by regulating the mitochondrial metabolic pathways to produce lower levels of adenosine triphosphate (ATP) and reactive oxygen species (ROS). However, the detailed molecular mechanisms or pathways by which Bcl-2 regulates the cell cycle remain unknown. Here, we compared the effects of Bcl-2 overexpression with an empty vector control in the NIH3T3 cell line synchronized by serum starvation, and evaluated the effects using proteomic analysis. The effect of Bcl-2 on cell cycle regulation was detected by monitoring Bcl-2 and p27 expression. The result of subsequent proteomic analysis of Bcl-2 overexpressing cells identified 169 upregulated and 120 downregulated proteins with a 1.5-fold change. These differentially expressed proteins were enriched in a number of signaling pathways predominantly involving the ribosome and oxidative phosphorylation, according to the data of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. These results indicated that Bcl-2 potentially acts at the translation level to influence proteins or enzymes of the respiratory chain or in the ribosome, and thereby regulates the cell cycle. Additionally, differentially expressed proteins involved in oxidative phosphorylation were determined to account for most of the effects of Bcl-2 on the cell cycle mediated by the mitochondrial pathway investigated in our previous study. These results can provide assistance for additional in-depth studies on the regulation of the cell cycle by Bcl-2. The results of the proteomic analysis determined the mechanism of Bcl-2-dependent delay of the cell cycle progression. In summary, the results of this study provide a novel mechanistic basis for identifying the key proteins or pathways for designing and developing precisely targeted cancer drugs.
Collapse
Affiliation(s)
- Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Xiao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
- Department of Biochemistry and Molecular Biology, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Yin Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
- Department of Physiology and Neurobiology, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|