1
|
Luo J, Peng S, Jiang Z, Wang Q, Zhang M, Zeng Y, Yuan Y, Xia M, Hong Z, Yan Y, Tan Y, Tang J, Xie C, Gong Y. Roles and therapeutic opportunities of ω-3 long-chain polyunsaturated fatty acids in lung cancer. iScience 2025; 28:111601. [PMID: 39834867 PMCID: PMC11742864 DOI: 10.1016/j.isci.2024.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Over the past decades, researchers have continuously investigated the potential functions of long-chain polyunsaturated fatty acids (LCPUFAs) in cancers, including lung cancer. The ω-3 LCPUFAs, primarily consisting of eicosapentaenoic acid and docosahexaenoic acid, were found to modify inflammatory tumor microenvironment, induce cancer cell apoptosis and autophagy, and suppress tumor development when administered alone or with other therapeutical strategies. Although the precise anti-tumor mechanism has not been elucidated yet, ω-3 LCPUFAs are often used in the nutritional treatment of patients with cancer due to their ability to significantly improve patient's nutritional status, increase the sensitivity of tumor cells to treatments, and alleviate cancer-related complications. Here we present the key roles of ω-3 LCPUFAs as dietary supplementations in lung cancer, comprehensively review the recent progress on the underlying mechanisms of cancer cell regulation by ω-3 LCPUFAs, and introduce the application of ω-3 LCPUFAs in the clinical management of lung cancer and its malignant complications.
Collapse
Affiliation(s)
- Jiang Luo
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shu Peng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qingwei Wang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mini Zhang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuxin Zeng
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yuan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Xia
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zixi Hong
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yufei Yan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yushuang Tan
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiawen Tang
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Pulmonary Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behavior, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Chen Y, Lin PH, Freedland SJ, Chi JT. Metabolic Response to Androgen Deprivation Therapy of Prostate Cancer. Cancers (Basel) 2024; 16:1991. [PMID: 38893112 PMCID: PMC11171316 DOI: 10.3390/cancers16111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Prostate cancer (PC) stands as the most frequently diagnosed non-skin cancer and ranks as the second highest cause of cancer-related deaths among men in the United States. For those facing non-metastatic PC necessitating intervention, solely local treatments may not suffice, leading to a possible transition toward systemic therapies, including androgen deprivation therapy (ADT), chemotherapy, and therapies targeting androgen. Yet, these systemic treatments often bring about considerable adverse effects. Additionally, it is observed that overweight men are at a higher risk of developing aggressive forms of PC, advancing to metastatic stages, and succumbing to the disease. Consequently, there is a pressing demand for new treatment options that carry fewer side effects and enhance the current standard treatments, particularly for the majority of American men who are overweight or obese. In this article, we will review the metabolic response to ADT and how lifestyle modulation can mitigate these ADT-associated metabolic responses with a particular focus on the two clinical trials, Carbohydrate and Prostate Study 1 (CAPS1) and Carbohydrate and Prostate Study 2 (CAPS2), which tested the effects of low-carbohydrate diets on the metabolic side effects of ADT and PC progression, respectively. Furthermore, we will summarize the findings of serum metabolomic studies to elucidate the potential mechanisms by which ADT and low-carbohydrate diets can affect the metabolic response to mitigate the metabolic side effects while maximizing therapeutic efficacy.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA;
- Center of Applied Genomic Technologies, Duke University, Durham, NC 27708, USA
| | - Pao-Hwa Lin
- Department of Medicine, Duke University, Durham, NC 27708, USA;
| | - Stephen J. Freedland
- Center for Integrated Research in Cancer and Lifestyle, Cedars-Sinai, Los Angeles, CA 90048, USA;
- Durham VA Medical Center, Durham, NC 27708, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27708, USA;
- Center of Applied Genomic Technologies, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Liu C, Zhang K, Zhang S, Li X, Sun H, Ma L. Maggot Kinase and Natural Thrombolytic Proteins. ACS OMEGA 2024; 9:21768-21779. [PMID: 38799322 PMCID: PMC11112594 DOI: 10.1021/acsomega.4c01663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024]
Abstract
Thrombolytic enzymes constitute a class of proteases with antithrombotic functions. Derived from natural products and abundant in nature, certain thrombolytic enzymes, such as urokinase, earthworm kinase, and streptokinase, have been widely used in the clinical treatment of vascular embolic diseases. Fly maggots, characterized by their easy growth and low cost, are a traditional Chinese medicine recorded in the Compendium of Materia Medica. These maggots can also be used as raw material for the extraction and preparation of thrombolytic enzymes (maggot kinase). In this review, we assembled global research reports on natural thrombolytic enzymes through a literature search and reviewed the functions and structures of natural thrombolytic enzymes to provide a reference for natural thrombophilic drug screening and development.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Shihao Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Xin Li
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Huiting Sun
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs of China, Beijing University
of Agriculture, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, PR China
| |
Collapse
|
4
|
Elisia I, Yeung M, Kowalski S, Shyp T, Tee J, Hollman S, Wong A, King J, Dyer R, Sorensen PH, Krystal G. A ketogenic diet rich in fish oil is superior to other fats in preventing NNK-induced lung cancer in A/J mice. Sci Rep 2024; 14:5610. [PMID: 38453966 PMCID: PMC10920871 DOI: 10.1038/s41598-024-55167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
Given that ketogenic diets (KDs) are extremely high in dietary fat, we compared different fats in KDs to determine which was the best for cancer prevention. Specifically, we compared a Western and a 15% carbohydrate diet to seven different KDs, containing either Western fats or fats enriched in medium chain fatty acids (MCTs), milk fat (MF), palm oil (PO), olive oil (OO), corn oil (CO) or fish oil (FO) for their ability to reduce nicotine-derived nitrosamine ketone (NNK)-induced lung cancer in mice. While all the KDs tested were more effective at reducing lung nodules than the Western or 15% carbohydrate diet, the FO-KD was most effective at reducing lung nodules. Correlating with this, mice on the FO-KD had low blood glucose and the highest β-hydroxybutyrate level, lowest liver fatty acid synthase/carnitine palmitoyl-1a ratio and a dramatic increase in fecal Akkermansia. We found no liver damage induced by the FO-KD, while the ratio of total cholesterol/HDL was unchanged on the different diets. We conclude that a FO-KD is superior to KDs enriched in other fats in reducing NNK-induced lung cancer, perhaps by being the most effective at skewing whole-body metabolism from a dependence on glucose to fats as an energy source.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Taras Shyp
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Jason Tee
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Serena Hollman
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Amy Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Janette King
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Roger Dyer
- Analytical Core for Metabolomics and Nutrition, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
5
|
Elisia I, Kowalski S, Yeung M, Wong J, Grants JM, Karsan A, Krystal G. A low carbohydrate diet high in fish oil and soy protein delays inflammation, hematopoietic stem cell depletion, and mortality in miR-146a knock-out mice. Front Nutr 2022; 9:1017347. [PMID: 36505238 PMCID: PMC9729559 DOI: 10.3389/fnut.2022.1017347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Since our previous studies found a low carbohydrate (CHO) diet containing soy protein and fish oil (15%Amylose/Soy/FO) significantly reduced lung and breast cancer in mice we asked herein if this low CHO diet could also delay the onset of myeloid malignancies. To test this we employed a miR-146a knock-out (KO) mouse model and found the 15%Amylose/Soy/FO diet increased their median lifespan by 8.5 month, compared to these mice on a Western diet. This was associated with increased lymphocytes and reduced monocytes, granulocytes, blood glucose and insulin levels. Inflammatory cytokine/chemokine studies carried out with 6-month-old mice, before any signs of illness, revealed the 15%Amylose/Soy/FO diet significantly reduced pro-inflammatory cytokines. This low CHO diet also led to an increase in plasma β-hydroxybutyrate and in liver fatty acid synthase levels. This, together with higher liver carnitine palmitoyltransferase I levels suggested that the 15%Amylose/Soy/FO diet was causing a systemic metabolic shift from glucose to fatty acids as an energy source. Lastly, we found the 15%Amylose/Soy/FO diet resulted in significantly higher numbers of primitive hematopoietic stem cells (HSCs) in the bone marrow of 6-month-old mice than those fed a Western diet. Taken together, these results suggest a 15%Amylose/Soy/FO diet reduces chronic inflammation and increases fatty acid oxidation and that this, in turn, may prevent HSC proliferation and exhaustion, thereby delaying myeloid malignancy-induced death of miR-146a KO mice. We suggest a low CHO diet containing soy protein and fish oil could be beneficial in reducing the risk of myeloid malignancies in patients with low miR-146a levels.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Jennifer M. Grants
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer Research Centre, Vancouver, BC, Canada,*Correspondence: Gerald Krystal,
| |
Collapse
|
6
|
Elisia I, Yeung M, Wong J, Kowalski S, Larsen M, Shyp T, Sorensen PH, krystal G. A low carbohydrate diet containing soy protein and fish oil reduces breast but not prostate cancer in C3(1)/Tag mice. Carcinogenesis 2021; 43:115-125. [DOI: 10.1093/carcin/bgab106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
We recently showed that a low carbohydrate (CHO) diet containing soy protein and fish oil dramatically reduces lung nodules in a mouse model of lung cancer when compared to a Western diet. To explore the universality of this finding, we herein compared this low CHO diet to a Western diet on in preventing breast and prostate cancer using a mouse model that expresses the SV40 large T antigen specifically in breast epithelia in females and prostate epithelia in males. We found that breast cancer was significantly reduced with this low CHO diet and this correlated with a reduction in plasma levels of glucose, insulin, IL-6, TNFα and PGE2. This also corresponded with a reduction in the Ki67 proliferation index within breast tumors. On the other hand, this low CHO diet did not reduce the incidence of prostate cancer in the male mice. Although it reduced both blood glucose and insulin to the same extent as in the female mice, there was no reduction in plasma IL-6, TNFα or PGE2 levels, nor in the Ki67 proliferation index in prostate lesions. Based on immunohistochemistry studies with antibodies to PFKFB3, CPT1a and FAS, it is likely that this difference in response of the two cancer types to this low CHO diet reflects differences in the glucose dependence of breast and prostate cancer, with the former being highly dependent on glucose for energy and the latter being more dependent on fatty acids.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Michelle Yeung
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Jennifer Wong
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Sara Kowalski
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | - Taras Shyp
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Gerald krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, British Columbia, V5Z 1L3, Canada
| |
Collapse
|
7
|
Elisia I, Krystal G. The Pros and Cons of Low Carbohydrate and Ketogenic Diets in the Prevention and Treatment of Cancer. Front Nutr 2021; 8:634845. [PMID: 33718419 PMCID: PMC7946860 DOI: 10.3389/fnut.2021.634845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Ketogenic diets are low carbohydrate (CHO), high fat diets that are currently very popular for weight loss. Since cancer cells typically consume far more glucose than normal cells, low CHO diets are currently being considered as possible therapeutic regimens to manage cancer. However, our understanding of the safety and efficacy of such CHO-restricted diets in the prevention and treatment of cancer is still in its infancy. In this perspective we provide an overview of the current state of knowledge regarding the use of low CHO diets in the prevention and treatment of cancer. We also highlight the gaps in our knowledge regarding the potential usefulness of low CHO diets in cancer. While pre-clinical rodent studies have provided convincing evidence that CHO restriction may be effective in reducing cancer growth, there has not been sufficient attention given to the effect of these low CHO diets, that are often high in fats and low in soluble fiber, on inflammation. This is important, given that different fats have distinct effects on inflammation. As well, we demonstrate that short chain fatty acids, which are produced via the fermentation of fiber by our gut microbiome, have more anti-inflammatory properties than β-hydroxybutyrate, a ketone body produced during nutritional ketosis that is touted to have anti-inflammatory activity. Since chronic inflammation is strongly associated with cancer formation, defining the type of fats in low CHO diets may contribute to our understanding of whether these diets may work simply by reducing glucose bioavailability, or via modulation of inflammatory responses.
Collapse
Affiliation(s)
- Ingrid Elisia
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| |
Collapse
|
8
|
Liu B, Wang W, Sun S, Ding H, Lan L, Li X, Han S. Knockdown of lncRNA ABHD11-AS1 Suppresses the Tumorigenesis of Pancreatic Cancer via Sponging miR-1231. Onco Targets Ther 2020; 13:11347-11358. [PMID: 33177842 PMCID: PMC7652219 DOI: 10.2147/ott.s259598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic cancer ranks first among the most aggressive malignancies. Long non-coding RNA (LncRNA) ABHD11-AS1 is known to be upregulated in pancreatic cancer. However, the mechanism by which ABHD11-AS1 mediates the tumorigenesis of pancreatic cancer remains unclear. Methods Gene and protein expressions in pancreatic cancer cells were detected by qRT-PCR and Western blot, respectively. Cell viability was measured by CCK-8 assay. Cell apoptosis and cycle were tested by flow cytometry. In addition, cell migration and invasion were tested by wound healing and transwell assay, respectively. The correlation between ABHD11-AS1, miR-1231 and cyclin E1 was confirmed by dual-luciferase report and RNA pull-down. Finally, xenograft mice model was established to investigate the role of ABDH-AS1 in pancreatic cancer in vivo. Results ABHD11-AS1 was found to be negatively correlated with the survival rate of patients with pancreatic cancer. ABHD11-AS1 silencing significantly inhibited the proliferation and induced the apoptosis of pancreatic cancer cells. Additionally, knockdown of ABHD11-AS1 greatly inhibited the migration and invasion of pancreatic cancer cells. Meanwhile, ABHD11-AS1 bound to miR-1231 and cyclin E1 was found to be the target of miR-1231. Moreover, ABHD11-AS1 knockdown-induced G1 arrest in pancreatic cancer cells was reversed by miR-1231 antagomir. Finally, knockdown of ABHD11-AS1 obviously inhibited the tumor growth of pancreatic cancer in vivo. Conclusion ABHD11-AS1 silencing significantly inhibited the tumorigenesis of pancreatic cancer in vitro and in vivo. Thus, ABHD11-AS1 may serve as a potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Bowei Liu
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Wei Wang
- Department of Gastroenterology, Changhai Hospital, Second Military Medical University/Naval Medical University, Shanghai 200433, People's Republic of China
| | - Suofeng Sun
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Hui Ding
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Ling Lan
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiuling Li
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| | - Shuangyin Han
- Department of Gastroenterology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|