1
|
Xu L, Wan X, Shan X, Zha W, Shi Y, Fan R. ONECUT3 activates the TRIM46-NF-κB pathway to promote the development of pancreatic cancer. Biochem Biophys Res Commun 2025; 759:151705. [PMID: 40154001 DOI: 10.1016/j.bbrc.2025.151705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/24/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Pancreatic cancer (PC) remains one of the deadliest cancers, characterized by its high aggressiveness and low overall survival, with chemotherapy and immunotherapy showing limited efficacy. It is essential to investigate the molecular mechanisms driving the PC progression. In this study, we showed that One Cut homeobox 3 (ONECUT3) acted as an oncogene promoting PC progression and observed a significant increase of ONECUT3 levels in PC tissues and cells. The reduced ONECUT3 expression was positively correlated with decreased tumor volumes and weight, and the depressed proliferation, migration and invasion abilities. Mechanistically, ONECUT3 directly bound to the promoter of tripartite motif-containing 46 (TRIM46) and transcriptionally upregulated its expression. Tripartite motif (TRIM)-containing proteins have been identified as closely linked to the advancement of tumors. However, the role of TRIM46 in PC remains largely unexplored. The expression of ONECUT3 was found to be positively linked with TRIM46 in human PC tissues. The upregulation of TRIM46 rescued ONECUT3 knockdown-induced suppression of cell proliferation, migration and invasion abilities, and tumor growth in PC. TRIM46 overexpression also activated NF-κB signaling in PC cells. To sum up, ONECUT3 has been identified as a promising prognostic indicator in PC, and targeting this cancer-promoting pathway could offer an effective therapeutic approach to combat the PC progression.
Collapse
Affiliation(s)
- Linyi Xu
- The Yancheng Clinical College of Xuzhou Medical University, 224001, China
| | - Xinqiang Wan
- Department of Gynaecology and Obstetrics, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China
| | - Xiangxiang Shan
- Department of Geraeology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China
| | - Wenzhang Zha
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China
| | - Yuhua Shi
- Department of General Surgery, Affiliated Hospital of Nantong University, Third People's Hospital of Yancheng, No.75, Juchang Road, Yancheng, Jiangsu Province 224001, China.
| | - Rengen Fan
- Department of General Surgery, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, No.166, Yulong West Road, Yancheng, Jiangsu Province, 224001, China.
| |
Collapse
|
2
|
Cheng C, Liu Z, Liu D, Chen H, Wang Y, Sun B. LncRNA CCAT1 participates in pancreatic ductal adenocarcinoma progression by forming a positive feedback loop with c-Myc. Carcinogenesis 2024; 45:69-82. [PMID: 37936306 DOI: 10.1093/carcin/bgad076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play fundamental roles in cancer development; however, the underlying mechanisms for a large proportion of lncRNAs in pancreatic ductal adenocarcinoma (PDAC) have not been elucidated. The expression of colon cancer-associated transcript-1 (CCAT1) in PDAC specimens and cell lines was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The function of CCAT1 was examined in vitro and in vivo. The interactions among CCAT1, miR-24-3p and c-Myc were determined by bioinformatics analysis, RNA immunoprecipitation (RIP), dual-luciferase reporter assay, and rescue experiments. CCAT1 was significantly increased in PDAC, positively correlated with PDAC progression and predicted a worse prognosis. Furthermore, CCAT1 enhanced Adenosine triphosphate (ATP) production to facilitate PDAC cell proliferation, colony formation and motility in vitro and tumor growth in vivo. CCAT1 may serve as an miR-24-3p sponge, thereby counteracting its repression by c-Myc expression. Reciprocally, c-Myc may act as a transcription factor to alter CCAT1 expression by directly targeting its promoter region, thus forming a positive feedback loop with CCAT1. Collectively, these results demonstrate that a positive feedback loop of CCAT1/miR-24-3p/c-Myc is involved in PDAC development, which may serve as a biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Chundong Cheng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Zonglin Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Danxi Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, 23 Youzheng Street, Nangang District, Harbin 150001, Heilongjiang, China
| |
Collapse
|
3
|
Tao H, Song SJ, Fan ZW, Li WT, Jin X, Jiang W, Bai J, Shi ZZ. PKCiota Inhibits the Ferroptosis of Esophageal Cancer Cells via Suppressing USP14-Mediated Autophagic Degradation of GPX4. Antioxidants (Basel) 2024; 13:114. [PMID: 38247539 PMCID: PMC10812620 DOI: 10.3390/antiox13010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors, and the mechanisms underlying the anti-ferroptosis of esophageal cancer cells are still largely unclear. This study aims to explore the roles of amplified protein kinase C iota (PKCiota) in the ferroptosis of ESCC cells. Cell viability, colony formation, MDA assay, Western blotting, co-IP, PLA, and RNA-seq technologies are used to reveal the roles and mechanisms underlying the PKCiota-induced resistance of ESCC cells to ferroptosis. We showed here that PKCiota was amplified and overexpressed in ESCC and decreased during RSL3-induced ferroptosis of ESCC cells. PKCiota interacted with GPX4 and the deubiquitinase USP14 and improved the protein stability of GPX4 by suppressing the USP14-mediated autophagy-lysosomal degradation pathway. PKCiota was negatively regulated by miR-145-5p, which decreased in esophageal cancer, and also regulated by USP14 and GPX4 by a positive feedback loop. PKCiota silencing and miR-145-5p overexpression suppressed tumor growth of ESCC cells in vivo, respectively; even a combination of silencing PKCiota and RSL3 treatment showed more vital suppressive roles on tumor growth than silencing PKCiota alone. Both PKCiota silencing and miR-145-5p overexpression sensitized ESCC cells to RSL3-induced ferroptosis. These results unveiled that amplified and overexpressed PKCiota induced the resistance of ESCC cells to ferroptosis by suppressing the USP14-mediated autophagic degradation of GPX4. Patients with PKCiota/USP14/GPX4 pathway activation might be sensitive to GPX4-targeted ferroptosis-based therapy.
Collapse
Affiliation(s)
- Hao Tao
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Sheng-Jie Song
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Ze-Wen Fan
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Wen-Ting Li
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Xin Jin
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Wen Jiang
- Department of Thoracic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650000, China;
| | - Jie Bai
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| | - Zhi-Zhou Shi
- Medical School, Kunming University of Science and Technology, Kunming 650500, China; (H.T.); (S.-J.S.); (Z.-W.F.); (W.-T.L.); (X.J.); (J.B.)
| |
Collapse
|
4
|
Wang J, Weng S, Zhu Y, Chen H, Pan J, Qiu S, Liu Y, Wei D, Zhu T. PKCι induces differential phosphorylation of STAT3 to modify STAT3-related signaling pathways in pancreatic cancer cells. J Cell Commun Signal 2023; 17:1417-1433. [PMID: 37548811 PMCID: PMC10713918 DOI: 10.1007/s12079-023-00780-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
An increasing number of studies have documented atypical protein kinase C isoform ι (PKCι) as an oncoprotein playing multifaceted roles in pancreatic carcinogenesis, including sustaining the transformed growth, prohibiting apoptosis, strengthening invasiveness, facilitating autophagy, as well as promoting the immunosuppressive tumor microenvironment of pancreatic tumors. In this study, we present novel evidence that PKCι overexpression increases STAT3 phosphorylation at the Y705 residue while decreasing STAT3 phosphorylation at the S727 residue in pancreatic cancer cells. We further demonstrate that STAT3 phosphorylation at Y705 and S727 residues is mutually antagonistic, and that STAT3 Y705 phosphorylation is positively related to the transcriptional activity of STAT3 in pancreatic cancer cells. Furthermore, we discover that PKCι inhibition attenuates STAT3 transcriptional activity via Y705 dephosphorylation, which appears to be resulted from enhanced phosphorylation of S727 in pancreatic cancer cells. Finally, we investigate and prove that by modulating the STAT3 activity, the PKCι inhibitor can synergistically enhance the antitumor effects of pharmacological STAT3 inhibitors or reverse the anti-apoptotic side effects incited by the MEK inhibitor, thereby posing as a prospective sensitizer in the treatment of pancreatic cancer cells.
Collapse
Affiliation(s)
- Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China
| | - Sijia Weng
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yue Zhu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongmei Chen
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jueyu Pan
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Shuoyu Qiu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yufeng Liu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dapeng Wei
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
5
|
Xi P, Ma X, Hu F, Li L, Liu H, Zhou J, Wu W. ROS-Sp1 axis is involved in thermochemotherapy-enhanced sensitivity of pancreatic cancer cells to gemcitabine. Cell Biol Int 2023; 47:1825-1834. [PMID: 37545170 DOI: 10.1002/cbin.12073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
Gemcitabine (GEM)-based chemotherapy represents the first choice for locally unresectable advanced pancreatic cancer, while the benefit is limited due to acquired chemoresistance or drug delivery insufficiency. Hyperthermia treatment potentially improves the clinical efficacy of GEM. However, the underlying mechanism is incompletely revealed. Our study aims to investigate the effect and involved mechanism of thermochemotherapy on cell survival. Pancreatic cancer cells PANC-1 and ASPC-1 were either treated with GEM or thermochemotherapy, then cell viability, apoptosis, migration, invasion, reactive oxygen species (ROS) production, and Sp1 expression were evaluated. The results showed that GEM dose and time-dependently affected cell viability, and 30 μM GEM achieved favorable effect in suppressing cancer cell growth. Meanwhile, hyperthermia preconditioning (43°C for 60 min) 24 h before GEM treatment yielded superior effect than other treatment sequence. GEM caused significant cell apoptosis and proapoptotic genes of both cancer cells, and thermochemotherapy further promoted apoptosis and genes transcription, accompanied by excessive ROS production. Thermochemotherapy was superior to GEM in suppressing cell migration and invasion of pancreatic cancer cells. Meanwhile, GEM significantly reduced Sp1 mRNA and protein and its downstream gene Cox-2, and thermochemotherapy further suppressed their expressions. ROS elimination with N-acetyl-l-cysteine notably neutralizes the suppressive effect of GEM and thermochemotherapy on cell growth and expressions of Sp1 and Cox-2. In conclusion, thermochemotherapy inhibited pancreatic cell viability, migration and invasion, and promoted cell apoptosis by inducing excessive ROS production, which subsequently suppressed Sp1 expression and the downstream Cox-2.
Collapse
Affiliation(s)
- Pan Xi
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaojuan Ma
- Clinical Medical Research Center, Xi'an No. 3 Hospital, Northwest University Affiliated Hospital, Xi'an, China
| | - Fuquan Hu
- College of Medicine, Bethel University, St. Paul, Minnesota, USA
| | - Liang Li
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Huijuan Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Jing Zhou
- Department of Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Wenan Wu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
6
|
Jiao J, Ruan L, Cheng CS, Wang F, Yang P, Chen Z. Paired protein kinases PRKCI-RIPK2 promote pancreatic cancer growth and metastasis via enhancing NF-κB/JNK/ERK phosphorylation. Mol Med 2023; 29:47. [PMID: 37016317 PMCID: PMC10074657 DOI: 10.1186/s10020-023-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Protein kinases play a pivotal role in the malignant evolution of pancreatic cancer (PC) through mediating phosphorylation. Many kinase inhibitors have been developed and translated into clinical use, while the complex pathology of PC confounds their clinical efficacy and warrants the discovery of more effective therapeutic targets. METHODS Here, we used the Gene Expression Omnibus (GEO) database and protein kinase datasets to map the PC-related protein kinase-encoding genes. Then, applying Gene Expression and Profiling Interactive Analysis (GEPIA), GEO and Human Protein Atlas, we evaluated gene correlation, gene expression at protein and mRNA levels, as well as survival significance. In addition, we performed protein kinase RIPK2 knockout and overexpression to observe effects of its expression on PC cell proliferation, migration and invasion in vitro, as well as cell apoptosis, reactive oxygen species (ROS) production and autophagy. We established PC subcutaneous xenograft and liver metastasis models to investigate the effects of RIPK2 knockout on PC growth and metastasis. Co-immunoprecipitation and immunofluorescence were utilized to explore the interaction between protein kinases RIPK2 and PRKCI. Polymerase chain reaction and immunoblotting were used to evaluate gene expression and protein phosphorylation level. RESULTS We found fourteen kinases aberrantly expressed in human PC and nine kinases with prognosis significance. Among them, RIPK2 with both serine/threonine and tyrosine activities were validated to promote PC cells proliferation, migration and invasion. RIPK2 knockout could inhibit subcutaneous tumor growth and liver metastasis of PC. In addition, RIPK2 knockout suppressed autophagosome formation, increased ROS production and PC cell apoptosis. Importantly, another oncogenic kinase PRKCI could interact with RIPK2 to enhance the phosphorylation of downstream NF-κB, JNK and ERK. CONCLUSION Paired protein kinases PRKCI-RIPK2 with multiple phosphorylation activities represent a new pathological mechanism in PC and could provide potential targets for PC therapy.
Collapse
Affiliation(s)
- Juying Jiao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Linjie Ruan
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chien-Shan Cheng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fengjiao Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Peiwen Yang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, No. 270 Dongan Rd., Xuhui District, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
8
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
9
|
Hafezi S, Saber-Ayad M, Abdel-Rahman WM. Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. Int J Mol Sci 2021; 22:10219. [PMID: 34638560 PMCID: PMC8508406 DOI: 10.3390/ijms221910219] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
The most frequent mutated oncogene family in the history of human cancer is the RAS gene family, including NRAS, HRAS, and, most importantly, KRAS. A hallmark of pancreatic cancer, recalcitrant cancer with a very low survival rate, is the prevalence of oncogenic mutations in the KRAS gene. Due to this fact, studying the function of KRAS and the impact of its mutations on the tumor microenvironment (TME) is a priority for understanding pancreatic cancer progression and designing novel therapeutic strategies for the treatment of the dismal disease. Despite some recent enlightening studies, there is still a wide gap in our knowledge regarding the impact of KRAS mutations on different components of the pancreatic TME. In this review, we will present an updated summary of mutant KRAS role in the initiation, progression, and modulation of the TME of pancreatic ductal adenocarcinoma (PDAC). This review will highlight the intriguing link between diabetes mellitus and PDAC, as well as vitamin D as an adjuvant effective therapy via TME modulation of PDAC. We will also discuss different ongoing clinical trials that use KRAS oncogene signaling network as therapeutic targets.
Collapse
Affiliation(s)
- Shirin Hafezi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Maha Saber-Ayad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Wael M. Abdel-Rahman
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
10
|
Zhang H, Zhu Y, Wang J, Weng S, Zuo F, Li C, Zhu T. PKCι regulates the expression of PDL1 through multiple pathways to modulate immune suppression of pancreatic cancer cells. Cell Signal 2021; 86:110115. [PMID: 34375670 DOI: 10.1016/j.cellsig.2021.110115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
To investigate the impact of oncogenic protein kinase C isoform ι (PKCι) on the microenvironment and the immunogenic properties of pancreatic tumors, we prohibit PKCι activity in various pancreatic ductal adenocarcinoma (PDAC) cell lines and co-culture them with human natural killer NK92 cells. The results demonstrate that PKCι suppression enhances the susceptibility of PDAC to NK cytotoxicity and promotes the degranulation and cytolytic activity of co-cultured NK92 cells. Mechanistic studies pinpoint that downstream of KRAS, both YAP1 and STAT3 are recruited by oncogenic PKCι to elevate the expression of PDL1, contributing to constitute an immune suppressive microenvironment in PDAC. Co-culture with NK92 further induces PDL1 upregulation via STAT3 to stimulate immune escape of PDAC cells. Subsequently, inhibition of PKCι in PDAC alleviates the immune suppression and enhances the cytotoxicity of NK92 towards PDAC through restraining PDL1 overexpression. Combined with PD1/PDL1 blocker, PKCι inhibitor remarkably elevates the cytotoxicity of NK92 against PDAC cells in vitro, establishing PKCι inhibitor as a promising candidate for boosting the immunotherapy of PDAC.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yue Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Sijia Weng
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Fengqiong Zuo
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Changlong Li
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|