1
|
Abascal MF, Elía A, Alvarez M, Pataccini G, Sequeira G, Riggio M, Figueroa V, Lamb CA, Rojas PA, Spengler E, Martínez-Vazquez P, Burruchaga J, Liguori M, Sahores A, Wargon V, Molinolo A, Hewitt S, Lombes M, Sartorius C, Vanzulli SI, Giulianelli S, Lanari C. Progesterone receptor isoform ratio dictates antiprogestin/progestin effects on breast cancer growth and metastases: A role for NDRG1. Int J Cancer 2021; 150:1481-1496. [PMID: 34935137 DOI: 10.1002/ijc.33913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Progesterone receptors (PR) ligands are being tested in luminal breast cancer. There are mainly two PR isoforms, PRA and PRB, and their ratio (PRA/PRB) may be predictive of antiprogestin response. Our aim was to investigate: the impact of the PR isoform ratio on metastatic behavior, the PR isoform ratio in paired primary tumors and lymph node metastases (LNM) and, the effect of antiprogestin/progestins on metastatic growth. Using murine and human metastatic models, we demonstrated that tumors with PRB > PRA (PRB-H) have a higher proliferation index but less metastatic ability than those with PRA > PRB (PRA-H). Antiprogestins and progestins inhibited metastatic burden in PRA-H and PRB-H models, respectively. In breast cancer samples, LNM retained the same PRA/PRB ratio as their matched primary tumors. Moreover, PRA-H LNM expressed higher total PR levels than the primary tumors. The expression of NDRG1, a metastasis suppressor protein, was higher in PRB-H compared with PRA-H tumors and was inversely regulated by antiprogestins/progestins. The binding of the corepressor SMRT at the progesterone responsive elements of the NDRG1 regulatory sequences, together with PRA, impeded its expression in PRA-H cells. Antiprogestins modulate the interplay between SMRT and AIB1 recruitment in PRA-H or PRB-H contexts regulating NDRG1 expression and thus, metastasis. In conclusion, we provide a mechanistic interpretation to explain the differential role of PR isoforms in metastatic growth and highlight the therapeutic benefit of using antiprogestins in PRA-H tumors. The therapeutic effect of progestins in PRB-H tumors is suggested. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Andrés Elía
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Michelle Alvarez
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires
| | - Gabriela Pataccini
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Gonzalo Sequeira
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Hospital Público de Gestión Descentralizada Dr. Arturo Oñativia, Argentina
| | - Marina Riggio
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Virginia Figueroa
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Caroline A Lamb
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Paola A Rojas
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Eunice Spengler
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | | | - Javier Burruchaga
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Marcos Liguori
- Hospital de Agudos "Magdalena V de Martínez", General Pacheco, Argentina
| | - Ana Sahores
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | - Victoria Wargon
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| | | | | | - Marc Lombes
- INSERM and Fac Med Paris-Sud, Université Paris Saclay, UMR-S 1185, Le Kremlin-Bicêtre, France
| | - Carol Sartorius
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Sebastián Giulianelli
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina.,Instituto de Biología de Organismos Marinos, IBIOMAR-CCT CENPAT-CONICET, Argentina
| | - Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Argentina
| |
Collapse
|
2
|
Hosford SR, Shee K, Wells JD, Traphagen NA, Fields JL, Hampsch RA, Kettenbach AN, Demidenko E, Miller TW. Estrogen therapy induces an unfolded protein response to drive cell death in ER+ breast cancer. Mol Oncol 2019; 13:1778-1794. [PMID: 31180176 PMCID: PMC6670014 DOI: 10.1002/1878-0261.12528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 06/07/2019] [Indexed: 01/06/2023] Open
Abstract
Estrogens have been shown to elicit anticancer effects against estrogen receptor α (ER)-positive breast cancer. We sought to determine the mechanism underlying the therapeutic response. Response to 17β-estradiol was assessed in ER+ breast cancer models with resistance to estrogen deprivation: WHIM16 patient-derived xenografts, C7-2-HI and C4-HI murine mammary adenocarcinomas, and long-term estrogen-deprived MCF-7 cells. As another means to reactivate ER, the anti-estrogen fulvestrant was withdrawn from fulvestrant-resistant MCF-7 cells. Transcriptional, growth, apoptosis, and molecular alterations in response to ER reactivation were measured. 17β-estradiol treatment and fulvestrant withdrawal induced transcriptional activation of ER, and cells adapted to estrogen deprivation or fulvestrant were hypersensitive to 17β-estradiol. ER transcriptional response was followed by an unfolded protein response and apoptosis. Such apoptosis was dependent upon the unfolded protein response, p53, and JNK signaling. Anticancer effects were most pronounced in models exhibiting genomic amplification of the gene encoding ER (ESR1), suggesting that engagement of ER at high levels is cytotoxic. These data indicate that long-term adaptation to estrogen deprivation or ER inhibition alters sensitivity to ER reactivation. In such adapted cells, 17β-estradiol treatment and anti-estrogen withdrawal hyperactivate ER, which drives an unfolded protein response and subsequent growth inhibition and apoptosis. 17β-estradiol treatment should be considered as a therapeutic option for anti-estrogen-resistant disease, particularly in patients with tumors harboring ESR1 amplification or ER overexpression. Furthermore, therapeutic strategies that enhance an unfolded protein response may increase the therapeutic effects of ER reactivation.
Collapse
Affiliation(s)
- Sarah R Hosford
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kevin Shee
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jason D Wells
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Nicole A Traphagen
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jennifer L Fields
- Department of Microbiology and Immunology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Riley A Hampsch
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Eugene Demidenko
- Department of Biomedical Data Sciences, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Todd W Miller
- Department of Molecular & Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.,Comprehensive Breast Program, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
3
|
Bonneterre J, Bosq J, Jamme P, Valent A, Gilles EM, Zukiwski AA, Fuqua SAW, Lange CA, O'Shaughnessy J. Tumour and cellular distribution of activated forms of PR in breast cancers: a novel immunohistochemical analysis of a large clinical cohort. ESMO Open 2016; 1:e000072. [PMID: 27843626 PMCID: PMC5070234 DOI: 10.1136/esmoopen-2016-000072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/26/2022] Open
Abstract
Background The progesterone receptor (PR) is expressed by ∼70% of early breast tumours and is implicated in the progression of breast cancer. In cancerous tissues PR may be activated in the absence of a ligand, or when ligand concentrations are very low, resulting in aberrantly activated PR (APR). The presence of APR may indicate that patients with breast cancer are more likely to respond to antiprogestins. The aims of this study were to describe and classify the histological subnuclear morphology of active and inactive PR in archival breast cancer samples. Methods Archived tumour specimens from 801 women with invasive breast cancer were collected. Tissue samples (n=789) were analysed for PR isoforms A and B (PRA and PRB), Ki67 and estrogen receptors (ERα) status, using immunohistochemistry. Medical records were used to determine human epidermal growth factor 2 (HER2) status, tumour stage and grade. Results A total of 79% of tumours stained positive for either PRA or PRB, and of these 25% of PRA-positive and 23% of PRB-positive tumours had PR present in the activated form. APRA was associated with higher tumour grade (p=0.001). APRB was associated with a higher tumour grade (p=0.046) and a trend for a more advanced stage. Patients with PR-positive tumours treated with antiestrogens had better disease-free survival (DFS) than those with PR-negative tumours (p<0.0001). Cumulative progression rate and DFS were similar irrespective of APR status. Both APRA and APRB were independent of HER2, ERα and Ki67 expression. Conclusions APR had a binary mode of expression in the breast cancer specimens tested, allowing separation into two tumour subsets. APR is an independent target at the cellular and tumour level and may therefore be a suitable predictive marker for antiprogestins, such as onapristone. Using the described technique, a companion diagnostic is under development to identify APR in solid tumours.
Collapse
Affiliation(s)
| | | | - Philippe Jamme
- Centre Oscar-Lambret, Université Lille Nord de France , Lille , France
| | | | - Erard M Gilles
- Invivis Pharmaceuticals Inc., Bridgewater, New Jersey, USA; Arno Therapeutics, Flemington, New Jersey, USA
| | | | | | - Carol A Lange
- University of Minnesota Masonic Cancer Center , Minneapolis, Minnesota , USA
| | - Joyce O'Shaughnessy
- Baylor-Sammons Cancer Center, Texas Oncology, US Oncology , Dallas, Texas , USA
| |
Collapse
|
4
|
Guil-Luna S, Millán Y, De Andres J, Rollón E, Domingo V, García-Macías J, Sánchez-Céspedes R, Martín de Las Mulas J. Prognostic impact of neoadjuvant aglepristone treatment in clinicopathological parameters of progesterone receptor-positive canine mammary carcinomas. Vet Comp Oncol 2016; 15:391-399. [PMID: 26781329 DOI: 10.1111/vco.12175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/28/2015] [Accepted: 06/07/2015] [Indexed: 12/20/2022]
Abstract
Neoadjuvant treatment of canine mammary carcinomas with the progesterone receptor (PR) antagonist aglepristone has a PR expression-related inhibiting effect on proliferation index (PI). The aim of this study was to evaluate the effect of the treatment in the disease-free period (DFP) and overall survival (OS) of canine mammary carcinomas. Fifty female dogs with mammary carcinomas were treated with aglepristone (n = 34) or oil vehicle (n = 16) before surgery (day 15). PR expression and PI were analysed by immunohistochemistry in samples taken at days 1 and 15. Epidemiological and clinicopathological data were assessed. DFP and OS data were retrieved every 4-6 months for at least 24 months after surgery. Aglepristone treatment increased DFP of animals bearing PR+ tumours with size smaller than 3 cm, complex and mixed tumours, with histologic grades I and II, and with PI ≤ 10%. Although further studies are necessary, current evidence points to treatment with aglepristone as useful for the management of canine mammary tumours.
Collapse
Affiliation(s)
- S Guil-Luna
- Department of Comparative Pathology, Veterinary Medicine Faculty, University of Córdoba, Córdoba, Spain
| | - Y Millán
- Department of Comparative Pathology, Veterinary Medicine Faculty, University of Córdoba, Córdoba, Spain
| | | | - E Rollón
- Small Animal Clinic Canymar, Cádiz, Spain
| | - V Domingo
- Small Animal Clinic Recuerda, Granada, Spain
| | - J García-Macías
- Department of Comparative Pathology, Veterinary Medicine Faculty, University of Córdoba, Córdoba, Spain
| | - R Sánchez-Céspedes
- Department of Comparative Pathology, Veterinary Medicine Faculty, University of Córdoba, Córdoba, Spain
| | - J Martín de Las Mulas
- Department of Comparative Pathology, Veterinary Medicine Faculty, University of Córdoba, Córdoba, Spain
| |
Collapse
|
5
|
Cabrera G, Fernández-Brando RJ, Mejías MP, Ramos MV, Abrey-Recalde MJ, Vanzulli S, Vermeulen M, Palermo MS. Leukotriene C4 increases the susceptibility of adult mice to Shiga toxin-producing Escherichia coli infection. Int J Med Microbiol 2015; 305:910-7. [PMID: 26456732 DOI: 10.1016/j.ijmm.2015.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 09/10/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes hemorrhagic colitis. Under some circumstances, Shiga toxin (Stx) produced within the intestinal tract enters the bloodstream, leading to systemic complications that may cause the potentially fatal hemolytic-uremic syndrome (HUS). Despite STEC human infection is characterized by acute inflammation of the colonic mucosa, little is known regarding the role of proinflammatory mediators like cysteine leukotrienes (cysLTs) in this pathology. Thus, the aim of this work was to analyze whether leukotriene C4 (LTC4) influences STEC pathogenesis in mice. We report that exogenous LTC4 pretreatment severely affected the outcome of STEC gastrointestinal infection. LTC4-pretreated (LTC4+) and STEC-infected (STEC+) mice showed an increased intestinal damage by histological studies, and a decreased survival compared to LTC4-non-pretreated (LTC4-) and STEC+ mice. LTC4+/STEC+ mice that died after the infection displayed neutrophilia and high urea levels, indicating that the cause of death was related to Stx2-toxicity. Despite the differences observed in the survival between LTC4+ and LTC4- mice after STEC infection, both groups showed the same survival after Stx2-intravenous inoculation. In addition, LTC4 pretreatment increased the permeability of mucosal intestinal barrier, as assessed by FITC-dextran absorption experiments. Altogether these results suggest that LTC4 detrimental effect on STEC infection is related to the increased passage of pathogenic factors to the bloodstream. Finally, we showed that STEC infection per se increases the endogenous LTC4 levels in the gut, suggesting that this inflammatory mediator plays a role in the pathogenicity of STEC infection in mice, mainly by disrupting the mucosal epithelial barrier.
Collapse
Affiliation(s)
- Gabriel Cabrera
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - Romina J Fernández-Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Pilar Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Victoria Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - María Jimena Abrey-Recalde
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Silvia Vanzulli
- Departamento de Patología, Centro de Estudios Oncológicos, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Inmunología Oncológica, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental (IMEX-CONICET), Academia Nacional de Medicina, Buenos Aires, Argentina
| |
Collapse
|
6
|
Sequeira G, Vanzulli SI, Rojas P, Lamb C, Colombo L, May M, Molinolo A, Lanari C. The effectiveness of nano chemotherapeutic particles combined with mifepristone depends on the PR isoform ratio in preclinical models of breast cancer. Oncotarget 2015; 5:3246-60. [PMID: 24912774 PMCID: PMC4102807 DOI: 10.18632/oncotarget.1922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is clinical and experimental evidence suggesting that antiprogestins might be used for the treatment of selected breast cancer patients. Our aim was to evaluate the effect of albumin-bound paclitaxel (Nab-paclitaxel) and pegylated doxorubicin liposomes (PEG-LD) in combination with mifepristone (MFP) in experimental breast cancer models expressing different ratios of progesterone receptor (PR) isoforms A and B. We used two antiprogestin-responsive (PRA>PRB) and two resistant (PRA<PRB) murine mammary carcinomas growing in BALB/c, GFP-BALB/c or nude mice, along with human T47D-YA and T47D-YB xenografts growing in immunocompromised NSG mice. MFP improved the therapeutic effects of suboptimal doses of Nab-paclitaxel or PEG-LD in murine and human carcinomas with higher levels of PRA than PRB. MFP induced tissue remodeling in PRA-overexpressing tumors, increasing the stromal/tumor cell ratio and the number of functional vessels. Accordingly, an increase in nanoparticles and drug accumulation was observed in stromal and tumor cells in MFP-treated tumors. We conclude that MFP induces an increase in vessels during tissue remodeling, favoring the selective accumulation of nanoparticles inside the tumors. We propose that antiprogestins have the potential to enhance the efficacy of chemotherapy in breast tumors with a high PRA/PRB ratio.
Collapse
Affiliation(s)
- Gonzalo Sequeira
- Institute of Experimental Biology and Medicine, IBYME-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Antiprogestins constitute a group of compounds, developed since the early 1980s, that bind progesterone receptors with different affinities. The first clinical uses for antiprogestins were in reproductive medicine, e.g., menstrual regulation, emergency contraception, and termination of early pregnancies. These initial applications, however, belied the capacity for these compounds to interfere with cell growth. Within the context of gynecological diseases, antiprogestins can block the growth of and kill gynecological-related cancer cells, such as those originating in the breast, ovary, endometrium, and cervix. They can also interrupt the excessive growth of cells giving rise to benign gynecological diseases such as endometriosis and leiomyomata (uterine fibroids). In this article, we present a review of the literature providing support for the antigrowth activity that antiprogestins impose on cells in various gynecological diseases. We also provide a summary of the cellular and molecular mechanisms reported for these compounds that lead to cell growth inhibition and death. The preclinical knowledge gained during the past few years provides robust evidence to encourage the use of antiprogestins in order to alleviate the burden of gynecological diseases, either as monotherapies or as adjuvants of other therapies with the perspective of allowing for long-term treatments with tolerable side effects. The key to the clinical success of antiprogestins in this field probably lies in selecting those patients who will benefit from this therapy. This can be achieved by defining the genetic makeup required - within each particular gynecological disease - for attaining an objective response to antiprogestin-driven growth inhibition therapy.Free Spanish abstractA Spanish translation of this abstract is freely available at http://www.reproduction-online.org/content/149/1/15/suppl/DC1.
Collapse
Affiliation(s)
- Alicia A Goyeneche
- Division of Basic Biomedical SciencesSanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Carlos M Telleria
- Division of Basic Biomedical SciencesSanford School of Medicine, The University of South Dakota, Vermillion, South Dakota 57069, USA
| |
Collapse
|
8
|
Hormonal prevention of breast cancer. ANNALES D'ENDOCRINOLOGIE 2014; 75:148-55. [DOI: 10.1016/j.ando.2014.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/09/2014] [Accepted: 04/29/2014] [Indexed: 11/23/2022]
|
9
|
Sahores A, Luque GM, Wargon V, May M, Molinolo A, Becu-Villalobos D, Lanari C, Lamb CA. Novel, low cost, highly effective, handmade steroid pellets for experimental studies. PLoS One 2013; 8:e64049. [PMID: 23691144 PMCID: PMC3655057 DOI: 10.1371/journal.pone.0064049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/07/2013] [Indexed: 11/18/2022] Open
Abstract
The basic component of Silastic® glue (Dow Corning) used to prepare Silastic® pellets is polydimethylsiloxane. This compound is also present in other commercial adhesives such as FASTIX® (Akapol SA) that are available in any store for that category. In the present study we developed low cost, easy to prepare handmade steroid pellets (HMSP) by mixing 17β-estradiol, progesterone or other synthetic steroids with FASTIX® adhesive. We assessed serum levels of 17β-estradiol, progesterone, prolactin and luteinizing hormone in ovariectomized mice treated for 24 and 48 h or 7, 14 and 28 days with 20 µg or 5 mg of 17β-estradiol or 5 mg progesterone HMSP. We found a time dependent and significant increase in the levels of both natural hormones, and a downregulation of serum luteinizing hormone levels, while both 17β-estradiol doses increased serum prolactin. Uterine weights at sacrifice and histological examination of the uteri and the mammary glands correlated with estrogen or progestin action. Finally, we evaluated the biological effects of HMSP compared to commercial pellets or daily injections in the stimulation or inhibition of hormone dependent mammary tumor growth, and found that HMSP were as effective as the other methods of hormone administration. These data show that HMSP represent a useful, low cost, easily accessible method for administering steroids to mice.
Collapse
Affiliation(s)
- Ana Sahores
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Guillermina M. Luque
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Victoria Wargon
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - María May
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Alfredo Molinolo
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Claudia Lanari
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Caroline A. Lamb
- Institute of Experimental Biology and Medicine (IBYME), CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
10
|
Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G, Amazit L, Brion JD, Alami M, Lombès M, Loosfelt H, Rafestin-Oblin ME. A new strategy for selective targeting of progesterone receptor with passive antagonists. Mol Endocrinol 2013; 27:909-24. [PMID: 23579486 DOI: 10.1210/me.2012-1328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Currently available progesterone (P4) receptor (PR) antagonists, such as mifepristone (RU486), lack specificity and display partial agonist properties, leading to potential drawbacks in their clinical use. Recent x-ray crystallographic studies have identified key contacts involved in the binding of agonists and antagonists with PR opening the way for a new rational strategy for inactivating PR. We report here the synthesis and characterization of a novel class of PR antagonists (APRn) designed from such studies. The lead molecule, the homosteroid APR19, displays in vivo endometrial anti-P4 activity. APR19 inhibits P4-induced PR recruitment and transactivation from synthetic and endogenous gene promoters. Importantly, it exhibits high PR selectivity with respect to other steroid hormone receptors and is devoid of any partial agonist activity on PR target gene transcription. Two-hybrid and immunostaining experiments reveal that APR19-bound PR is unable to interact with either steroid receptor coactivators 1 and 2 (SRC1 and SCR2) or nuclear receptor corepressor (NcoR) and silencing mediator of retinoid acid and thyroid hormone receptor (SMRT), in contrast to RU486-PR complexes. APR19 also inhibits agonist-induced phosphorylation of serine 294 regulating PR transcriptional activity and turnover kinetics. In silico docking studies based on the crystal structure of the PR ligand-binding domain show that, in contrast to P4, APR19 does not establish stabilizing hydrogen bonds with the ligand-binding cavity, resulting in an unstable ligand-receptor complex. Altogether, these properties highly distinguish APR19 from RU486 and likely its derivatives, suggesting that it belongs to a new class of pure antiprogestins that inactivate PR by a passive mechanism. These specific PR antagonists open new perspectives for long-term hormonal therapy.
Collapse
Affiliation(s)
- Junaid A Khan
- Inserm U693, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, 94276 Le Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jiang J, Thyagarajan-Sahu A, Loganathan J, Eliaz I, Terry C, Sandusky GE, Sliva D. BreastDefend™ prevents breast-to-lung cancer metastases in an orthotopic animal model of triple-negative human breast cancer. Oncol Rep 2012; 28:1139-45. [PMID: 22842551 PMCID: PMC3583511 DOI: 10.3892/or.2012.1936] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 06/27/2012] [Indexed: 11/07/2022] Open
Abstract
We have recently demonstrated that a natural dietary supplement BreastDefend (BD), which contains extracts from medicinal mushrooms (Coriolus versicolor, Ganoderma lucidum, Phellinus linteus), medicinal herbs (Scutellaria barbata, Astragalus membranaceus, Curcuma longa), and purified biologically active nutritional compounds (diindolylmethane and quercetin), inhibits proliferation and metastatic behavior of MDA-MB-231 invasive human breast cancer cells in vitro. In the present study, we evaluated whether BD suppresses growth and breast-to lung cancer metastasis in an orthotopic model of human breast cancer cells implanted in mice. Oral application of BD (100 mg/kg of body weight for 4 weeks) by intragastric gavage did not affect body weight or activity of liver enzymes and did not show any sign of toxicity in liver, spleen, kidney, lung and heart tissues in mice. Moreover, BD significantly decreased the change in tumor volume over time compared to the control group (p=0.002). BD treatment also markedly decreased the incidence of breast-to-lung cancer metastasis from 67% (control) to 20% (BD) (p<0.05) and the number of metastases from 2.8 (0.0, 48.0) in the control group to 0.0 (0.0, 14.2) in the BD treatment group (p<0.05). Finally, anti-metastatic activity of BD in vivo was further confirmed by the downregulation of expression of PLAU (urokinase plasminogen activator, uPA) and CXCR4 (C-X-C chemokine receptor-4) genes in breast tumors. In conclusion, BD may be considered as a biological therapeutic agent against invasive breast cancers.
Collapse
Affiliation(s)
- Jiahua Jiang
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Chabbert-Buffet N, Pintiaux A, Bouchard P. The immninent dawn of SPRMs in obstetrics and gynecology. Mol Cell Endocrinol 2012; 358:232-43. [PMID: 22415029 DOI: 10.1016/j.mce.2012.02.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 12/30/2022]
Abstract
Selective progesterone receptor modulators (SPRMs) have been developed since the late 70s when mifepristone was first described. They act through nuclear progesterone receptors and can have agonist or mixed agonist antagonist actions depending on the cell and tissue. Mifepristone has unique major antagonist properties allowing its use for pregnancy termination. Ulipristal acetate has been marketed in 2009 for emergency contraception and has been recently approved for preoperative myoma treatment. Further perspectives for SPRMs use include long term estrogen free contraception, endometriosis treatment. However long term applications will be possible only after confirmation of endometrial safety.
Collapse
Affiliation(s)
- Nathalie Chabbert-Buffet
- Obstetrics, Gynecology and Reproductive Medicine Department, AP-HP, Hospital Tenon, UPMC Paris 06, Paris, France.
| | | | | |
Collapse
|
13
|
Abstract
Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death in females worldwide. It is accepted that breast cancer is not a single disease, but instead constitutes a spectrum of tumor subtypes with distinct cellular origins, somatic changes, and etiologies. Molecular gene expression studies have divided breast cancer into several categories, i.e. basal-like, ErbB2 enriched, normal breast-like (adipose tissue gene signature), luminal subtype A, luminal subtype B, and claudin-low. Chances are that as our knowledge increases, each of these types will also be subclassified. More than 66% of breast carcinomas express estrogen receptor alpha (ERα) and respond to antiestrogen therapies. Most of these ER+ tumors also express progesterone receptors (PRs), the expression of which has been considered as a reliable marker of a functional ER. In this paper we will review the evidence suggesting that PRs are valid targets for breast cancer therapy. Experimental data suggest that both PR isoforms (A and B) have different roles in breast cancer cell growth, and antiprogestins have already been clinically used in patients who have failed to other therapies. We hypothesize that antiprogestin therapy may be suitable for patients with high levels of PR-A. This paper will go over the experimental evidence of our laboratory and others supporting the use of antiprogestins in selected breast cancer patients.
Collapse
Affiliation(s)
- Claudia Lanari
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | | |
Collapse
|
14
|
Associated expressions of FGFR-2 and FGFR-3: from mouse mammary gland physiology to human breast cancer. Breast Cancer Res Treat 2011; 133:997-1008. [PMID: 22124578 DOI: 10.1007/s10549-011-1883-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 11/12/2011] [Indexed: 12/28/2022]
Abstract
Fibroblast growth factor receptors (FGFRs) are tyrosine kinase receptors which have been implicated in breast cancer. The aim of this study was to evaluate FGFR-1, -2, -3, and -4 protein expressions in normal murine mammary gland development, and in murine and human breast carcinomas. Using immunohistochemistry and Western blot, we report a hormonal regulation of FGFR during postnatal mammary gland development. Progestin treatment of adult virgin mammary glands resulted in changes in localization of FGFR-3 from the cytoplasm to the nucleus, while treatment with 17-β-estradiol induced changes in the expressions and/or localizations of FGFR-2 and -3. In murine mammary carcinomas showing different degrees of hormone dependence, we found progestin-induced increased expressions, mainly of FGFR-2 and -3. These receptors were constitutively activated in hormone-independent variants. We studied three luminal human breast cancer cell lines growing as xenografts, which particularly expressed FGFR-2 and -3, suggesting a correlation between hormonal status and FGFR expression. Most importantly, in breast cancer samples from 58 patients, we found a strong association (P < 0.01; Spearman correlation) between FGFR-2 and -3 expressions and a weaker correlation of each receptor with estrogen receptor expression. FGFR-4 correlated with c-erbB2 over expression. We conclude that FGFR-2 and -3 may be mechanistically linked and can be potential targets for treatment of estrogen receptor-positive breast cancer patients.
Collapse
|
15
|
Soldati R, Wargon V, Cerliani JP, Giulianelli S, Vanzulli SI, Gorostiaga MA, Bolado J, do Campo P, Molinolo A, Vollmer G, Lanari C. Inhibition of mammary tumor growth by estrogens: is there a specific role for estrogen receptors alpha and beta? Breast Cancer Res Treat 2010; 123:709-24. [PMID: 20012353 DOI: 10.1007/s10549-009-0659-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 11/18/2009] [Indexed: 02/06/2023]
Abstract
To evaluate the extent to which each estrogen receptor (ER) subtype contributes to the stimulation or to the inhibition of mammary tumor growth, we evaluated the effects of specific agonists in MC4-L2 cells, which are stimulated by 17β-estradiol (E(2)), and in mammary carcinomas of the MPA mouse breast cancer model, which are inhibited by E(2). Both express ERα and ERβ. In MC4-L2 cells, 4,4',4"-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT; ERα agonist) and (4-hydroxy-phenyl)-propionitrile (DPN; ERβ agonist) stimulated cell proliferation, whereas the opposite occurred in C4-HI primary cultures. The inhibitory effect was associated with a decrease in ERα and cyclin D1 expression and an increase in progesterone receptor (PR) expression as well as in the Bax/Bcl-xl ratio. In vivo, mice carrying C4-HI or 32-2-HI tumors were treated with E(2), PPT or DPN (3 mg/kg/day) or with vehicle. PPT and DPN inhibited tumor size, as did E(2), during the first 72 h. After a few days, DPN-treated tumors started to grow again, while PPT-treated tumors remained quiescent for a longer period of time. A pronounced decrease in the mitotic index and an increase in the apoptotic index was associated with tumor regression. All treated tumors showed: (a) an increase in integrin α6 and Bax expression, (b) an increased stromal laminin redistribution, and (c) a decrease in ERα, Bcl-xl and Bcl-2 expression (P < 0.001). Apoptosis-inducing factor (Aif) expression was increased in DPN-treated tumors, while active caspase 9 was up-regulated in PPT-treated mice, demonstrating the involvement of the intrinsic apoptotic pathway in estrogen-induced regression in this model. In conclusion, our data indicate that although there may be some preferences for activation pathways by the different agonists, the stimulatory or inhibitory effects triggered by estrogens are cell-context dependent rather than ER isoform dependent.
Collapse
Affiliation(s)
- Rocío Soldati
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine, National Research Council of Argentina (CONICET), 1428 Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schuler PJ, Heikaus S, Friebe-Hoffmann U, Hoffmann TK, Greve J, Klenzner T, Schipper J, Scheckenbach K. [Breast cancer metastases in the head and neck region]. HNO 2010; 58:859-65. [PMID: 20596682 DOI: 10.1007/s00106-010-2150-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Breast cancer metastases to the head and neck region are very rare and therefore represent a challenge for the clinician in terms of diagnosis and therapy. Recent advances in breast cancer treatment have achieved longer median survival times in affected patients. However, at the same time, the risk of a clinical manifestation of metastasis increases. Here we present the cases of two breast cancer patients who developed filiae into the petrous portion of the temporal bone and one very rare case of metastasis to the larynx. Diagnosis, therapy and distinctive features of metastasis to the head and neck region are discussed.Secondary to long-term endocrine hormone therapy, a reduction in estrogen receptor expression occurred in all three cases. We believe that the loss of steroid receptor expression contributed to tumor resistance to endocrine therapy. Moreover, this receptor loss hindered the pathologist from confirming the diagnosis of metastases at very unusual sites.
Collapse
Affiliation(s)
- P J Schuler
- Hals-, Nasen- und Ohrenklinik, Heinrich-Heine-Universität, Moorenstrasse 5, 40225, Düsseldorf, Deutschland.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bottino MC, Cerliani JP, Rojas P, Giulianelli S, Soldati R, Mondillo C, Gorostiaga MA, Pignataro OP, Calvo JC, Gutkind JS, Panomwat Amornphimoltham, Molinolo AA, Lüthy IA, Lanari C. Classical membrane progesterone receptors in murine mammary carcinomas: agonistic effects of progestins and RU-486 mediating rapid non-genomic effects. Breast Cancer Res Treat 2010; 126:621-36. [DOI: 10.1007/s10549-010-0971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/26/2010] [Indexed: 12/19/2022]
|
18
|
Polo ML, Arnoni MV, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS One 2010; 5:e10786. [PMID: 20520761 PMCID: PMC2877092 DOI: 10.1371/journal.pone.0010786] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 04/30/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND A significant proportion of breast cancer patients face failure of endocrine therapy due to the acquisition of endocrine resistance. We have explored mechanisms involved in such disease progression by using a mouse breast cancer model that is induced by medroxyprogesterone acetate (MPA). These tumors transit through different stages of hormone sensitivity. However, when cells from tumor variants were seeded on plastic, all were stimulated by progestins and inhibited by antiprogestins such as RU486. Furthermore, cells from a RU486-resistant tumor variant recovered antiprogestin sensitivity. HYPOTHESIS A three-dimensional (3D) culture system, by maintaining differential cellular organization that is typical of each tumor variant, may allow for the maintenance of particular hormone responses and thus be appropriate for the study of the effects of specific inhibitors of signaling pathways associated with disease progression. METHOD We compared the behavior of tumors growing in vivo and cancer cells ex vivo (in 3D Matrigel). In this system, we evaluated the effects of kinase inhibitors and hormone antagonists on tumor growth. PRINCIPAL FINDINGS LY294002, a PI3K/AKT pathway inhibitor, decreased both tumor growth in vivo and cell survival in Matrigel in MPA-independent tumors with higher AKT activity. Induction of cell death by anti-hormones such as ICI182780 and ZK230211 was more effective in MPA-dependent tumors with lower AKT activity. Inhibition of MEK with PD98059 did not affect tumor growth in any tested variant. Finally, while Matrigel reproduced differential responsiveness of MPA-dependent and -independent breast cancer cells, it was not sufficient to preserve antiprogestin resistance of RU486-resistant tumors. CONCLUSION We demonstrated that the PI3K/AKT pathway is relevant for MPA-independent tumor growth. Three-dimensional cultures were useful to test the effects of kinase inhibitors on breast cancer growth and highlight the need for in vivo models to validate experimental tools used for selective therapeutic targeting.
Collapse
Affiliation(s)
- Maria Laura Polo
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Maria Victoria Arnoni
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Marina Riggio
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Victoria Wargon
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Claudia Lanari
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| | - Virginia Novaro
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Giulianelli S, Cerliani JP, Lamb CA, Fabris VT, Bottino MC, Gorostiaga MA, Novaro V, Góngora A, Baldi A, Molinolo A, Lanari C. Carcinoma-associated fibroblasts activate progesterone receptors and induce hormone independent mammary tumor growth: A role for the FGF-2/FGFR-2 axis. Int J Cancer 2008; 123:2518-31. [PMID: 18767044 DOI: 10.1002/ijc.23802] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms by which mammary carcinomas acquire hormone independence are still unknown. To study the role of cancer-associated fibroblasts (CAF) in the acquisition of hormone-independence we used a hormone-dependent (HD) mouse mammary tumor and its hormone-independent (HI) variant, which grows in vivo without hormone supply. HI tumors express higher levels of FGFR-2 than HD tumors. In spite of their in vivo differences, both tumors have the same hormone requirement in primary cultures. We demonstrated that CAF from HI tumors (CAF-HI) growing in vitro, express higher levels of FGF-2 than HD counterparts (CAF-HD). FGF-2 activated the progesterone receptors (PR) in the tumor cells, thus increasing cell proliferation in both HI and HD tumors. CAF-HI induced a higher proliferative rate on the tumor cells and in PR activation than CAF-HD. The blockage of FGF-2 in the co-cultures or the genetic or pharmacological inhibition of FGFR-2 inhibited PR activation and tumor cell proliferation. Moreover, in vivo, the FGFR inhibitor decreased C4-HI tumor growth, whereas FGF-2 was able to stimulate C4-HD tumor growth as MPA. T47D human breast cancer cells were also stimulated by progestins, FGF-2 or CAF-HI, and this stimulation was abrogated by antiprogestins, suggesting that the murine C4-HI cells respond as the human T47D cells. In summary, this is the first study reporting differences between CAF from HD and HI tumors suggesting that CAF-HI actively participate in driving HI tumor growth.
Collapse
Affiliation(s)
- Sebastián Giulianelli
- Laboratory of Hormonal Carcinogenesis, Institute of Experimental Biology and Medicine (IBYME)-National Research Council of Argentina (CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reversal of antiprogestin resistance and progesterone receptor isoform ratio in acquired resistant mammary carcinomas. Breast Cancer Res Treat 2008; 116:449-60. [PMID: 18677559 DOI: 10.1007/s10549-008-0150-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 07/23/2008] [Indexed: 01/02/2023]
Abstract
To explore mechanisms related to hormone resistance, three resistant variants of the MPA mouse breast cancer tumor model with low levels of progesterone receptor (PR) isoform A (PR-A)/high PR-B expression were developed by prolonged selective pressure with antiprogestins. The resistant phenotype of one tumor line was reversed spontaneously after several consecutive passages in syngeneic BALB/c mice or by 17-beta-estradiol or tamoxifen treatment, and this reversion was significantly associated with an increase in PR-A expression. The responsive parental tumors disclosed low activation of ERK and high activation of AKT; resistant tumors on the other hand, showed the opposite, and this was associated with a higher metastatic potential, that did not revert. This study shows for the first time in vivo a relationship between PR isoform expression and antiprogestin responsiveness, demonstrating that, whereas acquired resistance may be reversed, changes in kinase activation and metastatic potential are unidirectional associated with tumor progression.
Collapse
|
21
|
Fu XD, Giretti MS, Baldacci C, Garibaldi S, Flamini M, Sanchez AM, Gadducci A, Genazzani AR, Simoncini T. Extra-nuclear signaling of progesterone receptor to breast cancer cell movement and invasion through the actin cytoskeleton. PLoS One 2008; 3:e2790. [PMID: 18665217 PMCID: PMC2464736 DOI: 10.1371/journal.pone.0002790] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 07/02/2008] [Indexed: 12/21/2022] Open
Abstract
Progesterone plays a role in breast cancer development and progression but the effects on breast cancer cell movement or invasion have not been fully explored. In this study, we investigate the actions of natural progesterone and of the synthetic progestin medroxyprogesterone acetate (MPA) on actin cytoskeleton remodeling and on breast cancer cell movement and invasion. In particular, we characterize the nongenomic signaling cascades implicated in these actions. T47-D breast cancer cells display enhanced horizontal migration and invasion of three-dimensional matrices in the presence of both progestins. Exposure to the hormones triggers a rapid remodeling of the actin cytoskeleton and the formation of membrane ruffles required for cell movement, which are dependent on the rapid phosphorylation of the actin-regulatory protein moesin. The extra-cellular small GTPase RhoA/Rho-associated kinase (ROCK-2) cascade plays central role in progesterone- and MPA-induced moesin activation, cell migration and invasion. In the presence of progesterone, progesterone receptor A (PRA) interacts with the G protein Gα13, while MPA drives PR to interact with tyrosine kinase c-Src and to activate phosphatidylinositol-3 kinase, leading to the activation of RhoA/ROCK-2. In conclusion, our findings manifest that progesterone and MPA promote breast cancer cell movement via rapid actin cytoskeleton remodeling, which are mediated by moesin activation. These events are triggered by RhoA/ROCK-2 cascade through partially differing pathways by the two compounds. These results provide original mechanistic explanations for the effects of progestins on breast cancer progression and highlight potential targets to treat endocrine-sensitive breast cancers.
Collapse
Affiliation(s)
- Xiao-Dong Fu
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Maria S. Giretti
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Chiara Baldacci
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Silvia Garibaldi
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Marina Flamini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Angel Matias Sanchez
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Angiolo Gadducci
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Andrea R. Genazzani
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
| | - Tommaso Simoncini
- Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Reproductive Medicine and Child Development, University of Pisa, Pisa, Italy
- * E-mail:
| |
Collapse
|
22
|
Bouchard P, Ouzounian S, Chabbert-Buffet N. Modulateurs sélectifs du récepteur de la progestérone (SPRMs): perspectives médicales. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2008. [DOI: 10.1016/s0001-4079(19)32715-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Leo JCL, Lin VCL. The activities of progesterone receptor isoform A and B are differentially modulated by their ligands in a gene-selective manner. Int J Cancer 2007; 122:230-43. [PMID: 17893877 DOI: 10.1002/ijc.23081] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is known that progesterone receptor (PR) isoform A (PR-A) and isoform B (PR-B) may mediate different effects of progesterone. The objective of this study was to determine if the functions of PR isoforms also vary in response to different PR modulators (PRM). The effects of 7 synthetic PRM were tested in MDA-MB-231 cells engineered to express PR-A, PR-B, or both PR isoforms. The effects of progesterone were similar in cells expressing PR-A or PR-B in which it inhibited growth and induced focal adhesion. On the other hand, synthetic PRM modulated the activity of the PR isoforms differently. RU486, CDB4124, 17alpha-hydroxy CDB4124 and VA2914 exerted agonist activities on cell growth and adhesion via PR-B. Via PR-A, however, these compounds displayed agonist effect on cell growth but induced stellate morphology which was distinct from the agonist's effect. Their dual properties via PR-A were also displayed at the gene expression level: the compounds acted as agonists on cell cycle genes but exhibited antagonistic effect on cell adhesion genes. Introduction of ERalpha by adenoviral vector to these cells did not change PR-A or PR-B mediated effect of PRM radically, but it causes significant cell rounding and modified the magnitudes of the responses to PRM. The findings suggest that the activities of PR isoforms may be modulated by different PRM through gene-specific regulatory mechanisms. This raises an interesting possibility that PRM may be designed to be PR isoform and cellular pathway selective to achieve targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Joyce C L Leo
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | |
Collapse
|