1
|
Kamiyama M, Naguro I, Ichijo H. In vivo gene manipulation reveals the impact of stress-responsive MAPK pathways on tumor progression. Cancer Sci 2015; 106:785-96. [PMID: 25880821 PMCID: PMC4520628 DOI: 10.1111/cas.12676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/12/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
It has been widely accepted that tumor cells and normal stromal cells in the host environment coordinately modulate tumor progression. Mitogen-activated protein kinase pathways are the representative stress-responsive cascades that exert proper cellular responses to divergent environmental stimuli. Genetically engineered mouse models and chemically induced tumorigenesis models have revealed that components of the MAPK pathway not only regulate the behavior of tumor cells themselves but also that of surrounding normal stromal cells in the host environment during cancer pathogenesis. The individual functions of MAPK pathway components in tumor initiation and progression vary depending on the stimuli and the stromal cell types involved in tumor progression, in addition to the molecular isoforms of the components and the origins of the tumor. Recent studies have indicated that MAPK pathway components synergize with environmental factors (e.g. tobacco smoke and diet) to affect tumor initiation and progression. Moreover, some components play distinct roles in the course of tumor progression, such as before and after the establishment of tumors. Hence, a comprehensive understanding of the multifaceted functions of MAPK pathway components in tumor initiation and progression is essential for the improvement of cancer therapy. In this review, we focus on the reports that utilized knockout, conditional knockout, and transgenic mice of MAPK pathway components to investigate the effects of MAPK pathway components on tumor initiation and progression in the host environment.
Collapse
Affiliation(s)
- Miki Kamiyama
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Chung HK, Rao JN, Zou T, Liu L, Xiao L, Gu H, Turner DJ, Yang P, Wang JY. Jnk2 deletion disrupts intestinal mucosal homeostasis and maturation by differentially modulating RNA-binding proteins HuR and CUGBP1. Am J Physiol Cell Physiol 2014; 306:C1167-75. [PMID: 24740539 DOI: 10.1152/ajpcell.00093.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Homeostasis and maturation of the mammalian intestinal epithelium are preserved through strict regulation of cell proliferation, apoptosis, and differentiation, but the exact mechanism underlying this process remains largely unknown. c-Jun NH2-terminal kinase 2 (JNK2) is highly expressed in the intestinal mucosa, and its activation plays an important role in proliferation and also mediates apoptosis in cultured intestinal epithelial cells (IECs). Here, we investigated the in vivo function of JNK2 in the regulation of intestinal epithelial homeostasis and maturation by using a targeted gene deletion approach. Targeted deletion of the jnk2 gene increased cell proliferation within the crypts in the small intestine and disrupted mucosal maturation as indicated by decreases in the height of villi and the villus-to-crypt ratio. JNK2 deletion also decreased susceptibility of the intestinal epithelium to apoptosis. JNK2-deficient intestinal epithelium was associated with an increase in the level of the RNA-binding protein HuR and with a decrease in the abundance of CUG-binding protein 1 (CUGBP1). In studies in vitro, JNK2 silencing protected intestinal epithelial cell-6 (IEC-6) cells against apoptosis and this protection was prevented by inhibiting HuR. Ectopic overexpression of CUGBP1 repressed IEC-6 cell proliferation, whereas CUGBP1 silencing enhanced cell growth. These results indicate that JNK2 is essential for maintenance of normal intestinal epithelial homeostasis and maturation under biological conditions by differentially modulating HuR and CUGBP1.
Collapse
Affiliation(s)
- Hee Kyoung Chung
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Jaladanki N Rao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Tongtong Zou
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Liu
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Lan Xiao
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Hui Gu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Douglas J Turner
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jian-Ying Wang
- Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland; and Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| |
Collapse
|
3
|
Takahashi R, Hirata Y, Sakitani K, Nakata W, Kinoshita H, Hayakawa Y, Nakagawa H, Sakamoto K, Hikiba Y, Ijichi H, Moses HL, Maeda S, Koike K. Therapeutic effect of c-Jun N-terminal kinase inhibition on pancreatic cancer. Cancer Sci 2013; 104:337-44. [PMID: 23237571 DOI: 10.1111/cas.12080] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 12/25/2022] Open
Abstract
c-Jun N-terminal kinase (JNK) is a member of the mitogen-activated protein kinase (MAPK) family, and it is reportedly involved in the development of several cancers. However, the role of JNK in pancreatic cancer has not been elucidated. We assessed t he involvement of JNK in the development of pancreatic cancer and investigated the therapeutic effect of JNK inhibitors on this deadly cancer. Small interfering RNAs against JNK or the JNK inhibitor SP600125 were used to examine the role of JNK in cellular proliferation and the cell cycles of pancreatic cancer cell lines. Ptf1a(cre/+) ;LSL-Kras(G12D/+) ;Tgfbr2(flox/flox) mice were treated with the JNK inhibitor to examine pancreatic histology and survival. The effect of JNK inhibition on tumor angiogenesis was also assessed using cell lines and murine pancreatic cancer specimens. JNK was frequently activated in human and murine pancreatic cancer in vitro and in vivo. Growth of human pancreatic cancer cell lines was suppressed by JNK inhibition through G1 arrest in the cell cycle with decreased cyclin D1 expression. In addition, oncogenic K-ras expression led to activation of JNK in pancreatic cancer cell lines. Treatment of Ptf1a(cre/+) ;LSL-Kras(G12D/+) ;Tgfbr2(flox/flox) mice with the JNK inhibitor decreased growth of murine pancreatic cancer and prolonged survival of the mice significantly. Angiogenesis was also decreased by JNK inhibition in vitro and in vivo. In conclusion, activation of JNK promotes development of pancreatic cancer, and JNK may be a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zeineldin M, Neufeld KL. More than two decades of Apc modeling in rodents. Biochim Biophys Acta Rev Cancer 2013; 1836:80-9. [PMID: 23333833 DOI: 10.1016/j.bbcan.2013.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 02/07/2023]
Abstract
Mutation of tumor suppressor gene adenomatous polyposis coli (APC) is an initiating step in most colon cancers. This review summarizes Apc models in mice and rats, with particular concentration on those most recently developed, phenotypic variation among different models, and genotype/phenotype correlations.
Collapse
Affiliation(s)
- Maged Zeineldin
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | | |
Collapse
|
5
|
Bi X, Pohl N, Dong H, Yang W. Selenium and sulindac are synergistic to inhibit intestinal tumorigenesis in Apc/p21 mice. J Hematol Oncol 2013; 6:8. [PMID: 23327547 PMCID: PMC3566909 DOI: 10.1186/1756-8722-6-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/01/2013] [Indexed: 12/21/2022] Open
Abstract
Background Both selenium and non-steroidal anti-inflammatory drug (NSAID) sulindac are effective in cancer prevention, but their effects are affected by several factors including epigenetic alterations and gene expression. The current study was designed to determine the effects of the combination of selenium and sulindac on tumor inhibition and the underlying mechanisms. Results We fed the intestinal tumor model Apc/p21 mice with selenium- and sulindac-supplemented diet for 24 weeks, and found that the combination of selenium and sulindac significantly inhibited intestinal tumorigenesis, in terms of reducing tumor incidence by 52% and tumor multiplicities by 80% (p<0.01). Mechanistic studies revealed that the combination of selenium and sulindac led to the significant induction of the expression of p27 and p53 and JNK1 phosphorylation, and led to the suppression of β-catenin and its downstream targets. Impressively, the data also showed that demythelation on p21 promoter was associated with tumor inhibition by the combination of selenium and sulindac. Conclusions The selenium is synergistic with sulindac to exert maximal effects on tumor inhibition. This finding provides an important chemopreventive strategy using combination of anti-cancer agents, which has a great impact on cancer prevention and has a promising translational potential.
Collapse
Affiliation(s)
- Xiuli Bi
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | | | | | | |
Collapse
|
6
|
Tang FY, Pai MH, Chiang EPI. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model. J Nutr Biochem 2012; 23:1302-13. [PMID: 22221675 DOI: 10.1016/j.jnutbio.2011.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 06/09/2011] [Accepted: 07/27/2011] [Indexed: 12/22/2022]
Abstract
Epidemiologic studies suggest that intake of high-fat diet (HFD) promotes colon carcinogenesis. Epithelial-mesenchymal transition (EMT) and inflammation play important roles during tumor progression of colorectal cancer (CRC). Oncogenic pathways such as phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR and mitogen-activated protein kinase (MAPK)/ERK signaling cascades induce EMT and inflammation in cancer. No experimental evidence has been demonstrated regarding HFD-mediated tumor progression including EMT in CRC so far. Our results demonstrated that HFD consumption could induce tumor growth and progression, including EMT and inflammation, in a mouse xenograft tumor model. The molecular mechanisms were through activation of MAPK/ERK and PI3K/Akt/mTOR signaling pathways. HFD induced up-regulation of cyclooxygenase-2, cyclin D1 and proliferating cell nuclear antigen proteins concomitant with increases in expression of nuclear factor-κB p65 (RelA) and β-catenin proteins. Surprisingly, HFD consumption could suppress p21(CIP1/WAF1) expression through increases in nuclear histone deacetylase complex (HDAC). Moreover, HFD could mediate the disassembly of E-cadherin adherent complex and the up-regulation of Vimentin and N-cadherin proteins in tumor tissues. Taken together, our novel findings support evidence for HFD-mediated modulation of HDAC activity and activation of oncogenic cascades, which involve EMT and inflammation in CRC, playing important roles in tumor growth and progression in a mouse xenograft model.
Collapse
Affiliation(s)
- Feng-Yao Tang
- Department of Nutrition, Biomedical Science Laboratory, China Medical University, Taichung 40402, Taiwan.
| | | | | |
Collapse
|