1
|
Bağcı Ö, Özdemir EM, Şanlıtürk B. Variant Analysis of miRNA Regulatory Genes in 35 Sporadic Lung Carcinoma Tumors. DOKL BIOCHEM BIOPHYS 2023; 513:S1-S7. [PMID: 38472669 DOI: 10.1134/s1607672924600052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 03/14/2024]
Abstract
Lung cancer is one of the cancer types with the highest mortality worldwide. The most frequently mutated genes known to be clinically important in lung cancers are EGFR, BRAF, and KRAS genes. Therefore, the therapeutic agents developed are directed against variants that cause over-activation of the EGFR-KRAS-BRAF-BRAF-MEK/ERK signalling pathway. However, different responses of patients to Tyrosine Kinase Inhibitors (TKIs) suggest that new prognostic biomarkers should be defined and epigenetic mechanisms may be related to this situation. METHODS In this study, sequence analyses of AGO2, DICER, and DROSHA genes involved in miRNA biogenesis and EGFR, KRAS, and BRAF genes were performed in 35 patients with sporadic lung cancer. RESULTS We found variations in genes involved in miRNA biogenesis that have not been previously reported in the literature. In addition, we found 4 different variants in the EGFR gene that have been described in the literature. In addition, a statistically significant association was found between the presence of mutations in at least one of the genes involved in miRNA biogenesis and metastasis (p:0.02). CONCLUSIONS In conclusion, genomic dysregulation of key miRNA biogenesis genes may be one of the possible reasons for the differential response of patients to therapeutic agents and the development of metastasis in EGFR wild type tumours.
Collapse
Affiliation(s)
- Özkan Bağcı
- Department of Medical Genetics, Selcuk University, School of Medicine, Konya, Turkey.
| | | | - Batuhan Şanlıtürk
- Department of Medical Genetics, Selcuk University, School of Medicine, Konya, Turkey
| |
Collapse
|
2
|
Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I, Drakoulis N. miRNA-Based Technologies in Cancer Therapy. J Pers Med 2023; 13:1586. [PMID: 38003902 PMCID: PMC10672431 DOI: 10.3390/jpm13111586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The discovery of therapeutic miRNAs is one of the most exciting challenges for pharmaceutical companies. Since the first miRNA was discovered in 1993, our knowledge of miRNA biology has grown considerably. Many studies have demonstrated that miRNA expression is dysregulated in many diseases, making them appealing tools for novel therapeutic approaches. This review aims to discuss miRNA biogenesis and function, as well as highlight strategies for delivering miRNA agents, presenting viral, non-viral, and exosomic delivery as therapeutic approaches for different cancer types. We also consider the therapeutic role of microRNA-mediated drug repurposing in cancer therapy.
Collapse
Affiliation(s)
- Maria Pagoni
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| | - Claudia Cava
- Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy;
| | - Diamantis C. Sideris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, 15701 Athens, Greece;
| | - Margaritis Avgeris
- Laboratory of Clinical Biochemistry—Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, “P. & A. Kyriakou” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece;
| | - Ioannis Michalopoulos
- Centre of Systems Biology, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15701 Athens, Greece
| |
Collapse
|
3
|
Dicer-mediated miR-200b expression contributes to cell migratory/invasive abilities and cancer stem cells properties of breast cancer cells. Aging (Albany NY) 2022; 14:6520-6536. [PMID: 35951366 PMCID: PMC9467414 DOI: 10.18632/aging.204205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Distant metastasis is the leading cause of death in patients with breast cancer. Despite considerable treatment advances, the clinical outcomes of patients with metastatic breast cancer remain poor. CSCs can self-renew, enhancing cancer progression and metastasis. Dicer, a microRNA (miRNA) processing–related enzyme, is required for miRNA maturation. Imbalanced Dicer expression may be pivotal in cancer progression. However, whether and how Dicer affects the stemness of metastatic breast cancer cells remains unclear. Here, we hypothesized that Dicer regulates the migration, invasion, and stemness of breast cancer cells. We established highly invasive cell lines (MCF-7/I-3 and MDA-MB-231/I-3) and observed that Dicer expression was conspicuously lower in the highly invasive cells than in the parental cells. The silencing of Dicer significantly enhanced the cell migratory/invasive abilities and CSCs properties of the breast cancer cells. Conversely, the overexpression of Dicer in the highly invasive cells reduced their migration, invasion, and CSCs properties. Our bioinformatics analyses demonstrated that low Dicer levels were correlated with increased breast cancer risk. Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown–induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.
Collapse
|
4
|
Yu L, Fu J, Shen C. Ubiquitin specific peptidase 47 promotes proliferation of lung squamous cell carcinoma. Genes Genomics 2022; 44:721-731. [PMID: 35254655 DOI: 10.1007/s13258-022-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/10/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Ubiquitin specific peptidase 47 (USP47) is a kind of deubiquitinase, which has been reported to play oncogenic roles in several malignancies including colorectal cancer and breast cancer. OBJECTIVE Here we aimed to investigate the clinical significance of USP47 in lung squamous cell carcinoma (LUSC). METHODS We retrospectively enrolled a cohort of LUSC patients who underwent surgical resection in our hospital (n = 280) and conducted immunohistochemistry staining for their tumor tissues targeting USP47. The correlations between USP47 expression and clinicopathological characteristics were evaluated by Chi-square test. Univariate and multivariate analyses were conducted to assess the prognostic predictive role of USP47 in LUSC. Cell lines and mice models were utilized to explore the tumor-related functions of USP47 in vitro and in vivo, respectively. RESULTS Among the 280 cases, there were 127 cases classified as high-USP47 expression and 153 cases with low-USP47 expression. Statistical analyses revealed that higher USP47 expression was independently correlated with larger tumor size, advanced T stage, and unfavorable prognosis. Knockdown of USP47 by shRNA resulted in impaired proliferation of LUSC cell lines and reduced nucleus beta-catenin level. Furthermore, xenograft assays demonstrated that silencing USP47 can inhibit LUSC tumor growth in vivo. CONCLUSION Our research established a novel tumor-promoting effect and prognostic predictive role of USP47 in LUSC, thereby providing evidence for further therapeutic development.
Collapse
Affiliation(s)
- Lin Yu
- Dalian Medical University, Dalian, 116044, China.,Department of Thoracic Surgery, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Jiayu Fu
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Shenyang Medical College, 64 Qishan West Road, Shenyang, 110035, China
| | - Chunjian Shen
- Department of Cardiothoracic Surgery, Second Affiliated Hospital of Shenyang Medical College, 64 Qishan West Road, Shenyang, 110035, China.
| |
Collapse
|
5
|
Szczyrek M, Grenda A, Kuźnar-Kamińska B, Krawczyk P, Sawicki M, Batura-Gabryel H, Mlak R, Szudy-Szczyrek A, Krajka T, Krajka A, Milanowski J. Methylation of DROSHA and DICER as a Biomarker for the Detection of Lung Cancer. Cancers (Basel) 2021; 13:cancers13236139. [PMID: 34885248 PMCID: PMC8657200 DOI: 10.3390/cancers13236139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary To identify possible biomarkers for early detection of lung cancer we assessed the methylation status of genes related to carcinogenesis, DICER and DROSHA, in lung cancer patients and healthy volunteers. The relative level of methylation of DROSHA was significantly lower and DICER significantly higher in cancer patients. The relative level of methylation of DROSHA was significantly higher in patients with early-stage NSCLC (IA-IIIA) and could discriminate them from healthy people with a sensitivity of 71% and specificity of 76% for the first region and with a sensitivity of 60% and specificity of 85% for the second region. Analysis of the first region of the DICER enabled the distinction of NSCLC patients from healthy individuals with a sensitivity of 96% and specificity of 60%. The results indicate that the assessment of DICER and DROSHA methylation status can potentially be used as a biomarker for the early detection of lung cancer. Abstract Background: Lung cancer is the leading cause of cancer-related deaths. Early diagnosis may improve the prognosis. Methods: Using quantitative methylation-specific real-time PCR (qMSP-PCR), we assessed the methylation status of two genes (in two subsequent regions according to locations in their promoter sequences) related to carcinogenesis, DICER and DROSHA, in 101 plasma samples (obtained prior to the treatment) of lung cancer patients and 45 healthy volunteers. Results: The relative level of methylation of DROSHA was significantly lower (p = 0.012 for first and p < 0.00001 for the second region) and DICER significantly higher (p = 0.029 for the first region) in cancer patients. The relative level of methylation of DROSHA was significantly (p = 0.037) higher in patients with early-stage NSCLC (IA-IIIA) and could discriminate them from healthy people with a sensitivity of 71% and specificity of 76% (AUC = 0.696, 95% CI: 0.545–0.847, p = 0.011) for the first region and with a sensitivity of 60% and specificity of 85% (AUC = 0.795, 95% CI: 0.689–0.901, p < 0.0001) for the second region. Methylation analysis of the first region of the DICER enabled the distinction of NSCLC patients from healthy individuals with a sensitivity of 96% and specificity of 60% (AUC = 0.651, 95% CI: 0.517–0.785, p = 0.027). The limitations of the study include its small sample size, preliminary nature, being an observational type of study, and the lack of functional experiments allowing for the explanation of the biologic backgrounds of the observed associations. Conclusion: The obtained results indicate that the assessment of DICER and DROSHA methylation status can potentially be used as a biomarker for the early detection of lung cancer.
Collapse
Affiliation(s)
- Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
- Correspondence:
| | - Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
| | - Barbara Kuźnar-Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznan, 60-569 Poznan, Poland; (B.K.-K.); (H.B.-G.)
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznan, 60-569 Poznan, Poland; (B.K.-K.); (H.B.-G.)
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Aneta Szudy-Szczyrek
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Tomasz Krajka
- Division of Mathematics, Department of Production Computerisation and Robotisation, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Andrzej Krajka
- Institute of Computer Science, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-950 Lublin, Poland; (A.G.); (P.K.); (J.M.)
| |
Collapse
|
6
|
Bjaanæs MM, Nilsen G, Halvorsen AR, Russnes HG, Solberg S, Jørgensen L, Brustugun OT, Lingjærde OC, Helland Å. Whole genome copy number analyses reveal a highly aberrant genome in TP53 mutant lung adenocarcinoma tumors. BMC Cancer 2021; 21:1089. [PMID: 34625038 PMCID: PMC8501630 DOI: 10.1186/s12885-021-08811-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Genetic alterations are common in non-small cell lung cancer (NSCLC), and DNA mutations and translocations are targets for therapy. Copy number aberrations occur frequently in NSCLC tumors and may influence gene expression and further alter signaling pathways. In this study we aimed to characterize the genomic architecture of NSCLC tumors and to identify genomic differences between tumors stratified by histology and mutation status. Furthermore, we sought to integrate DNA copy number data with mRNA expression to find genes with expression putatively regulated by copy number aberrations and the oncogenic pathways associated with these affected genes. METHODS Copy number data were obtained from 190 resected early-stage NSCLC tumors and gene expression data were available from 113 of the adenocarcinomas. Clinical and histopathological data were known, and EGFR-, KRAS- and TP53 mutation status was determined. Allele-specific copy number profiles were calculated using ASCAT, and regional copy number aberration were subsequently obtained and analyzed jointly with the gene expression data. RESULTS The NSCLC tumors tissue displayed overall complex DNA copy number profiles with numerous recurrent aberrations. Despite histological differences, tissue samples from squamous cell carcinomas and adenocarcinomas had remarkably similar copy number patterns. The TP53-mutated lung adenocarcinomas displayed a highly aberrant genome, with significantly altered copy number profiles including gains, losses and focal complex events. The EGFR-mutant lung adenocarcinomas had specific arm-wise aberrations particularly at chromosome7p and 9q. A large number of genes displayed correlation between copy number and expression level, and the PI(3)K-mTOR pathway was highly enriched for such genes. CONCLUSIONS The genomic architecture in NSCLC tumors is complex, and particularly TP53-mutated lung adenocarcinomas displayed highly aberrant copy number profiles. We suggest to always include TP53-mutation status when studying copy number aberrations in NSCLC tumors. Copy number may further impact gene expression and alter cellular signaling pathways.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/pathology
- Alleles
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Chromosomes, Human, Pair 7
- Chromosomes, Human, Pair 9
- Class I Phosphatidylinositol 3-Kinases/genetics
- DNA Copy Number Variations
- Ex-Smokers
- Female
- Gene Dosage
- Gene Expression
- Genes, erbB-1/genetics
- Genes, p53
- Genes, ras/genetics
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Male
- Non-Smokers
- Polymorphism, Single Nucleotide
- Signal Transduction/genetics
- Smokers
- TOR Serine-Threonine Kinases/genetics
Collapse
Affiliation(s)
- Maria Moksnes Bjaanæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, 4950 Nydalen Oslo, Norway
| | - Gro Nilsen
- Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ann Rita Halvorsen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
| | - Hege G. Russnes
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Steinar Solberg
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Lars Jørgensen
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | - Odd Terje Brustugun
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
- Section of Oncology, Vestre Viken Hospital, Drammen, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
- Department of Computer Science, University of Oslo, Oslo, Norway
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway
- Department of Oncology, Oslo University Hospital, 4950 Nydalen Oslo, Norway
| |
Collapse
|
7
|
Mirtronic miR-4646-5p promotes gastric cancer metastasis by regulating ABHD16A and metabolite lysophosphatidylserines. Cell Death Differ 2021; 28:2708-2727. [PMID: 33875796 PMCID: PMC8408170 DOI: 10.1038/s41418-021-00779-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
The aberrant classical miRNAs are considered to play significant roles in tumor progression. However, it remains unclear for nonclassical miRNAs, a set of Drosha-independent miRNAs in the process of various biology. Here, we reveal that a nonclassical miR-4646-5p plays a pivotal role in gastric cancer (GC) metastasis. MiR-4646-5p, one of Drosha-independent mirtronic miRNA, is aberrant up-regulated in Drosha-low expressed GC and Drosha-knockdown gastric cancer cells. Mirtronic miR-4646-5p is a specific transcription splicing product of intron 3 of the host gene Abhd16a with the aid of SRSF2. The enhanced miR-4646-5p can stabilize HIF1A by targeting PHD3 to positive feedback regulate Abhd16a and miR-4646-5p itself expressions. ABHD16A, as an emerging phosphatidylserine-specific lipase, involves in lipid metabolism leading to lysophosphatidylserines (lyso-PSs) accumulation, which stimulates RhoA and downstream LIMK/cofilin cascade activity through GPR34/Gi subunit, thus causes metastasis of gastric cancer. In addition, miR-4646-5p/PHD3/HIF1A signaling can also up-regulate RhoA expression and synergistically promote gastric cancer cell invasion and metastasis. Our study provides new insights of nonclassical mirtronic miRNA on tumor progress and may serve as a new diagnostic biomarker for gastric cancer. MiR-4646-5p and its host gene Abhd16a mediated abnormal lipid metabolism may be a new target for clinical treatment of gastric cancer.
Collapse
|
8
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Measurements Methods for the Development of MicroRNA-Based Tests for Cancer Diagnosis. Int J Mol Sci 2021; 22:ijms22031176. [PMID: 33503982 PMCID: PMC7865473 DOI: 10.3390/ijms22031176] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
Studies investigating microRNAs as potential biomarkers for cancer, immune-related diseases, or cardiac pathogenic diseases, among others, have exponentially increased in the last years. In particular, altered expression of specific miRNAs correlates with the occurrence of several diseases, making these molecules potential molecular tools for non-invasive diagnosis, prognosis, and response to therapy. Nonetheless, microRNAs are not in clinical use yet, due to inconsistencies in the literature regarding the specific miRNAs identified as biomarkers for a specific disease, which in turn can be attributed to several reasons, including lack of assay standardization and reproducibility. Technological limitations in circulating microRNAs measurement have been, to date, the biggest challenge for using these molecules in clinical settings. In this review we will discuss pre-analytical, analytical, and post-analytical challenges to address the potential technical biases and patient-related parameters that can have an influence and should be improved to translate miRNA biomarkers to the clinical stage. Moreover, we will describe the currently available methods for circulating miRNA expression profiling and measurement, underlining their advantages and potential pitfalls.
Collapse
|
10
|
Yu H, Xu L, Liu Z, Guo B, Han Z, Xin H. Circ_MDM2_000139, Circ_ATF2_001418, Circ_CDC25C_002079, and Circ_BIRC6_001271 Are Involved in the Functions of XAV939 in Non-Small Cell Lung Cancer. Can Respir J 2019; 2019:9107806. [PMID: 31885751 PMCID: PMC6900950 DOI: 10.1155/2019/9107806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/29/2019] [Accepted: 10/05/2019] [Indexed: 01/26/2023] Open
Abstract
Background The small molecule inhibitor XAV939 could inhibit the proliferation and promote the apoptosis of non-small cell lung cancer (NSCLC) cells. This study was conducted to identify the key circular RNAs (circRNAs) and microRNAs (miRNAs) in XAV939-treated NSCLC cells. Methods After grouping, the NCL-H1299 cells in the treatment group were treated by 10 μM XAV939 for 12 h. RNA-sequencing was performed, and then the differentially expressed circRNAs (DE-circRNAs) were analyzed by the edgeR package. Using the clusterprofiler package, enrichment analysis for the hosting genes of the DE-circRNAs was performed. Using Cytoscape software, the miRNA-circRNA regulatory network was built for the disease-associated miRNAs and the DE-circRNAs. The DE-circRNAs that could translate into proteins were predicted using circBank database and IRESfinder tool. Finally, the transcription factor (TF)-circRNA regulatory network was built by Cytoscape software. In addition, A549 and HCC-827 cell treatment with XAV939 were used to verify the relative expression levels of key DE-circRNAs. Results There were 106 DE-circRNAs (including 61 upregulated circRNAs and 45 downregulated circRNAs) between treatment and control groups. Enrichment analysis for the hosting genes of the DE-circRNAs showed that ATF2 was enriched in the TNF signaling pathway. Disease association analysis indicated that 8 circRNAs (including circ_MDM2_000139, circ_ATF2_001418, circ_CDC25C_002079, and circ_BIRC6_001271) were correlated with NSCLC. In the miRNA-circRNA regulatory network, let-7 family members⟶circ_MDM2_000139, miR-16-5p/miR-134-5p⟶circ_ATF2_001418, miR-133b⟶circ_BIRC6_001271, and miR-221-3p/miR-222-3p⟶circ_CDC25C_002079 regulatory pairs were involved. A total of 47 DE-circRNAs could translate into proteins. Additionally, circ_MDM2_000139 was targeted by the TF POLR2A. The verification test showed that the relative expression levels of circ_MDM2_000139, circ_CDC25C_002079, circ_ATF2_001418, and circ_DICER1_000834 in A549 and HCC-827 cell treatment with XAV939 were downregulated comparing with the control. Conclusions Let-7 family members and POLR2A targeting circ_MDM2_000139, miR-16-5p/miR-134-5p targeting circ_ATF2_001418, miR-133b targeting circ_BIRC6_001271, and miR-221-3p/miR-222-3p targeting circ_CDC25C_002079 might be related to the mechanism in the treatment of NSCLC by XAV939.
Collapse
Affiliation(s)
- Haixiang Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Lei Xu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Zhengjia Liu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Bo Guo
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Zhifeng Han
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| | - Hua Xin
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
| |
Collapse
|
11
|
Zhou LY, Zhang FW, Tong J, Liu F. MiR-191-5p inhibits lung adenocarcinoma by repressing SATB1 to inhibit Wnt pathway. Mol Genet Genomic Med 2019; 8:e1043. [PMID: 31724324 PMCID: PMC6978255 DOI: 10.1002/mgg3.1043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Background To investigate the function of miR‐191‐5p in lung adenocarcinoma and its possible mechanism. Methods QRT‐PCR was adopted for the detection of the expression levels of miR‐191‐5p and SATB1 (HGNC: 10541). The effects of miR‐191‐5p and SATB1 on cell proliferation and migration were examined through the CCK‐8 and Transwell assays. Subsequently, the binding relationships between miR‐191‐5p and SATB1 were confirmed by dual‐luciferase reporter gene assay. Finally, the potential mechanisms of action of miR‐191‐5p were explored through a serious of in vivo and in vitro experiments. Results Lung adenocarcinoma patients had a notably lower expression level of miR‐191‐5p than controls, patients with metastasis had a lower level than those without metastasis, and the level in patients with lung adenocarcinoma in stage III‐IV was lower than that in patients with lung adenocarcinoma in stage I‐II. Overexpression of miR‐191‐5p repressed the migration and proliferation of lung cancer A549/H1650 cells. According to the reporter gene assay, miR‐191‐5p could bind to SATB1. Besides, SATB1 was significantly overexpressed in cancer tissues of patients with lung adenocarcinoma, and SATB1 overexpression accelerated the migration and proliferation of A549/H1650 cells and reversed inhibition on cell migration and proliferation by miR‐191‐5p. Conclusion Overexpression of miR‐191‐5p is capable of blocking the migration and proliferation of lung cancer cells, and its mechanism may be through targeting SATB1 thus downregulating Wnt signaling.
Collapse
Affiliation(s)
- Lai-Yong Zhou
- Department of Cardiothoracic surgery, The People's Hospital of Bao'an Shenzhen, The Affiliated Bao'an Hospital of Southern Medical University, Shenzhen, China
| | - Fu-Wei Zhang
- Department of Cardiothoracic surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Tong
- Department of Cardiothoracic surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Liu
- Department of Pathology, The People's Hospital of Bao'an Shenzhen, The Affiliated Bao'an Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
12
|
Lee SS, Min H, Ha JY, Kim BH, Choi MS, Kim S. Dysregulation of the miRNA biogenesis components DICER1, DROSHA, DGCR8 and AGO2 in clear cell renal cell carcinoma in both a Korean cohort and the cancer genome atlas kidney clear cell carcinoma cohort. Oncol Lett 2019; 18:4337-4345. [PMID: 31516620 PMCID: PMC6732956 DOI: 10.3892/ol.2019.10759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
Impairment of microRNA (miRNA) biogenesis may be involved in clear cell renal cell carcinoma (ccRCC). The objective of the present study was to investigate the mRNA levels of important miRNA machinery components, DICER1, DROSHA, DiGeroge syndrome critical region gene 8 (DGCR8), and Argonaute 2 (AGO2), and their correlations with clinicopathological characteristics of ccRCC using mRNA expression data from The Cancer Genome Atlas kidney clear cell carcinoma (TCGA KIRC) cohort and a Korean ccRCC cohort. mRNA levels of DICER1, DROSHA, and DGCR8 were significantly decreased in both cohorts. However, AGO2 was significantly downregulated only in the Korean ccRCC cohort. Additionally, positive correlations were observed between the altered mRNA levels of DICER1 and DROSHA as well as DROSHA and DGCR8 in both cohorts. In the TCGA KIRC cohort, alterations in the mRNA levels of DICER1 were significantly correlated with histological grade. Furthermore, the altered mRNA levels of DGCR8 showed significant associations with sex and histologic grades. However, in the Korean ccRCC cohort, no factors were significantly associated with any clinicopathological parameters, including sex, age, T stage, Fuhrman grade/The International Society of Urological Pathology grade, lymphovascular invasion, and peri-renal fat invasion. Taken together, these findings indicate that DICER1, DROSHA, DGCR8 and AGO2 are significantly dysregulated in ccRCC, suggesting that they are important in the pathophysiology of this malignancy.
Collapse
Affiliation(s)
- Sang Su Lee
- Department of Internal Medicine, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Hyeonji Min
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Ji Yong Ha
- Department of Urology, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Byung Hoon Kim
- Department of Urology, Dongsan Medical Center, Keimyung University, Jung-gu, Daegu 41931, Republic of Korea
| | - Mi Sun Choi
- Department of Pathology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Dalseo-gu, Daegu 42601, Republic of Korea
| |
Collapse
|
13
|
Xue J, Jia E, Ren N, Lindsay A, Yu H. Circulating microRNAs as promising diagnostic biomarkers for pancreatic cancer: a systematic review. Onco Targets Ther 2019; 12:6665-6684. [PMID: 31692495 PMCID: PMC6707936 DOI: 10.2147/ott.s207963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common forms of malignant tumors and causes of tumor-related death worldwide. The current prognosis of PC still remains poor due to the lack of effective early detection method. Recently, there is strong support that circulating miRNAs can be used as biomarkers for early detection of various cancers, including PC. The purpose of this review is to provide an overview of previous published studies on circulating miRNAs in plasma/serum for early detection of PC and summarize their diagnostic value. PubMed, Embase and Web of Science were systematically searched for eligible studies on circulating miRNAs for PC detection. Overall, 29 studies published between 2009 and 2018 evaluating 51 individual miRNAs (no P-value exceeding 0.05) and 13 miRNAs panels were included. Generally, the diagnostic performance of circulating miRNAs for PC detection was strong, with both the sensitivity and specificity of 36% individual miRNAs and 40% miRNAs panels exceeding 80%. Moreover, two promising miRNA panels were discovered and verified externally with all AUC values exceeding 0.95. Therefore, circulating miRNAs may hold potential to be used as noninvasive diagnostic biomarkers for PC, but large-scale studies are still needed to validate the promising miRNAs and optimize the miRNA panels. Since, the tremendous heterogeneity of studies in this field hampers translating miRNA markers into clinical practice, miRNA analytical procedures are also needed to be standardized in the future.
Collapse
Affiliation(s)
- Jinru Xue
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Erna Jia
- Department of Gastroenterology, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Na Ren
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Andrew Lindsay
- Major Cancer Biology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Haixin Yu
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Magalhães M, Alvarez-Lorenzo C, Concheiro A, Figueiras A, Santos AC, Veiga F. RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opin Drug Deliv 2018; 15:965-982. [PMID: 30232915 DOI: 10.1080/17425247.2018.1517744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the current advances in the discovery of the lung cancer biomarkers and, consequently, in the diagnosis, this pathology continues to be the primary cause of cancer-related death worldwide. In most cases, the illness is diagnosed in an advanced stage, which limits the current treatment options available and reduces the survival rate. Therefore, RNAi-based therapy arises as a promising option to treat lung cancer. AREAS COVERED This review provides an overview on the exploitation of lung cancer biology to develop RNAi-based therapeutics to be applied in the treatment of lung cancer. Furthermore, the review analyzes the main nanocarriers designed to deliver RNAi molecules and induce antitumoral effects in lung cancer, and provides updated information about current RNAi-based therapeutics for lung cancer in clinical trials. EXPERT OPINION RNAi-based therapy uses nanocarriers to perform a targeted and efficient delivery of therapeutic genes into lung cancer cells, by taking advantage of the known biomarkers in lung cancer. These therapeutic genes are key regulatory molecules of crucial cellular pathways involved in cell proliferation, migration, and apoptosis. Thereby, the characteristics and functionalization of the nanocarrier and the knowledge of lung cancer biology have direct influence in improving the therapeutic effect of this therapy.
Collapse
Affiliation(s)
- Mariana Magalhães
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Carmen Alvarez-Lorenzo
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Angel Concheiro
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Ana Figueiras
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Ana Cláudia Santos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Francisco Veiga
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
15
|
Poursadegh Zonouzi AA, Shekari M, Nejatizadeh A, Shakerizadeh S, Fardmanesh H, Poursadegh Zonouzi A, Rahmati-Yamchi M, Tozihi M. Impaired expression of Drosha in breast cancer. Breast Dis 2018; 37:55-62. [PMID: 28598829 DOI: 10.3233/bd-170274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Impaired miRNAs processing pathway is one interesting scenario for global downregulation of the miRNAome in various types of malignancy. We previously reported that DGCR8 and Dicer genes dysregulated in patients with breast cancer. OBJECTIVE To evaluate the expression pattern of Drosha in patients with breast cancer. METHODS We evaluated the mRNA expression level of Drosha in 70 fresh breast carcinomas and adjacent non-neoplastic tissue using quantitative real-time PCR and assessed the possible correlation between its expression and clinicopathological parameters. RESULTS Our results revealed that mRNA expression level of Drosha was decreased in tumors when compared to adjacent non-neoplastic tissue. However, this difference is not statistically significant (P > 0.05). Downregulation of Drosha is related to older age at diagnosis, higher histological grade, higher tumor size and metastasis. However, there was no significant correlation between Drosha expression level and clinicopathological parameters (P > 0.05). We found that Drosha expression negatively correlated with DGCR8 (P = 0.043), whereas dysregulated expression levels of Drosha and Dicer are positively correlated with to each other (P < 0.0001). CONCLUSION This study provides evidence that the expression of Drosha is impaired in breast cancer. However, the molecular basis of observed expression pattern have remained inexplicable and should be further investigated.
Collapse
Affiliation(s)
| | - Mohammad Shekari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azim Nejatizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Samira Shakerizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hedieh Fardmanesh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | | | - Majid Tozihi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Shan W, Sun C, Zhou B, Guo E, Lu H, Xia M, Li K, Weng D, Lin X, Meng L, Ma D, Chen G. Role of Dicer as a prognostic predictor for survival in cancer patients: a systematic review with a meta-analysis. Oncotarget 2018; 7:72672-72684. [PMID: 27682871 PMCID: PMC5341936 DOI: 10.18632/oncotarget.12183] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 09/12/2016] [Indexed: 01/17/2023] Open
Abstract
Objective The role of Dicer in the prognosis of cancer patients remains controversial. This systematic review is attempted to assess the influence of Dicer as a prognostic predictor for survival in diverse types of cancers. Methods Studies were selected as candidates if they published an independent evaluation of Dicer expression level together with the correlation with prognosis in cancers. Random-effect model was applied in this meta-analysis. Heterogeneity between studies was assessed by Q-statistic with P < 0.10 to be statistically significant. Publication bias was investigated using funnel plot and test with Begg's and Egger's test. P < 0.05 was regarded as statistically significant. Results 24 of 44 articles revealed low Dicer status as a predictor of poor prognosis. The aggregate result of overall survival (OS) indicated that low Dicer expression level resulted in poor clinical outcomes, and subgroup of IHC and RT-PCR method both revealed the same result. Overall analysis of progression-free survival (PFS) showed the same result as OS, and both the two subgroups divided by laboratory method revealed positive results. Subgroup analysis by tumor types showed low dicer levels were associated with poor prognosis in ovarian cancer (HR = 1.93, 95% CI: 1.19-3.15), otorhinolaryngological tumors (HR = 2.39, 95% CI: 1.70-3.36), hematological malignancies (HR = 2.45, 95% CI: 1.69-3.56) and neuroblastoma (HR = 4.03, 95% CI: 1.91-8.50). Conclusion Low Dicer status was associated with poor prognosis in ovarian cancer, otorhinolaryngological tumors and ematological malignancies. More homogeneous studies with high quality are needed to further confirm our conclusion and make Dicer a useful parameter in clinical application.
Collapse
Affiliation(s)
- Wanying Shan
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Chaoyang Sun
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Bo Zhou
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Ensong Guo
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Hao Lu
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Meng Xia
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Kezhen Li
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Danhui Weng
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Xingguang Lin
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Li Meng
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Ding Ma
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| | - Gang Chen
- Cancer Biology Medical Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R.China
| |
Collapse
|
17
|
Joyce BT, Zheng Y, Zhang Z, Liu L, Kocherginsky M, Murphy R, Achenbach CJ, Musa J, Wehbe F, Just A, Shen J, Vokonas P, Schwartz J, Baccarelli AA, Hou L. miRNA-Processing Gene Methylation and Cancer Risk. Cancer Epidemiol Biomarkers Prev 2018; 27:550-557. [PMID: 29475968 DOI: 10.1158/1055-9965.epi-17-0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 02/02/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Dysregulation of miRNA and methylation levels are epigenetic hallmarks of cancer, potentially linked via miRNA-processing genes. Studies have found genetic alterations to miRNA-processing genes in cancer cells and human population studies. Our objective was to prospectively examine changes in DNA methylation of miRNA-processing genes and their associations with cancer risk.Methods: We examined cohort data from the Department of Veterans' Affairs Normative Aging Study. Participants were assessed every 3 to 5 years starting in 1999 through 2013 including questionnaires, medical record review, and blood collection. Blood from 686 consenting participants was analyzed using the Illumina 450K BeadChip array to measure methylation at CpG sites throughout the genome. We selected 19 genes based on a literature review, with 519 corresponding CpG sites. We then used Cox proportional hazards models to examine associations with cancer incidence, and generalized estimating equations to examine associations with cancer prevalence. Associations at false discovery rate < 0.05 were considered statistically significant.Results: Methylation of three CpGs (DROSHA: cg23230564, TNRC6B: cg06751583, and TNRC6B: cg21034183) was prospectively associated with time to cancer development (positively for cg06751583, inversely for cg23230564 and cg21034183), whereas methylation of one CpG site (DROSHA: cg16131300) was positively associated with cancer prevalence.Conclusions: DNA methylation of DROSHA, a key miRNA-processing gene, and TNRC6B may play a role in early carcinogenesis.Impact: Changes in miRNA processing may exert multiple effects on cancer development, including protecting against it via altered global miRNAs, and may be a useful early detection biomarker of cancer. Cancer Epidemiol Biomarkers Prev; 27(5); 550-7. ©2018 AACR.
Collapse
Affiliation(s)
- Brian T Joyce
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Yinan Zheng
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Zhou Zhang
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lei Liu
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Robert Murphy
- Center for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chad J Achenbach
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonah Musa
- Center for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Health Sciences Integrated Program, Center for Healthcare Studies, Institute of Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Jos, Plateau State, Nigeria
| | - Firas Wehbe
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Allan Just
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Pantel Vokonas
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System and the Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Andrea A Baccarelli
- Departments of Epidemiology and Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Chen Y, Yang C. miR‑197‑3p‑induced downregulation of lysine 63 deubiquitinase promotes cell proliferation and inhibits cell apoptosis in lung adenocarcinoma cell lines. Mol Med Rep 2017; 17:3921-3927. [PMID: 29286108 PMCID: PMC5802183 DOI: 10.3892/mmr.2017.8333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common cause of cancer-associated mortality. The dysregulation of microRNA (miR) expression has been reported to induce lung carcinogenesis. In the present study, miR-197-3p upregulation was detected within LUAD tissues compared with in adjacent noncancerous tissues. The suppression of miR-197-3p expression was confirmed to inhibit proliferative ability and induce apoptosis of LUAD cell lines; miR-197-3p overexpression within the HBE cell line exhibited opposing effects. Via in silico modeling, western blot analyses and dual-luciferase assays, it was confirmed that miR-197-3p directly targets the lysine 63 deubiquitinase (CYLD) gene. In the present study, the expression of miR-197-3p was negatively associated with CYLD mRNA expression within LUAD cell lines. In conclusion, the findings of the present study have provided novel insight into the association of miR-197-3p with LUAD proliferation and apoptotic regulation; the miR-197-3p/CYLD axis may serve as a novel potential therapeutic target for the treatment of LUAD.
Collapse
Affiliation(s)
- Yang Chen
- Department of Thoracic Surgery, Chest Hospital of Shenyang, Shenyang, Liaoning 110044, P.R. China
| | - Chunlu Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
19
|
Fan X, Xu S, Yang C. miR-373-3p promotes lung adenocarcinoma cell proliferation via APP. Oncol Lett 2017; 15:1046-1050. [PMID: 29387243 PMCID: PMC5768135 DOI: 10.3892/ol.2017.7372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/17/2017] [Indexed: 01/07/2023] Open
Abstract
Previous studies have indicated that lung adenocarcinoma (LUAD) is one of the common human malignancies, and its incidence keeps rising. With the help of microarray technology, downregulation of miR-373-3p was observed in LUAD tissues compared with normal lung tissues. Notably, the present study demonstrated that the expression of amyloid precursor protein (APP) mRNA in LUAD tissues was overexpressed compared with adjacent tissues. Bioinformatic analysis demonstrated that miR-373-3p may interact with the 3′ untranslated region of APP mRNA, and then western blot and dual-luciferase reporter gene assays were employed to verify the interaction. Finally, CCK-8 assays were used to measure the tumor-suppressing effect of miR-373-3p on A549 and it was demonstrated that overexpression of miR-373-3p may more effectively inhibit the proliferation of A549 compared with APP si-RNA. Overall, the findings suggest that miR-373-3p downregulation partly accounts for APP overexpression and leads to a promotion of cell growth in LUAD. miR-373-3p may therefore act as a valuable target in potential anticancer strategies to treat LUAD.
Collapse
Affiliation(s)
- Xiaoxi Fan
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shun Xu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunlu Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
20
|
Moretti F, D’Antona P, Finardi E, Barbetta M, Dominioni L, Poli A, Gini E, Noonan DM, Imperatori A, Rotolo N, Cattoni M, Campomenosi P. Systematic review and critique of circulating miRNAs as biomarkers of stage I-II non-small cell lung cancer. Oncotarget 2017; 8:94980-94996. [PMID: 29212284 PMCID: PMC5706930 DOI: 10.18632/oncotarget.21739] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
Selected circulating microRNAs (miRNAs) have been suggested for non-invasive screening of non-small cell lung cancer (NSCLC), however the numerous proposed miRNA signatures are inconsistent. Aiming to identify miRNAs suitable specifically for stage I-II NSCLC screening in serum/plasma samples, we searched the databases "Pubmed", "Medline", "Scopus", "Embase" and "WOS" and systematically reviewed the publications reporting quantitative data on the efficacy [sensitivity, specificity and/or area under the curve (AUC)] of circulating miRNAs as biomarkers of NSCLC stage I and/or II. The 20 studies fulfilling the search criteria included 1110 NSCLC patients and 1009 controls, and were of medium quality according to Quality Assessment of Diagnostic Accuracy Studies checklist. In these studies, the patient cohorts as well as the control groups were heterogeneous for demographics and clinicopathological characteristics; moreover, numerous pre-analytical and analytical variables likely influenced miRNA determinations, and potential bias of hemolysis was often underestimated. We identified four circulating miRNAs scarcely influenced by hemolysis, each featuring high sensitivity (> 80%) and AUC (> 0.80) as biomarkers of stage I-II NSCLC: miR-223, miR-20a, miR-448 and miR-145; four other miRNAs showed high specificity (> 90%): miR-628-3p, miR-29c, miR-210 and miR-1244. In a model of two-step screening for stage I-II NSCLC using first the above panel of serum miRNAs with high sensitivity and high AUC, and subsequently the panel with high specificity, the estimated overall sensitivity is 91.6% and overall specificity is 93.4%. These and other circulating miRNAs suggested for stage I-II NSCLC screening require validation in multiple independent studies before they can be proposed for clinical application.
Collapse
Affiliation(s)
- Francesca Moretti
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Paola D’Antona
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Emanuele Finardi
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Marco Barbetta
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Lorenzo Dominioni
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Albino Poli
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Elisabetta Gini
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
| | - Douglas M. Noonan
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- Scientific and Technological Pole, IRCCS MultiMedica, Milan, Italy
| | - Andrea Imperatori
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Nicola Rotolo
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Maria Cattoni
- Department of Medicine and Surgery, DMS, Center for Thoracic Surgery, University of Insubria, Varese, Italy
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Varese, Italy
- The Protein Factory, Centro Interuniversitario di Ricerca in Biotecnologie Proteiche, Politecnico di Milano, ICRM-CNR Milano and University of Insubria, Varese, Italy
| |
Collapse
|
21
|
Liang Y, Wang H, Sun Y, Chen S, Wang H, Huang R, Zhao X, Fu W, Yang C. miR-198-induced upregulation of Livin may be associated with the prognosis and contribute to the oncogenesis of lung adenocarcinoma. Oncol Rep 2017; 38:2096-2104. [PMID: 28765921 PMCID: PMC5652946 DOI: 10.3892/or.2017.5866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Livin, a member of the inhibitor of apoptosis protein (IAP) family, is expressed at a high level in lung adenocarcinoma and influences the progression of cancer, and its response to chemotherapy and radiotherapy. Aberrant microRNA (miRNA) expression has also been associated with cancer initiation and development. However, the clinical significance of Livin and its relationship with miRNAs in lung adenocarcinoma are still unclear. In the present study, the expression level of Livin in 90 pairs of lung adenocarcinoma and their adjacent tissues were detected by immunohistochemistry staining. Spearman correlation and Kaplan-Meier, univariate and multivariate analyses were applied to evaluate the correlation between the expression of Livin and clinical characteristics. With the integration of bioinformatics analysis and dual-luciferase reporter gene assays, we identified the miRNA that can target Livin mRNA. The functional effects of miRNA-mediated Livin knockdown were assessed by Cell Counting Kit-8 (CCK-8) and apoptosis assays, and cell cycle analysis. The present study revealed that Livin was upregulated in lung adenocarcinoma tissues and may be associated with the poor prognosis in lung adenocarcinoma patients. The overexpression of Livin is partly caused by the downregulation of miR-198. Further exploration revealed that miRNA-198-mediated silencing of Livin significantly inhibited cell growth and enhanced apoptosis of A549 cells, accompanied by marked upregulation of caspase-3. Finally, we observed that the miR-198 overexpression and Livin neutralization had similar effects on improving cisplatin chemosensitivity in A549 cells. Overall, these findings suggest that Livin has the potential to become a biomarker for predicting the prognosis of lung adenocarcinoma and may provide a promising strategy for assisting chemotherapy of lung adenocarcinoma through the miR-198/Livin/caspase-3 regulatory network.
Collapse
Affiliation(s)
- Yicheng Liang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Hetan Wang
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuanyuan Sun
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sheng Chen
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haoyou Wang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Rong Huang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xinyi Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Weineng Fu
- Department of Medical Genetics, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Chunlu Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Celen E, Ertosun MG, Kocak H, Dinckan A, Yoldas B. Expression Profile of MicroRNA Biogenesis Components in Renal Transplant Patients. Transplant Proc 2017; 49:472-476. [PMID: 28340815 DOI: 10.1016/j.transproceed.2017.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) and the miRNA biogenesis components are potential biomarkers of some prevalent diseases, such as cancer and diabetes. In light of this information, we aimed to investigate the expression profiles of miRNA biogenesis components in renal transplant patients before and after transplantation and how these profiles are related to immunosuppressive treatment and clinical outcomes of these patients. METHODS In this study, gene and protein expression profiles of Dicer, Drosha, Pasha (DGCR8), Exportin5 (XPO5), and Argonaute2 (AGO2) in peripheral blood mononuclear cells (PBMCs) of renal transplant patients were evaluated by means of real-time quantitative polymerase chain reaction and Western blot methods before and 3 months after transplantation. Patients who had transplant procedures for the first time were included in the study. RESULTS Gene expressions were significantly reduced after transplantation. The reduction rate of expressions in 1 patient undergoing chronic rejection was higher. In addition, in patients under everolimus treatment, gene expression of Dicer did not change and gene expression of AGO2 increased. Dicer, Drosha, DGCR8, and AGO2 protein expressions were reduced in all patients, but no change was observed in XPO5 protein expression in nonrejecting patients. Interestingly, in the patient undergoing chronic rejection, protein expression profiles other than Dicer were distinctive from nonrejecting patients. However, XPO5 protein expression was higher in that patient. CONCLUSIONS Our study shows the importance of the global effect of immunosuppressive treatment on the miRNA biogenesis pathway. miRNA biogenesis components are potential biomarkers indicative of graft outcome and pharmacologic target molecules.
Collapse
Affiliation(s)
- E Celen
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - M G Ertosun
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - H Kocak
- Department of Internal Medicine, Division of Nephrology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - A Dinckan
- Department of General Surgery, Faculty of Medicine, İstanbul Yeni Yüzyıl University, İstanbul, Turkey
| | - B Yoldas
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
23
|
Nuclear Drosha enhances cell invasion via an EGFR-ERK1/2-MMP7 signaling pathway induced by dysregulated miRNA-622/197 and their targets LAMC2 and CD82 in gastric cancer. Cell Death Dis 2017; 8:e2642. [PMID: 28252644 PMCID: PMC5386557 DOI: 10.1038/cddis.2017.5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
Abstract
Drosha is an RNA III-like enzyme that has an aberrant expression in some tumors. Our previous studies showed the aberrant Drosha in gastric tumors. However, the roles of nuclear Drosha, the main regulator of microRNA (miRNA) biogenesis, in gastric cancer (GC) progression remain poorly understood. In this study, we demonstrated that nuclear Drosha is significantly associated with cell invasion of GC and that Drosha silence impedes the tumor invasion. Knockdown of Drosha led to a set of dysregulated miRNAs in GC cells. Multiple targets of these miRNAs were the members in cell migration, invasion and metastasis-associated signaling (e.g. ECM-receptor interaction, focal adhesion, p53 signaling and MAPK signaling pathway) revealed by bioinformatics analysis. LAMC2 (a key element of ECM-receptor signaling) and CD82 (a suppressor of p53 signaling) are the targets of miR-622 and miR-197, respectively. High levels of LAMC2 and low levels of CD82 were significantly related to the worse outcome for GC patients. Furthermore, overexpression of LAMC2 and knockdown of CD82 markedly promoted GC cell invasion and activated EGFR/ERK1/2-MMP7 signaling via upregulation of the expression of phosphorylated (p)-EGFR, p-ERK1/2 and MMP7. Our findings suggest that nuclear Drosha potentially has a role in the development of GC.
Collapse
|
24
|
Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 2016; 172:34-49. [PMID: 27916656 DOI: 10.1016/j.pharmthera.2016.11.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer is a major health problem that affects one in eight women worldwide. As such, detecting breast cancer at an early stage anticipates better disease outcome and prolonged patient survival. Extensive research has shown that microRNA (miRNA) are dysregulated at all stages of breast cancer. miRNA are a class of small noncoding RNA molecules that can modulate gene expression and are easily accessible and quantifiable. This review highlights miRNA as diagnostic, prognostic and therapy predictive biomarkers for early breast cancer with an emphasis on the latter. It also examines the challenges that lie ahead in their use as biomarkers. Noteworthy, this review addresses miRNAs reported in patients with early breast cancer prior to chemotherapy, radiotherapy, surgical procedures or distant metastasis (unless indicated otherwise). In this context, miRNA that are mentioned in this review were significantly modulated using more than one statistical test and/or validated by at least two studies. A standardized protocol for miRNA assessment is proposed starting from sample collection to data analysis that ensures comparative analysis of data and reproducibility of results.
Collapse
Affiliation(s)
- Farah J Nassar
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
25
|
High copy number variation of cancer-related microRNA genes and frequent amplification of DICER1 and DROSHA in lung cancer. Oncotarget 2016; 6:23399-416. [PMID: 26156018 PMCID: PMC4695126 DOI: 10.18632/oncotarget.4351] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 11/27/2022] Open
Abstract
A growing body of evidence indicates that miRNAs may be a class of genetic elements that can either drive or suppress oncogenesis. In this study we analyzed the somatic copy number variation of 14 miRNA genes frequently found to be either over- or underexpressed in lung cancer, as well as two miRNA biogenesis genes, DICER1 and DROSHA, in non-small-cell lung cancer (NSCLC). Our analysis showed that most analyzed miRNA genes undergo substantial copy number alteration in lung cancer. The most frequently amplified miRNA genes include the following: miR-30d, miR-21, miR-17 and miR-155. We also showed that both DICER1 and DROSHA are frequently amplified in NSCLC. The copy number variation of DICER1 and DROSHA correlates well with their expression and survival of NSCLC and other cancer patients. The increased expression of DROSHA and DICER1 decreases and increases the survival, respectively. In conclusion, our results show that copy number variation may be an important mechanism of upregulation/downregulation of miRNAs in cancer and suggest an oncogenic role for DROSHA.
Collapse
|
26
|
Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov 2016; 6:235-46. [PMID: 26865249 DOI: 10.1158/2159-8290.cd-15-0893] [Citation(s) in RCA: 515] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/19/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED miRNAs are a key component of the noncoding RNA family. The underlying mechanisms involved in the interplay between the tumor microenvironment and cancer cells involve highly dynamic factors such as hypoxia and cell types such as cancer-associated fibroblasts and macrophages. Although miRNA levels are known to be altered in cancer cells, recent evidence suggests a critical role for the tumor microenvironment in regulating miRNA biogenesis, methylation, and transcriptional changes. Here, we discuss the complex protumorigenic symbiotic role between tumor cells, the tumor microenvironment, and miRNA deregulation. SIGNIFICANCE miRNAs play a central role in cell signaling and homeostasis. In this article, we provide insights into the regulatory mechanisms involved in the deregulation of miRNAs in cancer cells and the tumor microenvironment and discuss therapeutic intervention strategies to overcome this deregulation.
Collapse
Affiliation(s)
- Rajesha Rupaimoole
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
27
|
Abstract
MicroRNAs (miRNAs) are integral to the gene regulatory network. A single miRNA is capable of controlling the expression of hundreds of protein coding genes and modulate a wide spectrum of biological functions, such as proliferation, differentiation, stress responses, DNA repair, cell adhesion, motility, inflammation, cell survival, senescence and apoptosis, all of which are fundamental to tumorigenesis. Overexpression, genetic amplification, and gain-of-function mutation of oncogenic miRNAs ("onco-miRs") as well as genetic deletion and loss-of-function mutation of tumor suppressor miRNAs ("suppressor-miRs") are linked to human cancer. In addition to the dysregulation of a specific onco-miR or suppressor-miRs, changes in global miRNA levels resulting from a defective miRNA biogenesis pathway play a role in tumorigenesis. The function of individual onco-miRs and suppressor-miRs and their target genes in cancer has been described in many different articles elsewhere. In this review, we primarily focus on the recent development regarding the dysregulation of the miRNA biogenesis pathway and its contribution to cancer.
Collapse
Affiliation(s)
- Akiko Hata
- a Cardiovascular Research Institute, University of California , San Francisco , CA , USA
| | - Risa Kashima
- a Cardiovascular Research Institute, University of California , San Francisco , CA , USA
| |
Collapse
|
28
|
Combined clinical and genomic signatures for the prognosis of early stage non-small cell lung cancer based on gene copy number alterations. BMC Genomics 2015; 16:752. [PMID: 26444668 PMCID: PMC4595201 DOI: 10.1186/s12864-015-1935-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/21/2015] [Indexed: 11/16/2022] Open
Abstract
Background The development of a more refined prognostic methodology for early non-small cell lung cancer (NSCLC) is an unmet clinical need. An accurate prognostic tool might help to select patients at early stages for adjuvant therapies. Results A new integrated bioinformatics searching strategy, that combines gene copy number alterations and expression, together with clinical parameters was applied to derive two prognostic genomic signatures. The proposed methodology combines data from patients with and without clinical data with a priori information on the ability of a gene to be a prognostic marker. Two initial candidate sets of 513 and 150 genes for lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC), respectively, were generated by identifying genes which have both: a) significant correlation between copy number and gene expression, and b) significant prognostic value at the gene expression level in external databases. From these candidates, two panels of 7 (ADC) and 5 (SCC) genes were further identified via semi-supervised learning. These panels, together with clinical data (stage, age and sex), were used to construct the ADC and SCC hazard scores combining clinical and genomic data. The signatures were validated in two independent datasets (n = 73 for ADC, n = 97 for SCC), confirming that the prognostic value of both clinical-genomic models is robust, statistically significant (P = 0.008 for ADC and P = 0.019 for SCC) and outperforms both the clinical models (P = 0.060 for ADC and P = 0.121 for SCC) and the genomic models applied separately (P = 0.350 for ADC and P = 0.269 for SCC). Conclusion The present work provides a methodology to generate a robust signature using copy number data that can be potentially used to any cancer. Using it, we found new prognostic scores based on tumor DNA that, jointly with clinical information, are able to predict overall survival (OS) in patients with early-stage ADC and SCC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1935-0) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Kang S, Kim B, Kang HS, Jeong G, Bae H, Lee H, Lee S, Kim SJ. SCTR regulates cell cycle-related genes toward anti-proliferation in normal breast cells while having pro-proliferation activity in breast cancer cells. Int J Oncol 2015; 47:1923-31. [PMID: 26397240 DOI: 10.3892/ijo.2015.3164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/26/2015] [Indexed: 11/05/2022] Open
Abstract
Secretin receptor (SCTR), the G-protein coupled receptor (GPCR) for secretin, has been observed to be upregulated in a few tumor types while downregulated in others, promoting or suppressing the proliferation of tumor cells, respectively. However, little is known about the molecular regulatory mechanism of dysregulation in cancer. In the present study, an analysis of the biological pathways affected by methylation in breast cancer using the methylome databases revealed that GPCRs played a major part in the affected pathway. SCTR, one of the dysregulated GPCRs, showed hypermethylation (p<0.01) and downregulation (p<0.05) in breast cancer tissues. Pathway analysis after the downregulation of SCTR by siRNA in MCF-10A cells identified the G2/M stage checkpoint as the top-scored pathway. Cell cycle-related genes were all upregulated or downregulated suppressing cell proliferation. However, the overexpression of SCTR in MCF-7 cells led to a 35% increase of the cell proliferation index and 2.1-fold increase of cellular migration. Our findings indicate that SCTR suppresses the proliferation of normal breast cells, while the gene stimulates the proliferation and migration of cancer cells being downregulated by promoter methylation.
Collapse
Affiliation(s)
- Seongeun Kang
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Byungtak Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Han-Sung Kang
- Research Institute and Hospital, National Cancer Center, Goyang, Republic of Korea
| | - Gookjoo Jeong
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hansol Bae
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyunkyung Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Seungyeon Lee
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
30
|
MicroRNA Processing and Human Cancer. J Clin Med 2015; 4:1651-67. [PMID: 26308063 PMCID: PMC4555082 DOI: 10.3390/jcm4081651] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs of 20 to 25 nucleotides that regulate gene expression post-transcriptionally mainly by binding to a specific sequence of the 3′ end of the untranslated region (3′UTR) of target genes. Since the first report on the clinical relevance of miRNAs in cancer, many miRNAs have been demonstrated to act as oncogenes, whereas others function as tumor suppressors. Furthermore, global miRNA dysregulation, due to alterations in miRNA processing factors, has been observed in a large variety of human cancer types. As previous studies have shown, the sequential miRNA processing can be divided into three steps: processing by RNAse in the nucleus; transportation by Exportin-5 (XPO5) from the nucleus; and processing by the RNA-induced silencing complex (RISC) in the cytoplasm. Alteration in miRNA processing genes, by genomic mutations, aberrant expression or other means, could significantly affect cancer initiation, progression and metastasis. In this review, we focus on the biogenesis of miRNAs with emphasis on the potential of miRNA processing factors in human cancers.
Collapse
|
31
|
Romero-Cordoba SL, Salido-Guadarrama I, Rodriguez-Dorantes M, Hidalgo-Miranda A. miRNA biogenesis: biological impact in the development of cancer. Cancer Biol Ther 2015; 15:1444-55. [PMID: 25482951 PMCID: PMC4622859 DOI: 10.4161/15384047.2014.955442] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are non coding RNAs with different biological functions and pathological implications. Given their role as post-transcriptional gene expression regulators, they are involved in several important physiological processes like development, cell differentiation and cell signaling. miRNAs act as modulators of gene expression programs in different diseases, particularly in cancer, where they act through the repression of genes which are critical for carcinogenesis. The expression level of mature miRNAs is the result of a fine mechanism of biogenesis, carried out by different enzymatic complexes that exert their function at transcriptional and post-transcriptional levels. In this review, we will focus our discussion on the alterations in the miRNA biogenesis machinery, and its impact on the establishment and development of cancer programs.
Collapse
Key Words
- Ago2, Argonaute 2 protein
- Ars2, Arsenic Resistance protein 2
- DGCR8, DiGeorge syndrome Critical Region 8 protein
- EMT, epithelial–mesenchymal transition
- KSRP, KH-type splicing regulatory protein
- MK2, MAPK-activated protein kinase 2
- PABP, poly(A)-binding protein
- PACT, kinase R–activating protein
- PRC2, Polycomb repressor complex
- RISC, RNA-induced silencing complex
- TRBP, TAR RNA binding protein
- TUT4, terminal uridine transferase-4
- XPO5, exportin 5
- cancer
- cellular signaling
- circRNA, circular RNA
- hnRNPs, heterogeneous nuclear ribonucleoproteins
- miRNA biogenesis
- miRNAs, microRNAs
Collapse
|
32
|
Prodromaki E, Korpetinou A, Giannopoulou E, Vlotinou E, Chatziathanasiadou Μ, Papachristou NI, Scopa CD, Papadaki H, Kalofonos HP, Papachristou DJ. Expression of the microRNA regulators Drosha, Dicer and Ago2 in non-small cell lung carcinomas. Cell Oncol (Dordr) 2015; 38:307-17. [DOI: 10.1007/s13402-015-0231-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2015] [Indexed: 11/30/2022] Open
|
33
|
Wu S, Pan Y, Cao S, Xu J, Liang Y, Wang Y, Chen L, Wei Y, Sun C, Zhao W, Hu Z, Ma H, Shen H, Wu J. Genetic variations in DROSHA and DICER and survival of advanced non-small cell lung cancer: a two-stage study in Chinese population. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. Amplification and overexpression of individual 'oncomiRs' or genetic loss of tumour suppressor miRNAs are associated with human cancer and are sufficient to drive tumorigenesis in mouse models. Furthermore, global miRNA depletion caused by genetic and epigenetic alterations in components of the miRNA biogenesis machinery is oncogenic. This, together with the recent identification of novel miRNA regulatory factors and pathways, highlights the importance of miRNA dysregulation in cancer.
Collapse
Affiliation(s)
- Shuibin Lin
- 1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Richard I Gregory
- 1] Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA. [2] Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA. [3] Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA. [4] Harvard Stem Cell Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Chinnappan M, Singh AK, Kakumani PK, Kumar G, Rooge SB, Kumari A, Varshney A, Rastogi A, Singh AK, Sarin SK, Malhotra P, Mukherjee SK, Bhatnagar RK. Key elements of the RNAi pathway are regulated by hepatitis B virus replication and HBx acts as a viral suppressor of RNA silencing. Biochem J 2014; 462:347-58. [PMID: 24902849 DOI: 10.1042/bj20140316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The host-mediated RNAi pathways restrict replication of viruses in plant, invertebrate and vertebrate systems. However, comparatively little is known about the interplay between RNAi and various viral infections in mammalian hosts. We show in the present study that the siRNA-mediated silencing of Drosha, Dicer and Ago2 [argonaute RISC (RNA-induced silencing complex) catalytic component 2] transcripts in Huh7 cells resulted in elevated levels of HBV (hepatitis B virus)-specific RNAs and, conversely, we observed a decrease in mRNA and protein levels of same RNAi components in HepG2 cells infected with HBV. Similar reductions were also detectable in CHB (chronic hepatitis B) patients. Analysis of CHB liver biopsy samples, with high serum HBV DNA load (>log108 IU/ml), revealed a reduced mRNA and protein levels of Drosha, Dicer and Ago2. The low expression levels of key RNAi pathway components in CHB patient samples as well as hepatic cells established a link between HBV replication and RNAi components. The HBV proteins were also examined for RSS (RNA-silencing suppressor) properties. Using GFP-based reversion of silencing assays, in the present study we found that HBx is an RSS protein. Through a series of deletions and substitution mutants, we found that the full-length HBx protein is required for optimum RSS activity. The in vitro dicing assays revealed that the HBx protein inhibited the human Dicer-mediated processing of dsRNAs into siRNAs. Together, our results suggest that the HBx protein might function as RSS to manipulate host RNAi defence, in particular by abrogating the function of Dicer. The present study may have implications in the development of newer strategies to combat HBV infection.
Collapse
Affiliation(s)
- Mahendran Chinnappan
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Avishek Kumar Singh
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Pavan Kumar Kakumani
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | - Gautam Kumar
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | | | - Anupama Kumari
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Aditi Varshney
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Archana Rastogi
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Ashok Kumar Singh
- ‡Department of Zoology, University of Delhi, New Delhi, DL 110007, India
| | - Shiv Kumar Sarin
- †Institute of Liver and Biliary Sciences (ILBS), D-1, Vasant Kunj, New Delhi, India
| | - Pawan Malhotra
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| | | | - Raj Kamal Bhatnagar
- *International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067 New Delhi, India
| |
Collapse
|
36
|
Kim B, Lee JH, Park JW, Kwon TK, Baek SK, Hwang I, Kim S. An essential microRNA maturing microprocessor complex component DGCR8 is up-regulated in colorectal carcinomas. Clin Exp Med 2014; 14:331-336. [PMID: 23775303 PMCID: PMC4113675 DOI: 10.1007/s10238-013-0243-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/30/2013] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) regulate gene expression through degradation and/or translational repression of target mRNAs. Dysregulations in the miRNA machinery may be involved in carcinogenesis of colorectal cancer (CRC). The purpose of the current study was to evaluate the DiGeorge syndrome critical region gene 8 (DGCR8) and argonaute 2 (AGO2) mRNA expression in CRC and to evaluate the value of clinical parameters on their expression. We investigated the mRNA expressions of DGCR8 and AGO2 in 60 CRC tissues and adjacent histologically non-neoplastic tissues by using quantitative real-time PCR. Our study revealed that the mRNA expression level of DGCR8 is up-regulated in CRC. However, AGO2 mRNA expression was not significantly altered in CRC tissues. Neither DGCR8 nor AGO2 mRNA expression level was not associated with any clinical parameters, including age, tumor stage, CEA titer, and BMI in CRC cases. However, the mRNA expression levels of DGCR8 and AGO2 were positively correlated to each other. This study demonstrated for the first time that the DGCR8 mRNA expression level was up-regulated in CRC, suggesting its important role in pathobiology of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Bora Kim
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| | - Jae-ho Lee
- Department of Anatomy, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| | - Seong Kyu Baek
- Department of Surgery, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| | - Ilseon Hwang
- Department of Pathology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, 1095 Dalgubeoldaero, Dalseo-Gu, Daegu, 704-701 South Korea
| |
Collapse
|
37
|
Viktorsson K, Lewensohn R, Zhivotovsky B. Systems biology approaches to develop innovative strategies for lung cancer therapy. Cell Death Dis 2014; 5:e1260. [PMID: 24874732 PMCID: PMC4047893 DOI: 10.1038/cddis.2014.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023]
Abstract
Lung cancer (LC) is a number one killer of cancer-related death among men and women worldwide. Major advances have been made in the diagnosis, staging and use of surgery for LC, but systemic chemotherapy and radiotherapy alone or in combination with some targeted agents remains the core treatment of advanced LC. Unfortunately, in spite of improved diagnosis, surgical methods and new treatments, mortality is still extremely high among LC patients. To understand the precise functioning of signaling pathways associated with resistance to current treatments in LC, as well as to identify novel treatment regimens, a holistic approach to analyze signaling networks should be applied. Here, we describe systems biology-based approaches to generate biomarkers and novel therapeutic targets in LC, as well as how this may contribute to personalized treatment for this malignancy.
Collapse
Affiliation(s)
- K Viktorsson
- Department of Oncology–Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - R Lewensohn
- Department of Oncology–Pathology, Karolinska Biomics Center, Karolinska Institutet, Stockholm SE-171 76, Sweden
| | - B Zhivotovsky
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 117192, Russia
| |
Collapse
|
38
|
Yang J, Zhao H, Xin Y, Fan L. MicroRNA-198 inhibits proliferation and induces apoptosis of lung cancer cells via targeting FGFR1. J Cell Biochem 2014; 115:987-95. [PMID: 24357456 DOI: 10.1002/jcb.24742] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/06/2013] [Indexed: 12/20/2022]
Abstract
Lung cancer is the most common cause of death from cancer worldwide and recent studies have revealed that microRNAs play critical roles to regulate lung carcinogenesis. Here we present evidence to show the role of miR-198 in lung cancer development. Our results showed that ectopic expression of miR-198 inhibits the viability and induces the apoptosis of human non-small cell lung cancer cells A549 and NCI-H460, while miR-198 inhibition resulted in opposite changes. In nude mice miR-198 inhibits A549 growth of tumor graft. We further demonstrated that miR-198 directly targets fibroblast growth factor receptor 1 (FGFR1) in lung cancer cells. Restoring FGFR1 expression blocked the inhibitory function of miR-198, while FGFR1 inhibition achieved the similar phenotypes of miR-198 overexpression. Hence, our data delineates the molecular pathway by which miR-198 inhibits lung cancer cellular proliferation and induces apoptosis, and may have important implication for the treatment of lung carcinogenesis.
Collapse
Affiliation(s)
- Jun Yang
- Thoracic Department, Shanghai Chest Hospital Affiliated to Shanghai JiaoTong University, Shanghai, 200030, China
| | | | | | | |
Collapse
|
39
|
Histone deacetylases inhibitor trichostatin A increases the expression of Dleu2/miR-15a/16-1 via HDAC3 in non-small cell lung cancer. Mol Cell Biochem 2013; 383:137-48. [DOI: 10.1007/s11010-013-1762-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022]
|