1
|
Lyu Z, Wang H, Dai F, Lin Y, Wen H, Liu X, Feng X, Xu Z, Huang L. Increased ZNF83 is a potential prognostic biomarker and regulates oxidative stress-induced ferroptosis in clear cell renal cell carcinoma. J Mol Med (Berl) 2025:10.1007/s00109-025-02543-y. [PMID: 40220129 DOI: 10.1007/s00109-025-02543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
While zinc finger proteins (ZFPs) are known to be crucial in various cellular activities such as gene expression regulation and energy metabolism, their specific roles in tumor progression are not well-documented. This study focuses on Zinc Finger Protein 83 (ZNF83) to explore its impact on clear cell renal cell carcinoma (ccRCC) and assess its viability as a prognostic biomarker. Public datasets were utilized to analyze ZNF83's expression and functions in ccRCC systematically. Further, in vitro and in vivo experiments were conducted to delve deeper into ZNF83's functional role. Techniques like electron microscopy for mitochondrial morphology and ROS level quantification were used to assess ferroptosis. RNA sequencing and metabolomic mass spectrometry were employed to understand ZNF83's role in oxidative stress modulation and ferroptosis resistance. Our findings demonstrated that ZNF83 overexpression significantly enhanced tumor cell survival and proliferation, while ZNF83 knockout suppressed these processes. Under oxidative stress or upon treatment with ferroptosis inducers, ZNF83 expression was markedly upregulated, and the protein predominantly localized to the cell nucleus. Notably, ZNF83 overexpression conferred resistance to ferroptosis, promoting tumor cell survival under ferroptosis-inducing conditions. Conversely, ZNF83 knockout sensitized cells to ferroptosis, increasing tumor cell death. RNA-seq and metabolomic analyses revealed that ZNF83 is intricately involved in the regulation of NRF2, a master regulator of the antioxidant response, and associated signaling pathways. ZNF83 represents a key ferroptosis regulator in ccRCC, serving as both a promising prognostic biomarker and therapeutic target. Targeting ZNF83 may improve treatment strategies for ccRCC patients. KEY MESSAGES: ZNF83 as a crucial regulator of tumor cell survival and proliferation in renal cancer, a novel discovery in the context of renal cancer progression. ZNF83 overexpression confers resistance to ferroptosis, enhancing tumor cell survival under oxidative stress or ferroptosis-inducing conditions. Utilizing both RNA sequencing and metabolomic mass spectrometry, we provide comprehensive insights into the molecular pathways, particularly NRF2-related, regulated by ZNF83 in ccRCC. ZNF83's potential as a novel prognostic biomarker for ccRCC is proposed, offering a new avenue for personalized treatment strategies and improving treatment outcomes for patients.
Collapse
Affiliation(s)
- Zhaojie Lyu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China.
| | - Huming Wang
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Fang Dai
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Yu Lin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Hantao Wen
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xudong Liu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaotong Feng
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
- Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Zihan Xu
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong, China
| | - Lei Huang
- National Clinical Research Center for Digestive Diseases, Shanghai Institute of Pancreatic Diseases, Department of Gastroenterology, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- National Key Laboratory of Immunity and Inflammation, Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University/Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Zheng D, Ning J, Deng H, Ruan Y, Cheng F. TRIM26 inhibits clear cell renal cell carcinoma progression through destabilizing ETK and thus inactivation of AKT/mTOR signaling. J Transl Med 2024; 22:481. [PMID: 38773612 PMCID: PMC11110379 DOI: 10.1186/s12967-024-05273-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Tripartite motif-containing 26 (TRIM26), a member of the TRIM protein family, exerts dual function in several types of cancer. Nevertheless, the precise role of TRIM26 in clear cell renal cell carcinoma (ccRCC) has not been investigated. METHODS The expression of TRIM26 in ccRCC tissues and cell lines were examined through the use of public resources and experimental validation. The impacts of TRIM26 on cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) process were determined via CCK-8, colony formation, EdU incorporation, wound healing, Transwell invasion, Western blot, and Immunofluorescence assays. RNA-seq followed by bioinformatic analyses were used to identify the downstream pathway of TRIM26. The interaction between TRIM26 and ETK was assessed by co-immunoprecipitation, qRT-PCR, Western blot, cycloheximide (CHX) chase, and in vivo ubiquitination assays. RESULTS We have shown that TRIM26 exhibits a downregulation in both ccRCC tissues and cell lines. Furthermore, this decreased expression of TRIM26 is closely linked to unfavorable overall survival and diseases-free survival outcomes among ccRCC patients. Gain- and loss-of-function experiments demonstrated that increasing the expression of TRIM26 suppressed the proliferation, migration, invasion, and EMT process of ccRCC cells. Conversely, reducing the expression of TRIM26 had the opposite effects. RNA sequencing, coupled with bioinformatic analysis, revealed a significant enrichment of the mTOR signaling pathway in the control group compared to the group with TRIM26 overexpression. This finding was then confirmed by a western blot assay. Subsequent examination revealed that TRMI26 had a direct interaction with ETK, a non-receptor tyrosine kinase. This interaction facilitated the ubiquitination and degradation of ETK, resulting in the deactivation of the AKT/mTOR signaling pathway in ccRCC. ETK overexpression counteracted the inhibitory effects of TRIM26 overexpression on cell proliferation, migration, and invasion. CONCLUSION Our results have shown a novel mechanism by which TRIM26 hinders the advancement of ccRCC by binding to and destabilizing ETK, thus leading to the deactivation of AKT/mTOR signaling. TRIM26 shows promise as both a therapeutic target and prognostic biomarker for ccRCC patients.
Collapse
Affiliation(s)
- Di Zheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Hao Deng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China
| | - Yuan Ruan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
3
|
Wu J, Miao C, Wang Y, Wang S, Wang Z, Liu Y, Wang X, Wang Z. SPTBN1 abrogates renal clear cell carcinoma progression via glycolysis reprogramming in a GPT2-dependent manner. J Transl Med 2022; 20:603. [PMID: 36527113 PMCID: PMC9756479 DOI: 10.1186/s12967-022-03805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal clear cell carcinoma (ccRCC) is the most prevalent tumors worldwide. Discovering effective biomarkers is essential to monitor the prognosis and provide alternative clinical options. SPTBN1 is implicated in various cancerous processes. However, its role in ccRCC remains unelucidated. This study intends to explore the biological function and mechanism of SPTBN1 in ccRCC. METHODS Single-cell and bulk RNA-seq, tissue microarray, real-time quantitative PCR, and western blotting were applied to verify the expression and predictive value of SPTBN1 in ccRCC. Gain or loss of functional ccRCC cell line models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Actinomycin D experiment, RNA immunoprecipitation (RIP), specific inhibitors, and rescue experiments were carried out to define the molecular mechanisms. RESULTS SPTBN1 was down-regulated in ccRCC and knockdown of SPTBN1 displayed a remarkably oncogenic role both in vitro and in vivo; while overexpressing SPTBN1 reversed this effect. SPTBN1 mediated ccRCC progression via the pathway of glutamate pyruvate transaminase 2 (GPT2)-dependent glycolysis. The expression of GPT2 was significantly negatively correlated with that of SPTBN1. As an RNA binding protein SPTBN1, regulated the mRNA stability of GPT2. CONCLUSION Our research demonstrated that SPTBN1 is significantly down-regulated in ccRCC. SPTBN1 knockdown promotes ccRCC progression via activating GPT2-dependent glycolysis. SPTBN1 may serve as a therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jiajin Wu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Chenkui Miao
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yuhao Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Songbo Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zhongyuan Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yiyang Liu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaoyi Wang
- grid.412676.00000 0004 1799 0784Core Facility Center, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zengjun Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| |
Collapse
|
4
|
Wang Z, Chen Z, Zhao H, Lin H, Wang J, Wang N, Li X, Ding D. ISPRF: a machine learning model to predict the immune subtype of kidney cancer samples by four genes. Transl Androl Urol 2021; 10:3773-3786. [PMID: 34804821 PMCID: PMC8575581 DOI: 10.21037/tau-21-650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cell carcinoma (RCC). Immunotherapy, especially anti-PD-1, is becoming a pillar of ccRCC treatment. However, precise biomarkers and robust models are needed to select the proper patients for immunotherapy. Methods A total of 831 ccRCC transcriptomic profiles were obtained from 6 datasets. Unsupervised clustering was performed to identify the immune subtypes among ccRCC samples based on immune cell enrichment scores. Weighted correlation network analysis (WGCNA) was used to identify hub genes distinguishing subtypes and related to prognosis. A machine learning model was established by a random forest (RF) algorithm and used on an open and free online website to predict the immune subtype. Results In the identified immune subtypes, subtype2 was enriched in immune cell enrichment scores and immunotherapy biomarkers. WGCNA analysis identified four hub genes related to immune subtypes, CTLA4, FOXP3, IFNG, and CD19. The RF model was constructed by mRNA expression of these four hub genes, and the value of area under the receiver operating characteristic curve (AUC) was 0.78. Subtype2 patients in the independent validation cohort had a better drug response and prognosis for immunotherapy treatment. Moreover, an open and free website was developed by the RF model (https://immunotype.shinyapps.io/ISPRF/). Conclusions The current study constructs a model and provides a free online website that could identify suitable ccRCC patients for immunotherapy, and it is an important step forward to personalized treatment.
Collapse
Affiliation(s)
- Zhifeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Zihao Chen
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongfan Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Lin
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Ning Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Xiqing Li
- Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Xiong L, Feng Y, Hu W, Tan J, Li S, Wang H. Expression of AOX1 Predicts Prognosis of Clear Cell Renal Cell Carcinoma. Front Genet 2021; 12:683173. [PMID: 34290740 PMCID: PMC8287305 DOI: 10.3389/fgene.2021.683173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer worldwide, and appropriate cancer biomarkers facilitate early diagnosis, treatment, and prognosis prediction in cancer management. However, an accurate biomarker for ccRCC is lacking. This study identified 356 differentially expressed genes in ccRCC tissues compared with normal kidney tissues by integrative analysis of eight ccRCC datasets. Enrichment analysis of the differentially expressed genes unveiled improved adaptation to hypoxia and metabolic reprogramming of the tumor cells. Aldehyde oxidase 1 (AOX1) gene was identified as a biomarker for ccRCC among all the differentially expressed genes. ccRCC tissues expressed significantly lower AOX1 than normal kidney tissues, which was further validated by immunohistochemistry at the protein level and The Cancer Genome Atlas (TCGA) data mining at the mRNA level. Higher AOX1 expression predicted better overall survival in ccRCC patients. Furthermore, AOX1 DNA copy number deletion and hypermethylation were negatively correlated with AOX1 expression, which might be the potential mechanism for its dysregulation in ccRCC. Finally, we illustrated that the effect of AOX1 as a tumor suppressor gene is not restricted to ccRCC but universally exists in many other cancer types. Hence, AOX1 may act as a potential prognostic biomarker and therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Luyang Xiong
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchen Feng
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Hu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiahong Tan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongjie Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Udayaraja GK, Arnold Emerson I. Network-based gene deletion analysis identifies candidate genes and molecular mechanism involved in clear cell renal cell carcinoma. J Genet 2021. [DOI: 10.1007/s12041-021-01260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Liu Y, Liu Y, Hu J, He Z, Liu L, Ma Y, Wen D. Heterogeneous miRNA-mRNA Regulatory Networks of Visceral and Subcutaneous Adipose Tissue in the Relationship Between Obesity and Renal Clear Cell Carcinoma. Front Endocrinol (Lausanne) 2021; 12:713357. [PMID: 34621242 PMCID: PMC8490801 DOI: 10.3389/fendo.2021.713357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the most lethal urologic cancer. Associations of both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) with ccRCC have been reported, and underlying mechanisms of VAT perhaps distinguished from SAT, considering their different structures and functions. We performed this study to disclose different miRNA-mRNA networks of obesity-related ccRCC in VAT and SAT using datasets from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA); and find out different RNAs correlated with the prognosis of ccRCC in VAT and SAT. METHODS We screened out different expressed (DE) mRNAs and miRNAs of obesity, in both VAT and SAT from GEO datasets, and constructed miRNA-mRNA networks of obesity-related ccRCC. To evaluate the sensitivity and specificity of RNAs in networks of obesity-related ccRCC in both VAT and SAT, Receiver Operating Characteristic (ROC) analyses were conducted using TCGA datasets. Spearman correlation analyses were then performed to find out RNA pairs with inverse correlations. We also performed Cox regression analyses to estimate the association of all DE RNAs of obesity with the overall survival. RESULTS 136 and 185 DE mRNAs of obesity in VAT and SAT were found out. Combined with selected DE miRNAs, miRNA-mRNA networks of obesity-related ccRCC were constructed. By performing ROC analyses, RNAs with same trend as shown in networks and statistically significant ORs were selected to be paired. Three pairs were finally remained in Spearman correlation analyses, including hsa-miR-182&ATP2B2, hsa-miR-532&CDH2 in VAT, and hsa-miR-425&TFAP2B in SAT. Multivariable Cox regression analyses showed that several RNAs with statistically significant adjusted HRs remained consistent trends as shown in DE analyses of obesity. Risk score analyses using selected RNAs showed that the overall survival time of patients in the low-risk group was significantly longer than that in the high-risk group regardless of risk score models. CONCLUSIONS We found out different miRNA-mRNA regulatory networks of obesity-related ccRCC for both VAT and SAT; and several DE RNAs of obesity-related ccRCC were found to remain consistent performance in terms of ccRCC prognosis. Our findings could provide valuable evidence on the targeted therapy of obesity-related ccRCC.
Collapse
Affiliation(s)
- Yuyan Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
- Department of Clinical Epidemiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Zhenwei He
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, China
| | - Yanan Ma
- Department of Biostatistics and Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, China
- *Correspondence: Deliang Wen,
| |
Collapse
|
8
|
Purdue MP, Song L, Scélo G, Houlston RS, Wu X, Sakoda LC, Thai K, Graff RE, Rothman N, Brennan P, Chanock SJ, Yu K. Pathway Analysis of Renal Cell Carcinoma Genome-Wide Association Studies Identifies Novel Associations. Cancer Epidemiol Biomarkers Prev 2020; 29:2065-2069. [PMID: 32732251 PMCID: PMC9438507 DOI: 10.1158/1055-9965.epi-20-0472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/23/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Much of the heritable risk of renal cell carcinoma (RCC) associated with common genetic variation is unexplained. New analytic approaches have been developed to increase the discovery of risk variants in genome-wide association studies (GWAS), including multi-locus testing through pathway analysis. METHODS We conducted a pathway analysis using GWAS summary data from six previous scans (10,784 cases and 20,406 controls) and evaluated 3,678 pathways and gene sets drawn from the Molecular Signatures Database. To replicate findings, we analyzed GWAS summary data from the UK Biobank (903 cases and 451,361 controls) and the Genetic Epidemiology Research on Adult Health and Aging cohort (317 cases and 50,511 controls). RESULTS We identified 14 pathways/gene sets associated with RCC in both the discovery (P < 1.36 × 10-5, the Bonferroni correction threshold) and replication (P < 0.05) sets, 10 of which include components of the PI3K/AKT pathway. In tests across 2,035 genes in these pathways, associations (Bonferroni corrected P < 2.46 × 10-5 in discovery and replication sets combined) were observed for CASP9, TIPIN, and CDKN2C. The strongest SNP signal was for rs12124078 (P Discovery = 2.6 × 10-5; P Replication = 1.5 × 10-4; P Combined = 6.9 × 10-8), a CASP9 expression quantitative trait locus. CONCLUSIONS Our pathway analysis implicates genetic variation within the PI3K/AKT pathway as a source of RCC heritability and identifies several promising novel susceptibility genes, including CASP9, which warrant further investigation. IMPACT Our findings illustrate the value of pathway analysis as a complementary approach to analyzing GWAS data.
Collapse
Affiliation(s)
- Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland.
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Ghislaine Scélo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, London, United Kingdom
| | - Xifeng Wu
- Department of Big Data in Health Science, Zhejiang University School of Public Health, Hangzhou, Zhejiang, China
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Khanh Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
9
|
Wang Q, Li F, Liao Z, Li K, Yang X, Lin Y, Zhao Y, Weng S, Xia Y, Ye Y, Li S, Wang C, Lin Y. Low level of Cyclin-D1 correlates with worse prognosis of clear cell renal cell carcinoma patients. Cancer Med 2019; 8:4100-4109. [PMID: 31183974 PMCID: PMC6675723 DOI: 10.1002/cam4.2313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cyclin-D1 (CCND1) belongs to the highly conserved cyclin family whose members are characterized by abundant expression during the cell cycle. As an oncogene, high level of CCND1 was observed and related to poor prognosis and tumor recurrence in many cancers. In this study, we focused on the role of CCND1 in the clinical outcome of clear cell renal cell carcinoma (ccRCC). Gene Expression Omnibus database, The Cancer Genome Atlas database, and immunohistochemical staining were used. The mRNA and protein levels of CCND1 were significantly enhanced in ccRCC tumor tissues. However, the low level of CCND1, but not high level of CCND1, was related to poor prognosis and tumor recurrence in ccRCC. Further analysis showed that CCND1 mRNA level decreased with increasing ccRCC tumor grades and the rate of recurrence in ccRCC patients. In a nomogram model, the CCND1 mRNA level was shown to help predict ccRCC patient recurrence. CCND1 is a strong determinant for prediction of recurrence. The patients with high CCND1 level appear to have a more favorable prognosis together with more frequent low-grade tumors and low rate of recurrence. This is the first study to investigate the prognostic roles of CCND1 in ccRCC and discovered that CCND1 had an unconventional positive impact on the clinical outcome of ccRCC patients.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Neoplasm Grading
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Nomograms
- Prognosis
Collapse
Affiliation(s)
- Qing‐shui Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Feng Li
- Department of PathologyProvincial Clinical Medical College of Fujian Medical UniversityFuzhouP.R. China
| | - Zi‐qiang Liao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Ke Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Xin‐liu Yang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - You‐yu Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Yi‐lin Zhao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Shu‐yun Weng
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Yun Xia
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Yan Ye
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Su‐huan Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Chen‐yi Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Key Laboratory of Opto Electronic Science and Technology for Medicine of Ministry of Education, College of Life SciencesFujian Normal UniversityFuzhouP.R. China
| |
Collapse
|
10
|
Klein SL, Scheper C, Brügemann K, Swalve HH, König S. Phenotypic relationships, genetic parameters, genome-wide associations, and identification of potential candidate genes for ketosis and fat-to-protein ratio in German Holstein cows. J Dairy Sci 2019; 102:6276-6287. [PMID: 31056336 DOI: 10.3168/jds.2019-16237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 03/14/2019] [Indexed: 12/21/2022]
Abstract
Energy demand for milk production in early lactation exceeds energy intake, especially in high-yielding Holstein cows. Energy deficiency causes increasing susceptibility to metabolic disorders. In addition to several blood parameters, the fat-to-protein ratio (FPR) is suggested as an indicator for ketosis, because a FPR >1.5 refers to high lipolysis. The aim of this study was to analyze phenotypic, quantitative genetic, and genomic associations between FPR and ketosis. In this regard, 8,912 first-lactation Holstein cows were phenotyped for ketosis according to a veterinarian diagnosis key. Ketosis was diagnosed if the cow showed an abnormal carbohydrate metabolism with increased content of ketone bodies in the blood or urine. At least one entry for ketosis in the first 6 wk after calving implied a score = 1 (diseased); otherwise, a score = 0 (healthy) was assigned. The FPR from the first test-day was defined as a Gaussian distributed trait (FPRgauss), and also as a binary response trait (FPRbin), considering a threshold of FPR = 1.5. After imputation and quality controls, 45,613 SNP markers from the 8,912 genotyped cows were used for genomic studies. Phenotypically, an increasing ketosis incidence was associated with significantly higher FPR, and vice versa. Hence, from a practical trait recording perspective, first test-day FPR is suggested as an indicator for ketosis. The ketosis heritability was slightly larger when modeling the pedigree-based relationship matrix (pedigree-based: 0.17; SNP-based: 0.11). For FPRbin, heritabilities were larger when modeling the genomic relationship matrix (pedigree-based: 0.09; SNP-based: 0.15). For FPRgauss, heritabilities were almost identical for both pedigree and genomic relationship matrices (pedigree-based: 0.14; SNP-based: 0.15). Genetic correlations between ketosis with FPRbin and FPRgauss using either pedigree- or genomic-based relationship matrices were in a moderate range from 0.39 to 0.71. Applying genome-wide association studies, we identified the specific SNP rs109896020 (BTA 5, position: 115,456,438 bp) significantly contributing to ketosis. The identified potential candidate gene PARVB in close chromosomal distance is associated with nonalcoholic fatty liver disease in humans. The most important SNP contributing to FPRbin was located within the DGAT1 gene. Different SNP significantly contributed to ketosis and FPRbin, indicating different mechanisms for both traits genomically.
Collapse
Affiliation(s)
- S-L Klein
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany.
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - K Brügemann
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| | - H H Swalve
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University Gießen, 35390 Gießen, Germany
| |
Collapse
|
11
|
Niu H, Li F, Wang Q, Ye Z, Chen Q, Lin Y. High expression level of MMP9 is associated with poor prognosis in patients with clear cell renal carcinoma. PeerJ 2018; 6:e5050. [PMID: 30013825 PMCID: PMC6035719 DOI: 10.7717/peerj.5050] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/02/2018] [Indexed: 12/30/2022] Open
Abstract
Matrix metallopeptidase 9 (MMP9) was found to be associated with tumor aggressiveness. In this study, we focused on the correlation between MMP9 expression and clear cell renal carcinoma (ccRCC). Through the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) database and immunohistochemical (IHC) staining, we observed that compared with adjacent normal renal tissues, in ccRCC tissues the mRNA and protein levels of MMP9 were enhanced, and the mRNA levels of GTP-binding protein smg p21B(RAP1B), B rapidly accelerated fibrosarcoma (RAF), methyl ethyl ketone2 (MEK2), extracellular regulated protein kinases1 (ERK1), ERK2, v-ets avian erythroblastosis virus E26 oncogene homolog1 (ETS1) and ETS2 also increased. The Kaplan–Meier survival analysis suggested that high MMP9 expression was an unfavorable prognostic biomarker for ccRCC patients. Our results indicated that the increased expression level of MMP9 in ccRCC may be due to the activation of the Mitogen-activated protein kinases (MAPK)/ERK signaling pathway, and MMP9 may be an attractive target for ccRCC therapy.
Collapse
Affiliation(s)
- Haitao Niu
- Fujian Normal University, Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fuzhou, China
| | - Feng Li
- Provincial Clinical Medical College of Fujian Medical University, Department of Pathology, Fuzhou, China
| | - Qingshui Wang
- Fujian Normal University, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fuzhou, China
| | - Zhoujie Ye
- Fujian Normal University, Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fuzhou, China
| | - Qi Chen
- Fujian Normal University, Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fuzhou, China
| | - Yao Lin
- Fujian Normal University, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fuzhou, China
| |
Collapse
|
12
|
Li F, Wang Q, Xiong X, Wang C, Liu X, Liao Z, Li K, Xie B, Lin Y. Expression of 4E-BP1 and phospho-4E-BP1 correlates with the prognosis of patients with clear cell renal carcinoma. Cancer Manag Res 2018; 10:1553-1563. [PMID: 29942157 PMCID: PMC6007205 DOI: 10.2147/cmar.s158547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background Eukaryotic translation initiation factor 4E (eIF4E) is a key regulator of protein synthesis. Changes in eIF4E activity disproportionally affect the translation of a subset of oncogenic mRNAs in some cancers. Materials and methods We have assessed the expression levels of vascular endothelial growth factor C (VEGFC), eIF4E, eIF4E-binding proteins (4E-BPs) and phospho-4E-BP1 in clear cell renal carcinoma (ccRCC; n=101) using immunohistochemistry and analyzed the relevant mRNA levels and survival using online databases. Results The protein levels of VEGFC, an eIF4E-regulated gene, were upregulated in ccRCC tissues compared with adjacent normal renal tissues, indicating an enhanced eIF4E activity in ccRCC. The expression of eIF4E had no significant changes in ccRCC tissues. However, 4E-BP1 and phospho-4E-BP1 were found to be overexpressed in ccRCC tissues (P<0.05), and the high mRNA and protein levels of 4E-BP1 and phospho-4E-BP1 correlated with an unfavorable clinical outcome in ccRCC patients. Meanwhile, the mRNA expression of PIK3CD and PIK3CG were enhanced in ccRCC. Conclusion From these results, we could infer that the increase in eIF4E activity may be caused by the increased phospho-4E-BP1 level, which was probably due to the activation of phosphoinositide 3-kinase (PI3K) pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Pathology, Provincial Clinical Medical College, Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China.,Department of Pathology, Fujian Provincial Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Qingshui Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaoxue Xiong
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Chenyi Wang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Xiaohua Liu
- Department of Obstetrics, Anxi County Hospital, Anxi, Fujian Province, People's Republic of China
| | - Ziqiang Liao
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Ke Li
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Bifeng Xie
- College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
13
|
Systematic expression analysis of the mitochondrial complex III subunits identifies UQCRC1 as biomarker in clear cell renal cell carcinoma. Oncotarget 2018; 7:86490-86499. [PMID: 27845902 PMCID: PMC5349929 DOI: 10.18632/oncotarget.13275] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/29/2016] [Indexed: 11/25/2022] Open
Abstract
Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, few is known about the expression of the mitochondrial complex III (ubiquinol-cytochrome c reductase complex) subunits in clear cell renal cell carcinoma (ccRCC). In this study, the NextBio database was used to determine an expression profile of the mitochondrial complex III subunits based on published microarray studies. We observed that five out of 11 subunits of the complex III were downregulated in at least three microarray studies. The decreased mRNA expression level of UQCRFS1 and UQCRC1 in ccRCC was confirmed using PCR. Low mRNA levels UQCRC1 were also correlated with a shorter period of cancer-specific and overall survival. Furthermore, UQCRFS1 and UQCRC1 were also decreased in ccRCC on the protein level as determined using Western blotting and immunohistochemistry. UQCRC1 protein expression was also lower in ccRCC than in papillary and chromophobe subtypes. Analyzing gene expression and DNA methylation in The Cancer Genome Atlas cohort revealed an inverse correlation of gene expression and DNA methylation, suggesting that DNA hypermethylation is regulating the expression of UQCRC1 and UQCRFS1. Taken together, our data implicate that dysregulated UQCRC1 and UQCRFS1 are involved in impaired mitochondrial electron transport chain function.
Collapse
|
14
|
Zhong H, Chen B, Neves H, Xing J, Ye Y, Lin Y, Zhuang G, Zhang SD, Huang J, Kwok HF. Expression of minichromosome maintenance genes in renal cell carcinoma. Cancer Manag Res 2017; 9:637-647. [PMID: 29180899 PMCID: PMC5697450 DOI: 10.2147/cmar.s146528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Minichromosome maintenance (MCM) proteins play an essential role in DNA replication. They have been shown to be overexpressed in various types of cancer. However, the role of this family in renal cell carcinoma (RCC) is widely unknown. In this study, we have identified a number of RCC datasets in the Gene Expression Omnibus database and also investigated the correlation between the expression levels of MCM genes and clinicopathological parameters. We found that the expression levels of MCM genes are positively correlated with one another. Expression levels of MCM2, MCM5, MCM6, and MCM7, but not of MCM3 and MCM4, were higher in RCC compared to paired adjacent normal tissue. Only the expression level of MCM4, but not of other MCMs, was positively correlated with tumor grade. In addition, a high-level expression of MCM2 in either primary tumor or metastases of RCC predicted a shorter disease-free survival time, while a high-level expression of MCM4 or MCM6 in primary tumor was also associated with poorer disease-free survival. Interestingly, we also demonstrated that patients with their primary RCC overexpressing 2 or more MCM genes had a shorter disease-free survival time, while those with RCC metastases overexpressing 3 or more MCM genes had a shorter disease-free survival. Importantly, we also demonstrated that overexpression of MCM genes is an independent predictor for survival in RCC patients. Our results suggest that MCM2-7 genes may be an important prognostic marker for patients with RCC.
Collapse
Affiliation(s)
- Hongbin Zhong
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Bin Chen
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Henrique Neves
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| | - Jinchun Xing
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Youxin Ye
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Ying Lin
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Guohong Zhuang
- Medical College of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Jiyi Huang
- Xiang'an Branch, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China.,The First Clinical School of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR
| |
Collapse
|
15
|
Brüggemann M, Gromes A, Poss M, Schmidt D, Klümper N, Tolkach Y, Dietrich D, Kristiansen G, Müller SC, Ellinger J. Systematic Analysis of the Expression of the Mitochondrial ATP Synthase (Complex V) Subunits in Clear Cell Renal Cell Carcinoma. Transl Oncol 2017; 10:661-668. [PMID: 28672194 PMCID: PMC5496479 DOI: 10.1016/j.tranon.2017.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 05/31/2017] [Accepted: 06/05/2017] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial dysfunction is common in cancer and the mitochondrial electron transport chain is often affected in carcinogenesis. To date, little is known about the expression of the ATP synthase subunits in clear cell renal cell carcinoma (ccRCC). The NextBio database was used to determine an expression profile of the ATP synthase subunits based on published microarray studies. We observed down-regulation of 23 out of 29 subunits of the ATP synthase. Differential expression was validated exemplarily for 12 genes (ATP5A1, ATP5B, ATPAF1, ATP5C1, ATP5D, ATP5O, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5I, ATP5S; screening cohort ccRCC n = 18 and normal renal tissue n = 10) using real-time PCR. Additional eight genes (ATP5A1, ATP5B, ATPAF1, ATP5F1, ATP5G1, ATP5G2, ATP5G3, ATP5S) were internally validated within an enlarged cohort (ccRCC n = 74; normal renal tissue n = 36). Furthermore, down-regulation of ATP5A1, ATPAF1, ATP5G1/G2/G3 was confirmed on the protein level using Western Blot and immunohistochemistry. We observed that altered expression of ATPAF1 and ATP5G1/G2/G3 was correlated with overall survival in patients with ccRCC. In conclusion, down-regulation of many ATP Synthase subunits occurs in ccRCC and is the basis for the reduced activity of the mitochondrial electron chain. Alteration of the expression of ATP5A1, ATPAF1, and ATP5G1/G2/G3 is characteristic for ccRCC and may be prognostic for ccRCC patients' outcome.
Collapse
Affiliation(s)
- Maria Brüggemann
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Arabella Gromes
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Mirjam Poss
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Doris Schmidt
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Niklas Klümper
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Yuri Tolkach
- University Hospital Bonn, Institute of Pathology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Dimo Dietrich
- University Hospital Bonn, Institute of Pathology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany; University Hospital Bonn, Department of Otorhinolaryngology/Head and Neck Surgery, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Glen Kristiansen
- University Hospital Bonn, Institute of Pathology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Stefan C Müller
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | - Jörg Ellinger
- University Hospital Bonn, Department of Urology, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| |
Collapse
|
16
|
Ellinger J, Poss M, Brüggemann M, Gromes A, Schmidt D, Ellinger N, Tolkach Y, Dietrich D, Kristiansen G, Müller SC. Systematic Expression Analysis of Mitochondrial Complex I Identifies NDUFS1 as a Biomarker in Clear-Cell Renal-Cell Carcinoma. Clin Genitourin Cancer 2016; 15:e551-e562. [PMID: 28063846 DOI: 10.1016/j.clgc.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Mitochondrial dysfunction is common in cancer, and the mitochondrial electron transport chain is often affected in carcinogenesis. So far, little is known about the expression of the mitochondrial complex I (NADH:ubiquinone oxidoreductase) subunits in clear-cell renal-cell carcinoma (ccRCC). MATERIALS AND METHODS An expression profile of the mitochondrial complex I subunits was determined using the NextBio database. Subsequently, the expression of selected subunits was experimentally validated on mRNA (quantitative real-time polymerase chain reaction) and protein (Western blot analysis, immunohistochemistry) level. RESULTS We observed that 7 subunits of the complex I were down-regulated in at least 3 microarray studies. Deregulated mRNA expression was confirmed for NDUFA3, NDUFA, NDUFB1, NDUFB9, NDUFS1, NDUFS8, and NDUFV1. Low NDUFS1 mRNA expression was a significant and independent adverse predictor of a shorter overall survival in our mRNA cohort and the ccRCC cohort of The Cancer Genome Atlas project. NDUFS1 expression was furthermore analyzed on the protein level, and a distinct down-regulation was observed in ccRCC as well as in the chromophobe and the sarcomatoid subtype compared to normal renal tissue. CONCLUSION Expression alterations occur in only a few subunits of the mitochondrial complex I subunits in ccRCC, and altered mRNA and protein expression levels of NDUFS1 may be useful to distinguish between renal-cell carcinoma and normal renal tissue.
Collapse
Affiliation(s)
- Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany.
| | - Mirjam Poss
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | | | - Arabella Gromes
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Doris Schmidt
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Nadja Ellinger
- Department of Anesthesiology and Intensive Care, University Hospital Bonn, Bonn, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital Bonn, Bonn, Germany; Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Stefan C Müller
- Department of Urology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
17
|
Tesarova P, Kalousova M, Zima T, Tesar V. HMGB1, S100 proteins and other RAGE ligands in cancer - markers, mediators and putative therapeutic targets. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:1-10. [DOI: 10.5507/bp.2016.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/22/2016] [Indexed: 12/30/2022] Open
|
18
|
RUAN XIYUN, LI HONGYUN, LIU BO, CHEN JIE, ZHANG SHIBAO, SUN ZEQIANG, LIU SHUANGQING, SUN FAHAI, LIU QINGYONG. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network. Oncol Rep 2015; 34:567-76. [PMID: 26058425 PMCID: PMC4487672 DOI: 10.3892/or.2015.4038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/23/2015] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson's correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson's correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis.
Collapse
Affiliation(s)
- XIYUN RUAN
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - HONGYUN LI
- Department of Urology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - BO LIU
- ICU, Affiliated Hospital of Jining Medical University, Jining, Shandong 272129, P.R. China
| | - JIE CHEN
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - SHIBAO ZHANG
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - ZEQIANG SUN
- Department of Urology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - SHUANGQING LIU
- Department of Urology, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - FAHAI SUN
- Department of Urology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| | - QINGYONG LIU
- Department of Urology, Shandong Provincial Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
19
|
Polymorphisms of the receptor for advanced glycation end-products and glyoxalase I in patients with renal cancer. Tumour Biol 2014; 36:2121-6. [DOI: 10.1007/s13277-014-2821-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022] Open
|
20
|
Eckel-Passow JE, Serie DJ, Bot BM, Joseph RW, Cheville JC, Parker AS. ANKS1B is a smoking-related molecular alteration in clear cell renal cell carcinoma. BMC Urol 2014; 14:14. [PMID: 24479813 PMCID: PMC3944917 DOI: 10.1186/1471-2490-14-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/20/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An association between cigarette smoking and increased risk of clear cell renal cell carcinoma (ccRCC) has been established; however, there are limited data regarding the molecular mechanisms that underlie this association. We used a multi-stage design to identify and validate genes that are associated with smoking-related ccRCC. METHODS We first conducted a microarray study to compare gene expression patterns in patient-matched ccRCC and normal kidney tissues between patients with (n = 23) and without (n = 42) a history of smoking. Analyses were first stratified on obesity status (the other primary risk factor for ccRCC) and then combined and analyzed together. To identify genes where the fold change in smokers relative to non-smokers was different in tumor tissues in comparison to patient-matched normal kidney tissues, we identified Affymetrix probesets that had a significant tissue type-by-smoking status interaction pvalue. We then performed RT-PCR validation on the top eight candidate genes in an independent sample of 28 smokers and 54 non-smokers. RESULTS We identified 15 probesets that mapped to eight genes that had candidate associations with smoking-related ccRCC: ANKS1B, ACOT6, PPWD1, EYS, LIMCH1, CHRNA6, MT1G, and ZNF600. Using RT-PCR, we validated that expression of ANKS1B is preferentially down-regulated in smoking-related ccRCC. CONCLUSION We provide the first evidence that ANKS1B expression is down regulated in ccRCC tumors relative to patient-matched normal kidney tissue in smokers. Thus, ANKS1B should be explored further as a novel avenue for early detection as well as prevention of ccRCC in smokers.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander S Parker
- Department of Health Sciences Research, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|