1
|
Budillon A, Leone A, Passaro E, Silvestro L, Foschini F, Iannelli F, Roca MS, Macchini M, Bruzzese F, Garcia Bermejo ML, Rodriguez Garrote M, Tortora G, Milella M, Reni M, Fuchs C, Hewitt E, Kubiak C, Di Gennaro E, Giannarelli D, Avallone A. Randomized phase 2 study of valproic acid combined with simvastatin and gemcitabine/nab-paclitaxel-based regimens in untreated metastatic pancreatic adenocarcinoma patients: the VESPA trial study protocol. BMC Cancer 2024; 24:1167. [PMID: 39300376 PMCID: PMC11414294 DOI: 10.1186/s12885-024-12936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Metastatic pancreatic ductal adenocarcinoma (mPDAC) patients have very poor prognosis highlighting the urgent need of novel treatments. In this regard, repurposing non-oncology already-approved drugs might be an attractive strategy to offer more-effective treatment easily tested in clinical trials. Accumulating evidence suggests that epigenetic deregulation is a hallmark of cancer contributing to treatment resistance in several solid tumors, including PDAC. Histone deacetylase inhibitors (HDACi) are epigenetic drugs we have investigated preclinically and clinically as anticancer agents. Valproic acid (VPA) is a generic low-cost anticonvulsant and mood stabilizer with HDAC inhibitory activity, and anticancer properties also demonstrated in PDAC models. Statins use was reported to be associated with lower mortality risk in patients with pancreatic cancer and statins have been shown to have a direct antitumor effect when used alone or in combination therapy. We recently showed capability of VPA/Simvastatin (SIM) combination to potentiate the antitumor activity of gemcitabine/nab-paclitaxel in vitro and in vivo PDAC preclinical models. METHODS/DESIGN VESPA is a patient-centric open label randomized multicenter phase-II investigator-initiated trial, evaluating the feasibility, safety, and efficacy of VPA/SIM plus first line gemcitabine/nab-paclitaxel-based regimens (AG or PAXG) (experimental arm) versus chemotherapy alone (standard arm) in mPDAC patients. The study involves Italian and Spanish oncology centers and includes an initial 6-patients safety run-in-phase. A sample size of 240 patients (120 for each arm) was calculated under the hypothesis that the addition of VPA/SIM to gemcitabine and nab-paclitaxel-based regimens may extend progression free survival from 6 to 9 months in the experimental arm. Secondary endpoints are overall survival, response rate, disease control rate, duration of response, CA 19.9 reduction, toxicity, and quality of life. The study includes a patient engagement plan and complementary biomarkers studies on tumor and blood samples. CONCLUSIONS VESPA is the first trial evaluating efficacy and safety of two repurposed drugs in oncology such as VPA and SIM, in combination with standard chemotherapy, with the aim of improving mPDAC survival. The study is ongoing. Enrollment started in June 2023 and a total of 63 patients have been enrolled as of June 2024. TRIAL REGISTRATION EudraCT number: 2022-004154-63; ClinicalTrials.gov identifier NCT05821556, posted 2023/04/20.
Collapse
Affiliation(s)
- Alfredo Budillon
- Scientific Directorate, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy.
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Eugenia Passaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Lucrezia Silvestro
- Experimental Clinical Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Francesca Foschini
- Experimental Clinical Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Marina Macchini
- Department of Medical Oncology, University "Vita-Salute San Raffaele", IRCCS- Ospedale San Raffaele, Milan, Italy
| | - Francesca Bruzzese
- Animal Facility Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Maria Laura Garcia Bermejo
- Biomarkers and Therapeutic Targets Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mercedes Rodriguez Garrote
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Giampaolo Tortora
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Michele Milella
- Section of Innovation Biomedicines-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Michele Reni
- Department of Medical Oncology, University "Vita-Salute San Raffaele", IRCCS- Ospedale San Raffaele, Milan, Italy
| | | | - Eve Hewitt
- Beacon: for rare diseases, Cambridge, UK
| | - Christine Kubiak
- ECRIN - European Clinical Research Infrastructure Network-European Research Infrastructure Consortium, Paris, France
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Diana Giannarelli
- Facility of Epidemiology and Biostatistics, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Avallone
- Experimental Clinical Abdominal Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy.
| |
Collapse
|
2
|
Pellegrino M, Ricci E, Ceraldi R, Nigro A, Bonofiglio D, Lanzino M, Morelli C. From HDAC to Voltage-Gated Ion Channels: What's Next? The Long Road of Antiepileptic Drugs Repositioning in Cancer. Cancers (Basel) 2022; 14:cancers14184401. [PMID: 36139561 PMCID: PMC9497059 DOI: 10.3390/cancers14184401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Although in the last decades the clinical outcome of cancer patients considerably improved, the major drawbacks still associated with chemotherapy are the unwanted side effects and the development of drug resistance. Therefore, a continuous effort in trying to discover new tumor markers, possibly of diagnostic, prognostic and therapeutic value, is being made. This review is aimed at highlighting the anti-tumor activity that several antiepileptic drugs (AEDs) exert in breast, prostate and other types of cancers, mainly focusing on their ability to block the voltage-gated Na+ and Ca++ channels, as well as to inhibit the activity of histone deacetylases (HDACs), all well-documented tumor markers and/or molecular targets. The existence of additional AEDs molecular targets is highly suspected. Therefore, the repurposing of already available drugs as adjuvants in cancer treatment would have several advantages, such as reductions in dose-related toxicity CVs will be sent in a separate mail to the indicated address of combined treatments, lower production costs, and faster approval for clinical use. Abstract Cancer is a major health burden worldwide. Although the plethora of molecular targets identified in the last decades and the deriving developed treatments, which significantly improved patients’ outcome, the occurrence of resistance to therapies remains the major cause of relapse and mortality. Thus, efforts in identifying new markers to be exploited as molecular targets in cancer therapy are needed. This review will first give a glance on the diagnostic and therapeutic significance of histone deacetylase (HDAC) and voltage gated ion channels (VGICs) in cancer. Nevertheless, HDAC and VGICs have also been reported as molecular targets through which antiepileptic drugs (AEDs) seem to exert their anticancer activity. This should be claimed as a great advantage. Indeed, due to the slowness of drug approval procedures, the attempt to turn to off-label use of already approved medicines would be highly preferable. Therefore, an updated and accurate overview of both preclinical and clinical data of commonly prescribed AEDs (mainly valproic acid, lamotrigine, carbamazepine, phenytoin and gabapentin) in breast, prostate, brain and other cancers will follow. Finally, a glance at the emerging attempt to administer AEDs by means of opportunely designed drug delivery systems (DDSs), so to limit toxicity and improve bioavailability, is also given.
Collapse
Affiliation(s)
| | | | | | | | | | - Marilena Lanzino
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| | - Catia Morelli
- Correspondence: (M.L.); (C.M.); Tel.: +39-0984-496206 (M.L.); +39-0984-496211 (C.M.)
| |
Collapse
|
3
|
Manthos K, Theotokis P, Dermitzakis I, Avramidou E, Meditskou S, Manthou ME, Emmanouil‐Nikoloussi E. Valproic acid induced selective apoptosis of ocular fibrous tunic in mice fetuses. Birth Defects Res 2022; 114:1257-1265. [DOI: 10.1002/bdr2.2076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kyriakos Manthos
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Paschalis Theotokis
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology AHEPA University Hospital Thessaloniki Greece
| | - Iasonas Dermitzakis
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Eleni Avramidou
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Soultana Meditskou
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Maria Eleni Manthou
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Elpida‐Niki Emmanouil‐Nikoloussi
- Department of Histology‐Embryology, School of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
- Department of Histology‐Embryology, Department of Dentistry, School of Medicine European University of Cyprus Nicosia Cyprus
| |
Collapse
|
4
|
Rodriguez Lanzi C, Wei R, Luo D, Mackenzie GG. Phospho-Aspirin (MDC-22) inhibits pancreatic cancer growth in patient-derived tumor xenografts and KPC mice by targeting EGFR: Enhanced efficacy in combination with irinotecan. Neoplasia 2021; 24:133-144. [PMID: 34968866 PMCID: PMC8717147 DOI: 10.1016/j.neo.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/07/2022]
Abstract
Novel therapeutic strategies are needed in the fight against pancreatic cancer. We have previously documented the chemopreventive effect of MDC-22 in preclinical models of pancreatic cancer. In the present work, we examined the therapeutic effects of MDC-22 in patient-derived tumor xenografts (PDTXs) and in LSL-KrasG12D/+, LSL-Trp53R172H/+, Pdx1-Cre (KPC) genetically engineered mice, two complementary and clinically relevant animal models of pancreatic cancer. In addition, we evaluated whether MDC-22 could synergize with current chemotherapeutic drugs used in the clinic. MDC-22 reduced the growth of various human pancreatic cancer cell lines in a concentration-dependent manner. In vivo, MDC-22 strongly reduced patient-derived pancreatic tumor xenograft growth by 50%, and extended survival of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mice by over a month (5.3 months versus 7.0 months). In both models, MDC-22 inhibited EGFR activation and its downstream signals, including ERK and FAK phosphorylation. In human pancreatic cancer cell lines, MDC-22 enhanced the growth inhibitory effect of irinotecan, and to a lesser degree those of gemcitabine and nab-paclitaxel. Normal human pancreatic epithelial cells were more resistant to the cytotoxic effects of, both, MDC-22 alone or in combination with irinotecan, indicating selectivity. Furthermore, MDC-22 enhanced irinotecan's effect on cell migration, in part, by inhibiting EGFR/FAK signaling. Collectively, our results indicate that MDC-22 is an effective anticancer drug in preclinical models of pancreatic cancer, and suggest that MDC-22 plus irinotecan as drug combination strategy for pancreatic cancer treatment, which warrants further evaluation.
Collapse
Affiliation(s)
- Cecilia Rodriguez Lanzi
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Ran Wei
- Department of Tea Science, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; University of California, Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Dingyuan Luo
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Thyroid Surgery, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, One Shields Ave, Davis, CA 95616, USA; Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY 11794-8175, USA; University of California, Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
| |
Collapse
|
5
|
Peisl S, Mellenthin C, Vignot L, Gonelle-Gispert C, Bühler L, Egger B. Therapeutic targeting of STAT3 pathways in pancreatic adenocarcinoma: A systematic review of clinical and preclinical literature. PLoS One 2021; 16:e0252397. [PMID: 34138876 PMCID: PMC8211286 DOI: 10.1371/journal.pone.0252397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Pancreatic ductal adenocarcinoma is a highly lethal disease with increasing incidence. Due to high resistance, chemo/radiotherapy has limited success in pancreatic cancer and only marginally prolongs patient survival. Therefore, novel biomarkers and therapeutic targets are needed. In the present review, we performed a comprehensive summary of therapeutic approaches targeting the GP130/JAK/STAT3 pathway. METHODS We systematically reviewed the PubMed and Embase databases for preclinical and clinical studies, from inception to October 4, 2020, on drugs targeting the GP130/JAK/STAT3 pathway. Bias assessments and qualitative analyses were performed. RESULTS Twenty-five preclinical and nine clinical trials were included in the review. All preclinical studies reported a favorable outcome in terms of pancreatic ductal adenocarcinoma progression. Futhermore, drugs targeting the GP130/JAK/STAT3 pathway were shown to be efficient chemosensitizers. However, high publication bias was assumed. In the clinical setting, bazedoxifene and itacitinib improved patient outcomes. CONCLUSION Preclinical studies strongly suggest significant efficacy of drugs targeting GP130/JAK/STAT3 in the treatment of pancreatic ductal adenocarcinoma and that these molecules are effective chemosensitizers. Though only a few trials have shown the efficacy in a clinical setting, the STAT3 pathway remains a promising drug target for future treatment of pancreatic ductal adenocarcinoma and may help overcome chemotherapy resistance.
Collapse
Affiliation(s)
- Sarah Peisl
- Department of Surgery, HFR Fribourg, Fribourg, Switzerland
| | | | - Lucie Vignot
- Department of Oncology, HFR Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leo Bühler
- Department of Surgery, HFR Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Department of Surgery, HFR Fribourg, Fribourg, Switzerland
- Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE, Pandey V. Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer 2021; 1876:188534. [PMID: 33794332 DOI: 10.1016/j.bbcan.2021.188534] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria, well recognized as the "powerhouse" of cells, are maternally inherited organelles with bacterial ancestry that play essential roles in a myriad of cellular functions. It has become profoundly evident that mitochondria regulate a wide array of cellular and metabolic functions, including biosynthetic metabolism, cell signaling, redox homeostasis, and cell survival. Correspondingly, defects in normal mitochondrial functioning have been implicated in various human malignancies. Cancer development involves the activation of oncogenes, inactivation of tumor suppressor genes, and impairment of apoptotic programs in cells. Mitochondria have been recognized as the site of key metabolic switches for normal cells to acquire a malignant phenotype. This review outlines the role of mitochondria in human malignancies and highlights potential aspects of mitochondrial metabolism that could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Yan Qin Tan
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China
| | - Shuwei Zhang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230000, Anhui, PR China
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida 201313, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Shenzhen Bay Laboratory, Shenzhen 518055, Guangdong, PR China.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, PR China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|