1
|
Unsworth N, Robison MK, Miller AL. Mobilizing effort to reduce lapses of sustained attention: examining the effects of content-free cues, feedback, and points. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024:10.3758/s13415-024-01254-0. [PMID: 39681822 DOI: 10.3758/s13415-024-01254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Three experiments with the psychomotor vigilance task examined whether presenting content-free cues, feedback, and points would reduce lapses of sustained attention. In all three experiments, behavioral lapses of attention (particularly slow reaction times) were reduced with the motivation manipulations compared with control conditions, but self-reports of off-task thinking (e.g., mind-wandering) were unaffected. Pupillary responses (preparatory and phasic) also tended to be larger with the different manipulations compared to control conditions. Collectively, the results are consistent with attentional effort models, suggesting that sustained attention was improved and lapses of attention reduced owing to participants in the motivation conditions mobilizing more attentional effort than participants in the control conditions. These results are consistent with recent research, which suggests that the locus coeruleus norepinephrine system is associated with the mobilization of effort.
Collapse
Affiliation(s)
| | - Matthew K Robison
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Ashley L Miller
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Bi R, Zhao Y, Li S, Xu F, Peng W, Tan S, Zhang D. Brain stimulation over the left DLPFC enhances motivation for effortful rewards in patients with major depressive disorder. J Affect Disord 2024; 356:414-423. [PMID: 38640975 DOI: 10.1016/j.jad.2024.04.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Amotivation is a typical feature in major depressive disorder (MDD), which produces reduced willingness to exert effort. The dorsolateral prefrontal cortex (DLPFC) is a crucial structure in goal-directed actions and therefore is a potential target in modulating effortful motivation. However, it remains unclear whether the intervention is effective for patients with MDD. METHODS We employed transcranial magnetic stimulation (TMS), computational modelling and event-related potentials (ERPs) to reveal the causal relationship between the left DLPFC and motivation for effortful rewards in MDD. Fifty patients underwent both active and sham TMS sessions, each followed by performing an Effort-Expenditure for Rewards Task, during which participants chose and implemented between low-effort/low-reward and high-effort/high-reward options. RESULTS The patients showed increased willingness to exert effort for rewards during the DLPFC facilitated session, compared with the sham session. They also had a trend in larger P3 amplitude for motivated attention toward chosen options, larger CNV during preparing for effort exertion, and larger SPN during anticipating a high reward. Besides, while behavior indexes for effortful choices were negatively related to depression severity in the sham session, this correlation was weakened in the active stimulation session. CONCLUSIONS These findings provide behavioral, computational, and neural evidence for the left DLPFC on effortful motivation for rewards. Facilitated DLPFC improves motor preparation and value anticipation after making decisions especially for highly effortful rewards in MDD. Facilitated DLPFC also has a potential function in enhancing motivated attention during cost-benefit trade-off. This neuromodulation effect provides a potential treatment for improving motivation in clinics.
Collapse
Affiliation(s)
- Rong Bi
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yanli Zhao
- Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Sijin Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co., Ltd., Shenzhen 518057, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Shuping Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China.
| | - Dandan Zhang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China; Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518060, China.
| |
Collapse
|
3
|
Kaduk K, Henry T, Guitton J, Meunier M, Thura D, Hadj-Bouziane F. Atomoxetine and reward size equally improve task engagement and perceptual decisions but differently affect movement execution. Neuropharmacology 2023; 241:109736. [PMID: 37774942 DOI: 10.1016/j.neuropharm.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Our ability to engage and perform daily activities relies on balancing the associated benefits and costs. Rewards, as benefits, act as powerful motivators that help us stay focused for longer durations. The noradrenergic (NA) system is thought to play a significant role in optimizing our performance. Yet, the interplay between reward and the NA system in shaping performance remains unclear, particularly when actions are driven by external incentives (reward). To explore this interaction, we tested four female rhesus monkeys performing a sustained Go/NoGo task under two reward sizes (low/high) and three pharmacological conditions (saline and two doses of atomoxetine, a NA reuptake inhibitor: ATX-0.5 mg/kg and ATX-1 mg/kg). We found that increasing either reward or NA levels equally enhanced the animal's engagement in the task compared to low reward saline; the animals also responded faster and more consistently under these circumstances. Notably, we identified differences between reward size and ATX. When combined with ATX, high reward further reduced the occurrence of false alarms (i.e., incorrect go trials on distractors), implying that it helped further suppress impulsive responses. In addition, ATX (but not reward size) consistently increased movement duration dose-dependently, while high reward did not affect movement duration but decreased its variability. We conclude that noradrenaline and reward modulate performance, but their effects are not identical, suggesting differential underlying mechanisms. Reward might energize/invigorate decisions and action, while ATX might help regulate energy expenditure, depending on the context, through the NA system.
Collapse
Affiliation(s)
- Kristin Kaduk
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France; Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen, 37077, Germany.
| | - Tiphaine Henry
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France
| | - Jerome Guitton
- Biochemistry and Pharmacology-Toxicology Laboratory, Lyon-Sud Hospital, Hospices Civils de Lyon, F-69495, Pierre Bénite, France
| | - Martine Meunier
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France
| | - David Thura
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France
| | - Fadila Hadj-Bouziane
- University UCBL Lyon 1, F-69000, France; INSERM, U1028, CNRS UMR5292, Lyon Neuroscience Research Center, ImpAct Team, Lyon, F-69000, France.
| |
Collapse
|
4
|
Chen HY, Marxen M, Dahl MJ, Glöckner F. Effects of Adult Age and Functioning of the Locus Coeruleus Norepinephrinergic System on Reward-Based Learning. J Neurosci 2023; 43:6185-6196. [PMID: 37541835 PMCID: PMC10476638 DOI: 10.1523/jneurosci.2006-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023] Open
Abstract
Age-related impairments in value representations and updating during decision-making and reward-based learning are often related to age-related attenuation in the catecholamine system such as dopamine (DA) and norepinephrine (NE). However, it is unclear to what extent age-related declines in NE functioning in humans affect reward-based decision-making. We conducted a probabilistic decision-making task and applied a Q-learning model to investigate participants' anticipatory values and value sensitivities. Task-related pupil dilations and locus coeruleus (LC) magnetic resonance imaging (MRI) contrast, which served as a potential window of the LC-NE functions, were assessed in younger and older adults. Results showed that in both choice and feedback phases, younger adults' (N = 42, 22 males) pupil dilations negatively correlated with anticipatory values, indicating uncertainty about outcome probabilities. Uncertainty-evoked pupil dilations in older adults (N = 41, 27 males) were smaller, indicating age-related impairments in value estimation and updating. In both age groups, participants who showed a larger uncertainty-evoked pupil dilation exhibited a higher value sensitivity as reflected in the β parameter of the reinforcement Q-learning model. Furthermore, older adults (N = 34, 29 males) showed a lower LC-MRI contrast than younger adults (N = 25, 15 males). The LC-MRI contrast positively correlated with value sensitivity only in older but not in younger adults. These findings suggest that task-related pupillary responses can reflect age-related deficits in value estimation and updating during reward-based decision-making. Our evidence with the LC-MRI contrast further showed the age-related decline of the LC structure in modulating value representations during reward-based learning.SIGNIFICANCE STATEMENT Age-related impairments in value representation and updating during reward-based learning are associated with declines in the catecholamine modulation with age. However, it is unclear how age-related declines in the LC-NE system may affect reward-based learning. Here, we show that compared with younger adults, older adults exhibited reduced uncertainty-induced pupil dilations, suggesting age-related deficits in value estimation and updating. Older adults showed a lower structural MRI of the LC contrast than younger adults, indicating age-related degeneration of the LC structure. The association between the LC-MRI contrast and value sensitivity was only observed in older adults. Our findings may demonstrate a pioneering model to unravel the role of the LC-NE system in reward-based learning in aging.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
- Methods of Psychology and Cognitive Modeling, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
- Davis School of Gerontology, University of Southern California, Los Angeles, Los Angeles, California 90089
| | - Franka Glöckner
- Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
5
|
Sun S, Wang X, Shi X, Fang H, Sun Y, Li M, Han H, He Q, Wang X, Zhang X, Zhu ZW, Chen F, Wang M. Neural pathway connectivity and discharge changes between M1 and STN in hemiparkinsonian rats. Brain Res Bull 2023; 196:1-19. [PMID: 36878325 DOI: 10.1016/j.brainresbull.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Alterations of electrophysiological activities, such as changed spike firing rates, reshaping the firing patterns, and aberrant frequency oscillations between the subthalamic nucleus (STN) and the primary motor cortex (M1), are thought to contribute to motor impairment in Parkinson's disease (PD). However, the alterations of electrophysiological characteristics of STN and M1 in PD are still unclear, especially under specific treadmill movement. To examine the relationship between electrophysiological activity in the STN-M1 pathway, extracellular spike trains and local field potential (LFPs) of STN and M1 were simultaneously recorded during resting and movement in unilateral 6-hydroxydopamine (6-OHDA) lesioned rats. The results showed that the identified STN neurons and M1 neurons exhibited abnormal neuronal activity after dopamine loss. The dopamine depletion altered the LFP power in STN and M1 whatever in rest or movement states. Furthermore, the enhanced synchronization of LFP oscillations after dopamine loss was found in 12-35 Hz (beta frequencies) between the STN and M1 during rest and movement. In addition, STN neurons were phase-locked firing to M1 oscillations at 12-35 Hz during rest epochs in 6-OHDA lesioned rats. The dopamine depletion also impaired the anatomical connectivity between the M1 and STN by injecting anterograde neuroanatomical tracing virus into M1 in control and PD rats. Collectively, impairment of' electrophysiological activity and anatomical connectivity in the M1-STN pathway may be the basis for dysfunction of the cortico-basal ganglia circuit, correlating with motor symptoms of PD.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xuenan Wang
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Xiaoman Shi
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Heyi Fang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Hongyu Han
- Weifang Middle School, Weifang 261031, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Xiaojun Wang
- The First Hospital Affiliated with Shandong First Medicine University, Jinan 250014, China
| | - Xiao Zhang
- Editorial Department of Journal, Shandong Jianzhu University, Jinan 250014, China
| | - Zhi Wei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan 250014, China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, 88# Wenhua Road, Jinan 250014, China.
| |
Collapse
|
6
|
Volnova A, Kurzina N, Belskaya A, Gromova A, Pelevin A, Ptukha M, Fesenko Z, Ignashchenkova A, Gainetdinov RR. Noradrenergic Modulation of Learned and Innate Behaviors in Dopamine Transporter Knockout Rats by Guanfacine. Biomedicines 2023; 11:222. [PMID: 36672730 PMCID: PMC9856099 DOI: 10.3390/biomedicines11010222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Investigation of the precise mechanisms of attention deficit and hyperactivity disorder (ADHD) and other dopamine-associated conditions is crucial for the development of new treatment approaches. In this study, we assessed the effects of repeated and acute administration of α2A-adrenoceptor agonist guanfacine on innate and learned forms of behavior of dopamine transporter knockout (DAT-KO) rats to evaluate the possible noradrenergic modulation of behavioral deficits. DAT-KO and wild type rats were trained in the Hebb-Williams maze to perform spatial working memory tasks. Innate behavior was evaluated via pre pulse inhibition (PPI). Brain activity of the prefrontal cortex and the striatum was assessed. Repeated administration of GF improved the spatial working memory task fulfillment and PPI in DAT-KO rats, and led to specific changes in the power spectra and coherence of brain activity. Our data indicate that both repeated and acute treatment with a non-stimulant noradrenergic drug lead to improvements in the behavior of DAT-KO rats. This study further supports the role of the intricate balance of norepinephrine and dopamine in the regulation of attention. The observed compensatory effect of guanfacine on the behavior of hyperdopaminergic rats may be used in the development of combined treatments to support the dopamine-norepinephrine balance.
Collapse
Affiliation(s)
- Anna Volnova
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Natalia Kurzina
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Anastasia Belskaya
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arina Gromova
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Arseniy Pelevin
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Biological Faculty, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Maria Ptukha
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Zoia Fesenko
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | | | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Saint Petersburg University Hospital, Saint Petersburg 199034, Russia
| |
Collapse
|
7
|
Sciolino NR, Hsiang M, Mazzone CM, Wilson LR, Plummer NW, Amin J, Smith KG, McGee CA, Fry SA, Yang CX, Powell JM, Bruchas MR, Kravitz AV, Cushman JD, Krashes MJ, Cui G, Jensen P. Natural locus coeruleus dynamics during feeding. SCIENCE ADVANCES 2022; 8:eabn9134. [PMID: 35984878 PMCID: PMC9390985 DOI: 10.1126/sciadv.abn9134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Recent data demonstrate that noradrenergic neurons of the locus coeruleus (LC-NE) are required for fear-induced suppression of feeding, but the role of endogenous LC-NE activity in natural, homeostatic feeding remains unclear. Here, we found that LC-NE activity was suppressed during food consumption, and the magnitude of this neural response was attenuated as mice consumed more pellets throughout the session, suggesting that LC responses to food are modulated by satiety state. Visual-evoked LC-NE activity was also attenuated in sated mice, suggesting that satiety state modulates LC-NE encoding of multiple behavioral states. We also found that food intake could be attenuated by brief or longer durations of LC-NE activation. Last, we found that activation of the LC to the lateral hypothalamus pathway suppresses feeding and enhances avoidance and anxiety-like responding. Our findings suggest that LC-NE neurons modulate feeding by integrating both external cues (e.g., anxiogenic environmental cues) and internal drives (e.g., satiety).
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Madeline Hsiang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher M. Mazzone
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Leslie R. Wilson
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Nicholas W. Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jaisal Amin
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Kathleen G. Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Christopher A. McGee
- Comparative Medicine, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Sydney A. Fry
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Cindy X. Yang
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Jeanne M. Powell
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael R. Bruchas
- Departments of Anesthesiology and Pharmacology, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | | | - Jesse D. Cushman
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Michael J. Krashes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Guohong Cui
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Hezemans FH, Wolpe N, O’Callaghan C, Ye R, Rua C, Jones PS, Murley AG, Holland N, Regenthal R, Tsvetanov KA, Barker RA, Williams-Gray CH, Robbins TW, Passamonti L, Rowe JB. Noradrenergic deficits contribute to apathy in Parkinson's disease through the precision of expected outcomes. PLoS Comput Biol 2022; 18:e1010079. [PMID: 35533200 PMCID: PMC9119485 DOI: 10.1371/journal.pcbi.1010079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 05/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Collapse
Affiliation(s)
- Frank H. Hezemans
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Noham Wolpe
- Department of Physical Therapy, The Stanley Steyer School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Claire O’Callaghan
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rong Ye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Catarina Rua
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - P. Simon Jones
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Negin Holland
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| | - Ralf Regenthal
- Division of Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | - Kamen A. Tsvetanov
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
- Wellcome–MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Caroline H. Williams-Gray
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Luca Passamonti
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
- Istituto di Bioimmagini e Fisiologia Molecolare, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - James B. Rowe
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Effort Mobilization and Lapses of Sustained Attention. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:42-56. [PMID: 34410617 DOI: 10.3758/s13415-021-00941-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/08/2022]
Abstract
The current study examined whether effort mobilization would enhance sustained attention and reduce lapses of attention. Participants performed a sustained attention task and were randomly assigned to either an effort condition where they were instructed to "Try Hard" on a subset of trials or were assigned to a control condition with no "Try Hard" instructions. Pupillary responses were continuously recorded, and periodically during the task participants were presented with thought probes to determine whether they were on or off task. The results suggested within the effort condition there were no behavioral differences between Try Hard and "Standard" trials. Preparatory pupil responses were increased in Try Hard trials, but there were no differences for phasic pupillary responses to stimulus onset. In contrast, examining differences between the effort and control conditions suggested that participants who received the Try Hard instructions demonstrated faster overall performance, a reduction in very long reaction times, and reported fewer off-task thoughts compared with participants in the control condition. Participants in the effort condition also demonstrated a larger ramp-up in pupillary responses during the preparatory interval and a larger phasic response to stimulus onset compared with participants in the control condition. These results are consistent with attention allocation models suggesting that participants in the effort condition mobilized more attentional effort than participants in the control condition, resulting in enhanced sustained attention and a reduction in lapses of attention. These results also are consistent with recent theories, which suggest that the locus coeruleus norepinephrine system is associated with effort mobilization.
Collapse
|
10
|
Bornert P, Bouret S. Locus coeruleus neurons encode the subjective difficulty of triggering and executing actions. PLoS Biol 2021; 19:e3001487. [PMID: 34874935 PMCID: PMC8683033 DOI: 10.1371/journal.pbio.3001487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/17/2021] [Accepted: 11/17/2021] [Indexed: 12/28/2022] Open
Abstract
The brain stem noradrenergic nucleus locus coeruleus (LC) is involved in various costly processes: arousal, stress, and attention. Recent work has pointed toward an implication in physical effort, and indirect evidence suggests that the LC could be also involved in cognitive effort. To assess the dynamic relation between LC activity, effort production, and difficulty, we recorded the activity of 193 LC single units in 5 monkeys performing 2 discounting tasks (a delay discounting task and a force discounting task), as well as a simpler target detection task where conditions were matched for difficulty and only differed in terms of sensory-motor processes. First, LC neurons displayed a transient activation both when monkeys initiated an action and when exerting force. Second, the magnitude of the activation scaled with the associated difficulty, and, potentially, the corresponding amount of effort produced, both for decision and force production. Indeed, at action initiation in both discounting tasks, LC activation increased in conditions associated with lower average engagement rate, i.e., those requiring more cognitive control to trigger the response. Decision-related activation also scaled with response time (RT), over and above task parameters, in line with the idea that it reflects the amount of resources (here time) spent on the decision process. During force production, LC activation only scaled with the amount of force produced in the force discounting task, but not in the control target detection task, where subjective difficulty was equivalent across conditions. Our data show that LC neurons dynamically track the amount of effort produced to face both cognitive and physical challenges with a subsecond precision. This works provides key insight into effort processing and the contribution of the noradrenergic system, which is affected in several pathologies where effort is impaired, including Parkinson disease and depression.
Collapse
Affiliation(s)
- Pauline Bornert
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle épinière (ICM), INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sebastien Bouret
- Motivation, Brain and Behavior Team, Institut du Cerveau et de la Moelle épinière (ICM), INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
- * E-mail:
| |
Collapse
|
11
|
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 2021; 12:6016. [PMID: 34650039 PMCID: PMC8516926 DOI: 10.1038/s41467-021-26268-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.
Collapse
|
12
|
Breton-Provencher V, Drummond GT, Sur M. Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 2021; 15:638007. [PMID: 34163331 PMCID: PMC8215268 DOI: 10.3389/fncir.2021.638007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/03/2021] [Indexed: 12/16/2022] Open
Abstract
The locus coeruleus (LC), a small brainstem nucleus, is the primary source of the neuromodulator norepinephrine (NE) in the brain. The LC receives input from widespread brain regions, and projects throughout the forebrain, brainstem, cerebellum, and spinal cord. LC neurons release NE to control arousal, but also in the context of a variety of sensory-motor and behavioral functions. Despite its brain-wide effects, much about the role of LC-NE in behavior and the circuits controlling LC activity is unknown. New evidence suggests that the modular input-output organization of the LC could enable transient, task-specific modulation of distinct brain regions. Future work must further assess whether this spatial modularity coincides with functional differences in LC-NE subpopulations acting at specific times, and how such spatiotemporal specificity might influence learned behaviors. Here, we summarize the state of the field and present new ideas on the role of LC-NE in learned behaviors.
Collapse
Affiliation(s)
| | | | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
13
|
Li M, Wang X, Yao X, Wang X, Chen F, Zhang X, Sun S, He F, Jia Q, Guo M, Chen D, Sun Y, Li Y, He Q, Zhu Z, Wang M. Roles of Motor Cortex Neuron Classes in Reach-Related Modulation for Hemiparkinsonian Rats. Front Neurosci 2021; 15:645849. [PMID: 33986639 PMCID: PMC8111217 DOI: 10.3389/fnins.2021.645849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Disruption of the function of the primary motor cortex (M1) is thought to play a critical role in motor dysfunction in Parkinson's disease (PD). Detailed information regarding the specific aspects of M1 circuits that become abnormal is lacking. We recorded single units and local field potentials (LFPs) of M1 neurons in unilateral 6-hydroxydopamine (6-OHDA) lesion rats and control rats to assess the impact of dopamine (DA) cell loss during rest and a forelimb reaching task. Our results indicated that M1 neurons can be classified into two groups (putative pyramidal neurons and putative interneurons) and that 6-OHDA could modify the activity of different M1 subpopulations to a large extent. Reduced activation of putative pyramidal neurons during inattentive rest and reaching was observed. In addition, 6-OHDA intoxication was associated with an increase in certain LFP frequencies, especially those in the beta range (broadly defined here as any frequency between 12 and 35 Hz), which become pathologically exaggerated throughout cortico-basal ganglia circuits after dopamine depletion. Furthermore, assessment of different spike-LFP coupling parameters revealed that the putative pyramidal neurons were particularly prone to being phase-locked to ongoing cortical oscillations at 12-35 Hz during reaching. Conversely, putative interneurons were neither hypoactive nor synchronized to ongoing cortical oscillations. These data collectively demonstrate a neuron type-selective alteration in the M1 in hemiparkinsonian rats. These alterations hamper the ability of the M1 to contribute to motor conduction and are likely some of the main contributors to motor impairments in PD.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Xuenan Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China.,Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaomeng Yao
- School of Nursing, Qilu Institute of Technology, Jinan, China
| | - Xiaojun Wang
- The First Hospital Affiliated With Shandong First Medicine University, Jinan, China
| | - Feiyu Chen
- School of International Education, Qilu University of Technology, Jinan, China
| | - Xiao Zhang
- Editorial Department of Journal of Shandong Jianzhu University, Jinan, China
| | - Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Feng He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Qingmei Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Mengnan Guo
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Dadian Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuchuan Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Qin He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhiwei Zhu
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|