1
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bimodal taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. Neuron 2024; 112:3396-3411.e6. [PMID: 39178859 PMCID: PMC11502256 DOI: 10.1016/j.neuron.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (n = 34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bimodal distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex, and complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (n = 228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
2
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bipolar taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572454. [PMID: 38168226 PMCID: PMC10760196 DOI: 10.1101/2023.12.19.572454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Lai H, Kong X, Zhao Y, Pan N, Zhang X, He M, Wang S, Gong Q. Patterns of a structural covariance network associated with dispositional optimism during late adolescence. Neuroimage 2022; 251:119009. [PMID: 35182752 DOI: 10.1016/j.neuroimage.2022.119009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
Dispositional optimism (hereinafter, optimism), as a vital character strength, reflects the tendency to hold generalized positive expectancies for future outcomes. A great number of studies have consistently shown the importance of optimism to a spectrum of physical and mental health outcomes. However, less attention has been given to the intrinsic neurodevelopmental patterns associated with interindividual differences in optimism. Here, we investigated this important question in a large sample comprising 231 healthy adolescents (16-20 years old) via structural magnetic resonance imaging and behavioral tests. We constructed individual structural covariance networks based on cortical gyrification using a recent novel approach combining probability density estimation and Kullback-Leibler divergence and estimated global (global efficiency, local efficiency and small-worldness) and regional (betweenness centrality) properties of these constructed networks using graph theoretical analysis. Partial correlations adjusted for age, sex and estimated total intracranial volume showed that optimism was positively related to global and local efficiency but not small-worldness. Partial least squares correlations indicated that optimism was positively linked to a pronounced betweenness centrality pattern, in which twelve cognition-, emotion-, and motivation-related regions made robust and reliable contributions. These findings remained basically consistent after additionally controlling for family socioeconomic status and showed significant correlations with optimism scores from 2.5 years before, which replicated the main findings. The current work, for the first time, delineated characteristics of the cortical gyrification covariance network associated with optimism, extending previous neurobiological understandings of optimism, which may navigate the development of interventions on a neural network level aimed at raising optimism.
Collapse
Affiliation(s)
- Han Lai
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China; Department of Psychology, Army Medical University, Chongqing, China
| | - Xiangzhen Kong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Nanfang Pan
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Xun Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Min He
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Song Wang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|