1
|
Kritzer MF, Adler A, Locklear M. Androgen effects on mesoprefrontal dopamine systems in the adult male brain. Neuroscience 2025; 568:519-534. [PMID: 38977069 DOI: 10.1016/j.neuroscience.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Epidemiological data show that males are more often and/or more severely affected by symptoms of prefrontal cortical dysfunction in schizophrenia, Parkinson's disease and other disorders in which dopamine circuits associated with the prefrontal cortex are dysregulated. This review focuses on research showing that these dopamine circuits are powerfully regulated by androgens. It begins with a brief overview of the sex differences that distinguish prefrontal function in health and prefrontal dysfunction or decline in aging and/or neuropsychiatric disease. This review article then spotlights data from human subjects and animal models that specifically identify androgens as potent modulators of prefrontal cortical operations and of closely related, functionally critical measures of prefrontal dopamine level or tone. Candidate mechanisms by which androgens dynamically control mesoprefrontal dopamine systems and impact prefrontal states of hypo- and hyper-dopaminergia in aging and disease are then considered. This is followed by discussion of a working model that identifies a key locus for androgen modulation of mesoprefrontal dopamine systems as residing within the prefrontal cortex itself. The last sections of this review critically consider the ways in which the organization and regulation of mesoprefrontal dopamine circuits differ in the adult male and female brain, and highlights gaps where more research is needed.
Collapse
Affiliation(s)
- Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY 11794-5230, United States.
| | - Alexander Adler
- Department of Oncology and Immuno-Oncology, Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States
| | | |
Collapse
|
2
|
Ye S, Song S, Liu X, Luo Y, Cai S. A small-molecule screen identifies novel aging modulators by targeting 5-HT/DA signaling pathway. Aging Cell 2025; 24:e14411. [PMID: 39552540 PMCID: PMC11896485 DOI: 10.1111/acel.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
The risk of many human diseases including cardiovascular diseases, cancer, neurodegenerative diseases, and musculoskeletal disorders rises significantly in the elderly. With the increase in the aging population, it is becoming increasingly important to understand the biology of healthy aging and develop interventions that slow down the aging process or prevent age-related diseases. In this study, by a high-throughput screen in Caenorhabditis elegans (C. elegans), we identified 11 small molecules that promote healthy aging. Among them, Carbamazepine (a voltage-gated channels inhibitor) and Calmagite (a calcium and magnesium indicator) enhanced serotonin (5-HT) and dopamine (DA) levels, extended lifespan, and preserved several important behaviors in aging C. elegans. These behaviors include slowing responses to food, pharyngeal pumping, locomotion, and male mating. Interestingly, we further found that administration of Carbamazepine or Calmagite alleviated hyperexcitability of aging male diagonal muscles and improved behavioral performance by ameliorating Ca2+ homeostasis. Mechanistically, administration of Carbamazepine or Calmagite induced nuclear translocation of the transcription factor DAF-16 and thus up-regulated its downstream genes numr-1/-2, which are known to promote resistance to metal-induced stresses and longevity. Taken together, our study offers a way for the discovery of drugs that promote healthy aging, and provides potential interventions for preventing behavioral deterioration in the elderly.
Collapse
Affiliation(s)
- Shi‐Wei Ye
- Institute of Neuroscience and State key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shuang‐Di Song
- Institute of Neuroscience and State key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xi‐Juan Liu
- Institute of Neuroscience and State key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Yun Luo
- Institute of Neuroscience and State key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| | - Shi‐Qing Cai
- Institute of Neuroscience and State key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence TechnologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
3
|
Lee SH, Kim J, Han C. Low Psychological Resilience Predict the Risk for Alcohol Use Disorder in General Population: National Mental Health Survey of Korea 2021. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2025; 23:53-64. [PMID: 39820112 PMCID: PMC11747740 DOI: 10.9758/cpn.24.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/16/2024] [Indexed: 01/19/2025]
Abstract
Objective Prior research has emphasized psychological resilience as a potential protective factor against alcohol use disorder in diverse populations, with limited exploration of its relationship in the general population. This study investigated the association between the lifetime and one-year prevalence of alcohol use disorder and resilience. Methods Data obtained from the National Mental Health Survey of Korea 2021 (5,511 participants; 40.7% response rate) encompassed information on alcohol use disorders, resilience, experiences of psychological trauma, and major mental disorders. The analyses compared demographics, psychological trauma, resilience, and the prevalence of major mental disorders based on alcoholism. The contribution of resilience to alcoholism was assessed utilizing Rao-Scott logistic regression, with adjustments made for confounding variables. Results Individuals with both lifetime and 1-year alcohol use disorder and dependence exhibited significantly lower levels of resilience on the Connor-Davidson Resilience Scale. Diminished resilience predicted morbidity and persisted even after adjusting for depressive and anxiety disorders, psychological trauma, nicotine use disorders, age, gender, education, income, marital status, and occupation. Conclusion Diminished resilience is a prognostic indicator of increased likelihood of both lifetime and current alcoholism in the general population.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Korea
| | - Junhyung Kim
- Department of Psychiatry, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
4
|
Oliveira JH, Gomes JS, Santos P, Pezarat-Correia P, Vaz JR. Effect of sleep deprivation on gait complexity. J Sleep Res 2025:e14478. [PMID: 39904824 DOI: 10.1111/jsr.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Gait complexity is considered an indicator of adaptability, reflecting the complex interaction between multiple components of the neuromuscular system. Previous research provided evidence that chronobiology, which reflects the individual expression of circadian rhythms, affects the regulation of gait dynamics. The literature also suggests the disruption of these circadian rhythms affects multiple human physiological systems. Considering the association between chronobiology and gait complexity, and its clinical relevance, it would be important to investigate whether the disruption of sleep-wake cycle could affect gait complexity. This study aimed to investigate the effect of 1 night of sleep deprivation on gait complexity and variability of healthy individuals, exploring potential implications for motor control. Seventeen healthy and young male adults underwent an in-lab supervised 24-hr sleep deprivation protocol, with gait complexity and variability assessed using detrended fluctuation analysis and coefficient of variation, respectively. Chronotype was also assessed through the Morningness-Eveningness Questionnaire. We observed a loss of gait complexity with sleep deprivation (PRE: 0.8 ± 0.13; POST24: 0.62 ± 0.08, p < 0.001), while gait variability remained unaltered (p = 0.132). Additionally, we demonstrated an association between gait complexity's relative changes and chronotype (r = -0.665, p = 0.004). Overall, our findings suggest sleep deprivation induces a decrease in the neuromuscular system's ability to flexibly adapt gait output. Moreover, we also highlight the importance of chronobiology in motor control, as we observed the more morning-type an individual is, the greater the loss of complexity following 1 night of sleep deprivation. Altogether, our findings underscore the potential impact of sleep deprivation on central processes underlying gait complexity.
Collapse
Affiliation(s)
- João Henriques Oliveira
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada-Dafundo, Portugal
| | - João Sá Gomes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Paulo Santos
- Neuromuscular Research Lab, Faculty of Human Kinetics, University of Lisbon, Lisbon, Portugal
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Cruz-Quebrada-Dafundo, Portugal
| | - Pedro Pezarat-Correia
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - João R Vaz
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| |
Collapse
|
5
|
Crawford JL, Berry AS. Examining resilience to Alzheimer's disease through the lens of monoaminergic neuromodulator systems. Trends Neurosci 2024; 47:892-903. [PMID: 39368845 PMCID: PMC11563896 DOI: 10.1016/j.tins.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The monoaminergic nuclei are thought to be some of the earliest sites of Alzheimer's disease (AD) pathology in the brain, with tau-containing pretangles appearing in these nuclei decades before the onset of clinical impairments. It has increasingly been recognized that monoamine systems represent a critical target of investigation towards understanding the progression of AD and designing early detection and treatment approaches. This review synthesizes evidence across animal studies, human neuropathology, and state-of-the-art neuroimaging and daily life assessment methods in humans, which demonstrate robust relationships between monoamine systems and AD pathophysiology and behavior. Further, the review highlights the promise of multimethod, multisystem approaches to studying monoaminergic mechanisms of resilience to AD pathology.
Collapse
Affiliation(s)
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
6
|
Heng JG, Zhang J, Bonetti L, Lim WPH, Vuust P, Agres K, Chen SHA. Understanding music and aging through the lens of Bayesian inference. Neurosci Biobehav Rev 2024; 163:105768. [PMID: 38908730 DOI: 10.1016/j.neubiorev.2024.105768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Bayesian inference has recently gained momentum in explaining music perception and aging. A fundamental mechanism underlying Bayesian inference is the notion of prediction. This framework could explain how predictions pertaining to musical (melodic, rhythmic, harmonic) structures engender action, emotion, and learning, expanding related concepts of music research, such as musical expectancies, groove, pleasure, and tension. Moreover, a Bayesian perspective of music perception may shed new insights on the beneficial effects of music in aging. Aging could be framed as an optimization process of Bayesian inference. As predictive inferences refine over time, the reliance on consolidated priors increases, while the updating of prior models through Bayesian inference attenuates. This may affect the ability of older adults to estimate uncertainties in their environment, limiting their cognitive and behavioral repertoire. With Bayesian inference as an overarching framework, this review synthesizes the literature on predictive inferences in music and aging, and details how music could be a promising tool in preventive and rehabilitative interventions for older adults through the lens of Bayesian inference.
Collapse
Affiliation(s)
- Jiamin Gladys Heng
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| | - Jiayi Zhang
- Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom; Department of Psychiatry, University of Oxford, United Kingdom; Department of Psychology, University of Bologna, Italy
| | | | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus, Aalborg, Denmark
| | - Kat Agres
- Centre for Music and Health, National University of Singapore, Singapore; Yong Siew Toh Conservatory of Music, National University of Singapore, Singapore
| | - Shen-Hsing Annabel Chen
- School of Social Sciences, Nanyang Technological University, Singapore; Centre for Research and Development in Learning, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; National Institute of Education, Nanyang Technological University, Singapore.
| |
Collapse
|
7
|
Elmers J, Colzato LS, Ziemssen F, Ziemssen T, Beste C. Optical coherence tomography as a potential surrogate marker of dopaminergic modulation across the life span. Ageing Res Rev 2024; 96:102280. [PMID: 38518921 DOI: 10.1016/j.arr.2024.102280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/02/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
The retina has been considered a "window to the brain" and shares similar innervation by the dopaminergic system with the cortex in terms of an unequal distribution of D1 and D2 receptors. Here, we provide a comprehensive overview that Optical Coherence Tomography (OCT), a non-invasive imaging technique, which provides an "in vivo" representation of the retina, shows promise to be used as a surrogate marker of dopaminergic neuromodulation in cognition. Overall, most evidence supports reduced retinal thickness in individuals with dopaminergic dysregulation (e.g., patients with Parkinson's Disease, non-demented older adults) and with poor cognitive functioning. By using the theoretical framework of metacontrol, we derive hypotheses that retinal thinning associated to decreased dopamine (DA) levels affecting D1 families, might lead to a decrease in the signal-to-noise ratio (SNR) affecting cognitive persistence (depending on D1-modulated DA activity) but not cognitive flexibility (depending on D2-modulated DA activity). We argue that the use of OCT parameters might not only be an insightful for cognitive neuroscience research, but also a potentially effective tool for individualized medicine with a focus on cognition. As our society progressively ages in the forthcoming years and decades, the preservation of cognitive abilities and promoting healthy aging will hold of crucial significance. OCT has the potential to function as a swift, non-invasive, and economical method for promptly recognizing individuals with a heightened vulnerability to cognitive deterioration throughout all stages of life.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Focke Ziemssen
- Ophthalmological Clinic, University Clinic Leipzig, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
8
|
Campisi M, Cannella L, Celik D, Gabelli C, Gollin D, Simoni M, Ruaro C, Fantinato E, Pavanello S. Mitigating cellular aging and enhancing cognitive functionality: visual arts-mediated Cognitive Activation Therapy in neurocognitive disorders. Front Aging Neurosci 2024; 16:1354025. [PMID: 38524114 PMCID: PMC10957554 DOI: 10.3389/fnagi.2024.1354025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
The growing phenomenon of population aging is redefining demographic dynamics, intensifying age-related conditions, especially dementia, projected to triple by 2050 with an enormous global economic burden. This study investigates visual arts-mediated Cognitive Activation Therapy (CAT) as a non-pharmacological CAT intervention targets both biological aging [leukocyte telomere length (LTL), DNA methylation age (DNAmAge)] and cognitive functionality. Aligning with a broader trend of integrating non-pharmacological approaches into dementia care. The longitudinal study involved 20 patients with mild to moderate neurocognitive disorders. Cognitive and functional assessments, and biological aging markers -i.e., LTL and DNAmAge- were analyzed before and after CAT intervention. Change in LTL was positively correlated with days of treatment (p =0.0518). LTL significantly elongated after intervention (p =0.0269), especially in men (p =0.0142), correlating with younger age (p =0.0357), and higher education (p =0.0008). DNAmAge remained instead stable post-treatment. Cognitive and functional improvements were observed for Copy of complex geometric figure, Progressive Silhouettes, Position Discrimination, Communication Activities of Daily Living-Second edition, Direct Functional Status (p < 0.0001) and Object decision (p =0.0594), but no correlations were found between LTL and cognitive gains. Visual arts-mediated CAT effectively mitigates cellular aging, especially in men, by elongating LTL. These findings underscore the potential of non-pharmacological interventions in enhancing cognitive and functional status and general well-being in dementia care. Further research with larger and longer-term studies is essential for validation.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dilek Celik
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Gabelli
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Donata Gollin
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Marco Simoni
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Cristina Ruaro
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Elena Fantinato
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
- University Hospital of Padua, Padua, Italy
| |
Collapse
|
9
|
Dewi ES, Zakiya FA, Mei KW, Arimbawa G, Evi N. The Impact of Aromatherapy Gelatin Cold Compresses on the Concentration Level of Students in the Covid-19 Pandemic Online Class. SAGE Open Nurs 2024; 10:23779608241228901. [PMID: 38362464 PMCID: PMC10868485 DOI: 10.1177/23779608241228901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/19/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024] Open
Abstract
Introduction Stressful circumstances presented by the Covid-19 pandemic led to reduced levels of study concentration among students, and these conditions had been linked with dopamine levels. Objectives This study aimed to evaluate the impact of aromatherapy gelatin cold compress in increasing the study concentration of students by decreasing stress levels and elevating dopamine levels during the Covid-19 pandemic online class. Methods The study participants consisted of 42 students, who were selected using the simple random sampling method. Subsequently, the participants were comparably divided into control and treatment groups. Compress intervention was given to the treatment group on the forehead for 10 min before studying online. The Visual Analog Scale (VAS) and Stroop test were then used to determine stress and concentration levels of the students, respectively. The catecholamine fractionated urine was used to measure dopamine levels. Analysis was carried out using Paired T-test and Independent T-test with α = 0.05 and CI = 95%. Results The mean value of the VAS before and after treatment was 5.81 ± 2.48 and 5.28 ± 2.61 in the control (p = 0.205), as well as 6.28 ± 1.62 and 4.38 ± 1.89 in the treatment group (p = 0.000). The mean interference score of the Stroop test before and after treatment was 13.16 ± 1.05 and 13.22 ± 1.31 among the controls (p = 0.947), while 13.35 ± 6.94 and 8.92 ± 5.91 were recorded in the treatment group (p = 0.000). The average dopamine levels before and after the intervention were 145.50 ± 7.94 mg/mL and 146.65 ± 8.23 mg/mL creatinine among the controls (p = 0.542), while 145.35 ± 1.03 mg/mL and 265.18 ± 1.27 mg/mL creatinine were obtained in the treatment group (p = 0.01). Furthermore, the results showed that the creatinine levels were within the normal ranges. The Independent T-test of stress, concentration, and dopamine levels obtained p = 0.024, p = 0.010, and p = 0.090, respectively. Conclusion Aromatherapy gelatin cold compress was effective in increasing study concentration by decreasing stress levels and increasing dopamine levels during the Covid-19 pandemic online class.
Collapse
Affiliation(s)
- Elvira Sari Dewi
- Department of Nursing, Faculty of Health Sciences, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Fifi Afifatus Zakiya
- Bachelor of Nursing Science Study Program, Faculty of Health Sciences, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Karina Wulan Mei
- Bachelor of Nursing Science Study Program, Faculty of Health Sciences, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Gusde Arimbawa
- Bachelor of Nursing Science Study Program, Faculty of Health Sciences, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Nurul Evi
- Department of Public Health, Faculty of Sports, Universitas Negeri Malang, Malang, East Java, Indonesia
| |
Collapse
|
10
|
Markova TZ, Ciampa CJ, Parent JH, LaPoint MR, D'Esposito M, Jagust WJ, Berry AS. Poorer aging trajectories are associated with elevated serotonin synthesis capacity. Mol Psychiatry 2023; 28:4390-4398. [PMID: 37460847 PMCID: PMC10792105 DOI: 10.1038/s41380-023-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 01/18/2024]
Abstract
The dorsal raphe nucleus (DRN) is one of the earliest targets of Alzheimer's disease-related tau pathology and is a major source of brain serotonin. We used [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure serotonin synthesis capacity in the DRN in 111 healthy adults (18-85 years-old). Similar to reports in catecholamine systems, we found elevated serotonin synthesis capacity in older adults relative to young. To establish the structural and functional context within which serotonin synthesis capacity is elevated in aging, we examined relationships among DRN [18F]FMT net tracer influx (Ki) and longitudinal changes in cortical thickness using magnetic resonance imaging, longitudinal changes in self-reported depression symptoms, and AD-related tau and β-amyloid (Aβ) pathology using cross-sectional [18F]Flortaucipir and [11C]Pittsburgh compound-B PET respectively. Together, our findings point to elevated DRN [18F]FMT Ki as a marker of poorer aging trajectories. Older adults with highest serotonin synthesis capacity showed greatest temporal lobe cortical atrophy. Cortical atrophy was associated with increasing depression symptoms over time, and these effects appeared to be strongest in individuals with highest serotonin synthesis capacity. We did not find direct relationships between serotonin synthesis capacity and AD-related pathology. Exploratory analyses revealed nuanced effects of sex within the older adult group. Older adult females showed the highest DRN synthesis capacity and exhibited the strongest relationships between entorhinal cortex tau pathology and increasing depression symptoms. Together these findings reveal PET measurement of the serotonin system to be a promising marker of aging trajectories relevant to both AD and affective changes in older age.
Collapse
Affiliation(s)
| | | | | | - Molly R LaPoint
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
11
|
Johansson J, Nordin K, Pedersen R, Karalija N, Papenberg G, Andersson M, Korkki SM, Riklund K, Guitart-Masip M, Rieckmann A, Bäckman L, Nyberg L, Salami A. Biphasic patterns of age-related differences in dopamine D1 receptors across the adult lifespan. Cell Rep 2023; 42:113107. [PMID: 37676765 DOI: 10.1016/j.celrep.2023.113107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
Age-related alterations in D1-like dopamine receptor (D1DR) have distinct implications for human cognition and behavior during development and aging, but the timing of these periods remains undefined. Enabled by a large sample of in vivo assessments (n = 180, age 20 to 80 years of age, 50% female), we discover that age-related D1DR differences pivot at approximately 40 years of age in several brain regions. Focusing on the most age-sensitive dopamine-rich region, we observe opposing pre- and post-forties interrelations among caudate D1DR, cortico-striatal functional connectivity, and memory. Finally, particularly caudate D1DR differences in midlife and beyond, but not in early adulthood, associate with manifestation of white matter lesions. The present results support a model by which excessive dopamine modulation in early adulthood and insufficient modulation in aging are deleterious to brain function and cognition, thus challenging a prevailing view of monotonic D1DR function across the adult lifespan.
Collapse
Affiliation(s)
- Jarkko Johansson
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden.
| | - Kristin Nordin
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Robin Pedersen
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden
| | - Goran Papenberg
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden
| | - Saana M Korkki
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden
| | - Marc Guitart-Masip
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Anna Rieckmann
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social Policy, 80799 Munich, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden
| | - Lars Nyberg
- Department of Radiation Sciences, Diagnostic Radiology, Umeå University, 90187 Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, 90187 Umeå, Sweden; Aging Research Center, Karolinska Institutet & Stockholm University, Tomtebodavägen 18A, 17165 Stockholm, Sweden; Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; Wallenberg Center for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Chen HY, Parent JH, Ciampa CJ, Dahl MJ, Hämmerer D, Maass A, Winer JR, Yakupov R, Inglis B, Betts MJ, Berry AS. Interactive effects of locus coeruleus structure and catecholamine synthesis capacity on cognitive function. Front Aging Neurosci 2023; 15:1236335. [PMID: 37744395 PMCID: PMC10516288 DOI: 10.3389/fnagi.2023.1236335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Background The locus coeruleus (LC) produces catecholamines (norepinephrine and dopamine) and is implicated in a broad range of cognitive functions including attention and executive function. Recent advancements in magnetic resonance imaging (MRI) approaches allow for the visualization and quantification of LC structure. Human research focused on the LC has since exploded given the LC's role in cognition and relevance to current models of psychopathology and neurodegenerative disease. However, it is unclear to what extent LC structure reflects underlying catecholamine function, and how LC structure and neurochemical function are collectively associated with cognitive performance. Methods A partial least squares correlation (PLSC) analysis was applied to 19 participants' LC structural MRI measures and catecholamine synthesis capacity measures assessed using [18F]Fluoro-m-tyrosine ([18F]FMT) positron emission tomography (PET). Results We found no direct association between LC-MRI and LC-[18F]FMT measures for rostral, middle, or caudal portions of the LC. We found significant associations between LC neuroimaging measures and neuropsychological performance that were driven by rostral and middle portions of the LC, which is in line with LC cortical projection patterns. Specifically, associations with executive function and processing speed arose from contributions of both LC structure and interactions between LC structure and catecholamine synthesis capacity. Conclusion These findings leave open the possibility that LC MRI and PET measures contribute unique information and suggest that their conjoint use may increase sensitivity to brain-behavior associations in small samples.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Department of Psychology, Brandeis University, Waltham, MA, United States
| | - Jourdan H. Parent
- Department of Psychology, Brandeis University, Waltham, MA, United States
| | - Claire J. Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, United States
| | - Martin J. Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Dorothea Hämmerer
- Psychological Institute, University of Innsbruck, Innsbruck, Austria
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | - Joseph R. Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Renat Yakupov
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew J. Betts
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne S. Berry
- Department of Psychology, Brandeis University, Waltham, MA, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
13
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
14
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
15
|
Zong B, Yu F, Zhang X, Zhao W, Sun P, Li S, Li L. Understanding How Physical Exercise Improves Alzheimer’s Disease: Cholinergic and Monoaminergic Systems. Front Aging Neurosci 2022; 14:869507. [PMID: 35663578 PMCID: PMC9158463 DOI: 10.3389/fnagi.2022.869507] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by the accumulation of proteinaceous aggregates and neurofibrillary lesions composed of β-amyloid (Aβ) peptide and hyperphosphorylated microtubule-associated protein tau, respectively. It has long been known that dysregulation of cholinergic and monoaminergic (i.e., dopaminergic, serotoninergic, and noradrenergic) systems is involved in the pathogenesis of AD. Abnormalities in neuronal activity, neurotransmitter signaling input, and receptor function exaggerate Aβ deposition and tau hyperphosphorylation. Maintenance of normal neurotransmission is essential to halt AD progression. Most neurotransmitters and neurotransmitter-related drugs modulate the pathology of AD and improve cognitive function through G protein-coupled receptors (GPCRs). Exercise therapies provide an important alternative or adjunctive intervention for AD. Cumulative evidence indicates that exercise can prevent multiple pathological features found in AD and improve cognitive function through delaying the degeneration of cholinergic and monoaminergic neurons; increasing levels of acetylcholine, norepinephrine, serotonin, and dopamine; and modulating the activity of certain neurotransmitter-related GPCRs. Emerging insights into the mechanistic links among exercise, the neurotransmitter system, and AD highlight the potential of this intervention as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Boyi Zong
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Fengzhi Yu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Xiaoyou Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Wenrui Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Peng Sun
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Shichang Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
- *Correspondence: Lin Li,
| |
Collapse
|
16
|
Ciampa CJ, Parent JH, Harrison TM, Fain RM, Betts MJ, Maass A, Winer JR, Baker SL, Janabi M, Furman DJ, D'Esposito M, Jagust WJ, Berry AS. Associations among locus coeruleus catecholamines, tau pathology, and memory in aging. Neuropsychopharmacology 2022; 47:1106-1113. [PMID: 35034099 PMCID: PMC8938463 DOI: 10.1038/s41386-022-01269-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/16/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
The locus coeruleus (LC) is the brain's major source of the neuromodulator norepinephrine, and is also profoundly vulnerable to the development of Alzheimer's disease (AD)-related tau pathology. Norepinephrine plays a role in neuroprotective functions that may reduce AD progression, and also underlies optimal memory performance. Successful maintenance of LC neurochemical function represents a candidate mechanism of protection against the propagation of AD-related pathology and may facilitate the preservation of memory performance despite pathology. Using [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure catecholamine synthesis capacity in LC regions of interest, we examined relationships among LC neurochemical function, AD-related pathology, and memory performance in cognitively normal older adults (n = 49). Participants underwent [11C]Pittsburgh compound B and [18F]Flortaucipir PET to quantify β-amyloid (n = 49) and tau burden (n = 42) respectively. In individuals with substantial β-amyloid, higher LC [18F]FMT net tracer influx (Kivis) was associated with lower temporal tau. Longitudinal tau-PET analyses in a subset of our sample (n = 30) support these findings to reveal reduced temporal tau accumulation in the context of higher LC [18F]FMT Kivis. Higher LC catecholamine synthesis capacity was positively correlated with self-reported cognitive engagement and physical activity across the lifespan, established predictors of successful aging measured with the Lifetime Experiences Questionnaire. LC catecholamine synthesis capacity moderated tau's negative effect on memory, such that higher LC catecholamine synthesis capacity was associated with better-than-expected memory performance given an individual's tau burden. These PET findings provide insight into the neurochemical mechanisms of AD vulnerability and cognitive resilience in the living human brain.
Collapse
Affiliation(s)
- Claire J Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Jourdan H Parent
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Theresa M Harrison
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Rebekah M Fain
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Magdeburg, 39106, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, 39120, Germany
| | - Joseph R Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Suzanne L Baker
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mustafa Janabi
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Daniella J Furman
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA, 02453, USA.
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|