1
|
Lana V, Frère J, Cabibel V, Réguème T, Lefèvre N, Vlamynck E, Decker LM. Kinematic and neuromuscular characterization of cognitive involvement in gait control in healthy young adults. J Neurophysiol 2024; 132:1333-1347. [PMID: 39259893 DOI: 10.1152/jn.00043.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/13/2024] Open
Abstract
The signature of cognitive involvement in gait control has rarely been studied using both kinematic and neuromuscular features. The present study aimed to address this gap. Twenty-four healthy young adults walked on an instrumented treadmill in a virtual environment under two optic flow conditions: normal (NOF) and perturbed (POF, continuous mediolateral pseudorandom oscillations). Each condition was performed under single-task and dual-task conditions of increasing difficulty (1-, 2-, 3-back). Subjective mental workload (raw NASA-TLX), cognitive performance (mean reaction time and d-prime), kinematic (steadiness, variability, and complexity in the mediolateral and anteroposterior directions), and neuromuscular (duration and variability of motor primitives) control of gait were assessed. The cognitive performance and the number and composition of motor modules were unaffected by simultaneous walking, regardless of the optic flow condition. Kinematic and neuromuscular variability was greater under POF compared with NOF conditions. Young adults sought to counteract POF by rapidly correcting task-relevant gait fluctuations. The depletion of cognitive resources through dual-tasking led to reduced kinematic and neuromuscular variability and this occurred to the same extent regardless of simultaneous working memory (WM) load. Increasing WM load led to a prioritization of gait control in the mediolateral direction over the anteroposterior direction. The impact of POF on kinematic variability (step velocity) was reduced when a cognitive task was performed simultaneously, but this phenomenon was not modulated by WM load. Collectively, these results shed important light on how young adults adjust the processes involved in goal-directed locomotion when exposed to varying levels of task and environmental constraints.NEW & NOTEWORTHY The kinematic and neuromuscular signatures of cognitive involvement in gait control have rarely been studied jointly. We sought to address this issue using gait perturbation and dual-task paradigms. The protocol consisted of a fixed-speed treadmill walk to which visual and cognitive constraints were applied separately and together. The results revealed that young adults optimally regulated their gait to cope with these constraints by maintaining relatively stable muscle synergies and flexibly allocating attentional resources.
Collapse
Affiliation(s)
- Valentin Lana
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | - Julien Frère
- Université Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, Grenoble, France
| | - Vincent Cabibel
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | - Tristan Réguème
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | | | - Elodie Vlamynck
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
| | - Leslie M Decker
- Normandie Université, UNICAEN, INSERM, COMETE, GIP Cyceron, Caen, France
- Normandie Université, UNICAEN, CIREVE, Caen, France
| |
Collapse
|
2
|
Grasso-Cladera A, Bremer M, Ladouce S, Parada F. A systematic review of mobile brain/body imaging studies using the P300 event-related potentials to investigate cognition beyond the laboratory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:631-659. [PMID: 38834886 DOI: 10.3758/s13415-024-01190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/06/2024]
Abstract
The P300 ERP component, related to the onset of task-relevant or infrequent stimuli, has been widely used in the Mobile Brain/Body Imaging (MoBI) literature. This systematic review evaluates the quality and breadth of P300 MoBI studies, revealing a maturing field with well-designed research yet grappling with standardization and global representation challenges. While affirming the reliability of measuring P300 ERP components in mobile settings, the review identifies significant hurdles in standardizing data cleaning and processing techniques, impacting comparability and reproducibility. Geographical disparities emerge, with studies predominantly in the Global North and a dearth of research from the Global South, emphasizing the need for broader inclusivity to counter the WEIRD bias in psychology. Collaborative projects and mobile EEG systems showcase the feasibility of reaching diverse populations, which is essential to advance precision psychiatry and to integrate varied data streams. Methodologically, a trend toward ecological validity is noted, shifting from lab-based to real-world settings with portable EEG system advancements. Future hardware developments are expected to balance signal quality and sensor intrusiveness, enriching data collection in everyday contexts. Innovative methodologies reflect a move toward more natural experimental settings, prompting critical questions about the applicability of traditional ERP markers, such as the P300 outside structured paradigms. The review concludes by highlighting the crucial role of integrating mobile technologies, physiological sensors, and machine learning to advance cognitive neuroscience. It advocates for an operational definition of ecological validity to bridge the gap between controlled experiments and the complexity of embodied cognitive experiences, enhancing both theoretical understanding and practical application in study design.
Collapse
Affiliation(s)
| | - Marko Bremer
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile
- Facultad de Psicología, Programa de Magíster en Neurociencia Social, Diego Portales University, Santiago, Chile
| | - Simon Ladouce
- Department Brain and Cognition, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Francisco Parada
- Facultad de Psicología, Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Diego Portales University, Santiago, Chile.
| |
Collapse
|
3
|
Ou ZT, Ding Q, Yao ST, Zhang L, Li YW, Lan Y, Xu GQ. Functional near-infrared spectroscopy evidence of cognitive-motor interference in different dual tasks. Eur J Neurosci 2024; 59:3045-3060. [PMID: 38576168 DOI: 10.1111/ejn.16333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Dual tasks (DTs) combining walking with a cognitive task can cause various levels of cognitive-motor interference, depending on which brain resources are recruited in each case. However, the brain activation and functional connectivity underlying cognitive-motor interferences remain to be elucidated. Therefore, this study investigated the neural correlation during different DT conditions in 40 healthy young adults (mean age: 27.53 years, 28 women). The DTs included walking during subtraction or N-Back tasks. Cognitive-motor interference was calculated, and brain activation and functional connectivity were analysed. Portable functional near-infrared spectroscopy was utilized to monitor haemodynamics in the prefrontal cortex (PFC), motor cortex and parietal cortex during each task. Walking interference (decrease in walking speed during DT) was greater than cognitive interference (decrease in cognitive performance during DT), regardless of the type of task. Brain activation in the bilateral PFC and parietal cortex was greater for walking during subtraction than for standing subtraction. Furthermore, brain activation was higher in the bilateral motor and parietal and PFCs for walking during subtraction than for walking alone, but only increased in the PFC for walking during N-Back. Coherence between the bilateral lateral PFC and between the left lateral PFC and left motor cortex was significantly greater for walking during 2-Back than for walking. The PFC, a critical brain region for organizing cognitive and motor functions, played a crucial role in integrating information coming from multiple brain networks required for completing DTs. Therefore, the PFC could be a potential target for the modulation and improvement of cognitive-motor functions during neurorehabilitation.
Collapse
Affiliation(s)
- Zi-Tong Ou
- Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shan-Tong Yao
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Lei Zhang
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ya-Wen Li
- Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yue Lan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guang-Qing Xu
- Department of Rehabilitation Medicine, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Rehabilitation Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Papin LJ, Esche M, Scanlon JEM, Jacobsen NSJ, Debener S. Investigating cognitive-motor effects during slacklining using mobile EEG. Front Hum Neurosci 2024; 18:1382959. [PMID: 38818032 PMCID: PMC11137308 DOI: 10.3389/fnhum.2024.1382959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Balancing is a very important skill, supporting many daily life activities. Cognitive-motor interference (CMI) dual-tasking paradigms have been established to identify the cognitive load of complex natural motor tasks, such as running and cycling. Here we used wireless, smartphone-recorded electroencephalography (EEG) and motion sensors while participants were either standing on firm ground or on a slackline, either performing an auditory oddball task (dual-task condition) or no task simultaneously (single-task condition). We expected a reduced amplitude and increased latency of the P3 event-related potential (ERP) component to target sounds for the complex balancing compared to the standing on ground condition, and a further decrease in the dual-task compared to the single-task balancing condition. Further, we expected greater postural sway during slacklining while performing the concurrent auditory attention task. Twenty young, experienced slackliners performed an auditory oddball task, silently counting rare target tones presented in a series of frequently occurring standard tones. Results revealed similar P3 topographies and morphologies during both movement conditions. Contrary to our predictions we observed neither significantly reduced P3 amplitudes, nor significantly increased latencies during slacklining. Unexpectedly, we found greater postural sway during slacklining with no additional task compared to dual-tasking. Further, we found a significant correlation between the participant's skill level and P3 latency, but not between skill level and P3 amplitude or postural sway. This pattern of results indicates an interference effect for less skilled individuals, whereas individuals with a high skill level may have shown a facilitation effect. Our study adds to the growing field of research demonstrating that ERPs obtained in uncontrolled, daily-life situations can provide meaningful results. We argue that the individual CMI effects on the P3 ERP reflects how demanding the balancing task is for untrained individuals, which draws on limited resources that are otherwise available for auditory attention processing. In future work, the analysis of concurrently recorded motion-sensor signals will help to identify the cognitive demands of motor tasks executed in natural, uncontrolled environments.
Collapse
Affiliation(s)
- Lara J. Papin
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Manik Esche
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Joanna E. M. Scanlon
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Oldenburg Branch for Hearing, Speech and Audio Technology (HSA), Fraunhofer Institute for Digital Media Technology (IDMT), Oldenburg, Germany
| | - Nadine S. J. Jacobsen
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Oldenburg Branch for Hearing, Speech and Audio Technology (HSA), Fraunhofer Institute for Digital Media Technology (IDMT), Oldenburg, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Neurosensory Science and Systems, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Gutiérrez-Capote A, Madinabeitia I, Alarcón F, Torre E, Jiménez-Martínez J, Cárdenas D. Acute effect of complexity in basketball on cognitive capacity. Front Psychol 2024; 15:1376961. [PMID: 38827893 PMCID: PMC11141245 DOI: 10.3389/fpsyg.2024.1376961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Background Executive functions, notably inhibition, significantly influence decision-making and behavioral regulation in team sports. However, more research must be conducted on individual player characteristics such as experience and motor skills. This study assessed how accumulated practical experience moderates inhibition in response to varying task difficulty levels. Methods Forty-four university students (age: 20.36 ± 3.13 years) participated in this study with two sessions: one followed standard 1 × 1 basketball rules ("Regular Practice"), while the other imposed motor, temporal, and spatial restrictions ("Restriction Practice"). Functional difficulty was controlled by grouping pairs with similar skill levels. Flanker and Go-Nogo tasks were used. Results Increasing complexity worsened cognitive performance (inhibition). "Restriction Practice" showed a significantly slower and less accurate performance in both tests than "Regular Practice" (p < 0.001). Experience positively impacted test speed and accuracy (p < 0.001). Conclusion In sports, acute cognitive impacts are intrinsically linked to the task's complexity and the athlete's cognitive resources. In this sense, it is essential to adjust individually the cognitive demands of the tasks, considering each athlete's specific cognitive abilities and capacities.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Capote
- Department of Physical Education and Sport, Faculty of Sports Science, University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Iker Madinabeitia
- Department of Physical Education and Sport, Faculty of Sports Science, University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), Granada, Spain
- Department of General and Specific Didactics, Faculty of Education, University of Alicante, Alicante, Spain
| | - Francisco Alarcón
- Department of General and Specific Didactics, Faculty of Education, University of Alicante, Alicante, Spain
| | - Elisa Torre
- Department of Physical Education and Sport, Faculty of Sports Science, University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - Jesús Jiménez-Martínez
- Department of Physical Education and Sport, Faculty of Sports Science, University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), Granada, Spain
| | - David Cárdenas
- Department of Physical Education and Sport, Faculty of Sports Science, University of Granada, Granada, Spain
- Sport and Health University Research Institute (iMUDS), Granada, Spain
| |
Collapse
|
6
|
Dalbah J, Zadeh SAM, Kim M. The Effect of a Cognitive Dual Task on Gait Parameters among Healthy Young Adults with Good and Poor Sleep Quality: A Cross-Sectional Analysis. J Clin Med 2024; 13:2566. [PMID: 38731095 PMCID: PMC11084228 DOI: 10.3390/jcm13092566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Sleep quality is known to affect automatic and executive brain functions such as gait control and cognitive processing. This study aimed to investigate the effect of dual tasks on gait spatiotemporal parameters among young adults with good and poor sleep quality. Methods: In total, 65 young adults with a mean age of 21.1 ± 2.5 were assessed for gait analysis during single-task and dual-task conditions. The participants' sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and gait was assessed using the BTS Gaitlab System. The participants were asked to walk at natural speed as a single-task condition, followed by walking while performing a cognitive task as a dual-task condition. The parameters assessed included the gait velocity (m/s), cadence (steps/min), step width (m), and stride length (m). The dual-task cost (DTC) on each gait parameter was calculated. The Mann-Whitney U test was used to compare the differences in the DTC on gait variables between the good and poor sleep quality groups and the Spearman correlation test was used to assess the correlation between total PSQI scores and the DTC. Results: At a significance level of p < 0.05, a significant difference in cadence between the two sleep quality groups was observed, in addition to a positive correlation between sleep quality and the DTC effect on gait mean velocity, cadence, and stride length. Our findings also revealed a greater DTC in participants with poorer sleep quality. Conclusions: These findings contribute to our perception of the significance of sleep quality in gait performance while multitasking in younger populations.
Collapse
Affiliation(s)
- Jood Dalbah
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.D.); (S.A.M.Z.)
| | - Shima A. Mohammad Zadeh
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.D.); (S.A.M.Z.)
| | - Meeyoung Kim
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (J.D.); (S.A.M.Z.)
- Laboratory of Health Science & Nanophysiotherapy, Department of Physical Therapy, Graduate School, Yongin University, Yongin 17092, Republic of Korea
- Neuromusculoskeletal Rehabilitation Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
7
|
Lu J, Zhang X, Shu Z, Han J, Yu N. A dynamic brain network decomposition method discovers effective brain hemodynamic sub-networks for Parkinson's disease. J Neural Eng 2024; 21:026047. [PMID: 38621377 DOI: 10.1088/1741-2552/ad3eb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Objective.Dopaminergic treatment is effective for Parkinson's disease (PD). Nevertheless, the conventional treatment assessment mainly focuses on human-administered behavior examination while the underlying functional improvements have not been well explored. This paper aims to investigate brain functional variations of PD patients after dopaminergic therapy.Approach.This paper proposed a dynamic brain network decomposition method and discovered brain hemodynamic sub-networks that well characterized the efficacy of dopaminergic treatment in PD. Firstly, a clinical walking procedure with functional near-infrared spectroscopy was developed, and brain activations during the procedure from fifty PD patients under the OFF and ON states (without and with dopaminergic medication) were captured. Then, dynamic brain networks were constructed with sliding-window analysis of phase lag index and integrated time-varying functional networks across all patients. Afterwards, an aggregated network decomposition algorithm was formulated based on aggregated effectiveness optimization of functional networks in spanning network topology and cross-validation network variations, and utilized to unveil effective brain hemodynamic sub-networks for PD patients. Further, dynamic sub-network features were constructed to characterize the brain flexibility and dynamics according to the temporal switching and activation variations of discovered sub-networks, and their correlations with differential treatment-induced gait alterations were analyzed.Results.The results demonstrated that PD patients exhibited significantly enhanced flexibility after dopaminergic therapy within a sub-network related to the improvement of motor functions. Other sub-networks were significantly correlated with trunk-related axial symptoms and exhibited no significant treatment-induced dynamic interactions.Significance.The proposed method promises a quantified and objective approach for dopaminergic treatment evaluation. Moreover, the findings suggest that the gait of PD patients comprises distinct motor domains, and the corresponding neural controls are selectively responsive to dopaminergic treatment.
Collapse
Affiliation(s)
- Jiewei Lu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Xinyuan Zhang
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, People's Republic of China
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Tianjin, People's Republic of China
- Engineering Research Center of Trusted Behavior Intelligence, Ministry of Education, Nankai University, Tianjin, People's Republic of China
- Institute of Intelligence Technology and Robotic Systems, Shenzhen Research Institute of Nankai University, Shenzhen, People's Republic of China
| |
Collapse
|
8
|
Richardson DP, Foxe JJ, Freedman EG. Reduced Proactive and Reactive Cognitive Flexibility in Older Adults Underlies Performance Costs During Dual-Task Walking: A Mobile Brain/Body Imaging (MoBI) Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.27.577090. [PMID: 38328169 PMCID: PMC10849668 DOI: 10.1101/2024.01.27.577090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Age-related reductions in cognitive flexibility may limit modulation of control processes during systematic increases to cognitive-motor demands, exacerbating dual-task costs. In this study, behavioral and neurophysiologic changes to proactive and reactive control during progressive cognitive-motor demands were compared across older and younger adults to explore the basis for age-differences in cognitive-motor interference (CMI). 19 younger (19 - 29 years old, mean age = 22.84 +/- 2.75 years, 6 male, 13 female) and 18 older (60 - 77 years old, mean age = 67.89 +/- 4.60 years, 9 male, 9 female) healthy adults completed cued task-switching while alternating between sitting and walking on a treadmill. Gait kinematics, task performance measures, and brain activity were recorded using electroencephalography (EEG) based Mobile Brain/Body Imaging (MoBI). Response accuracy on easier trial types improved in younger, but not older adults when they walked while performing the cognitive task. As difficulty increased, walking provoked accuracy costs in older, but not younger adults. Both groups registered faster responses and reduced gait variability during dual-task walking. Older adults exhibited lower amplitude modulations of proactive and reactive neural activity as cognitive-motor demands systematically increased, which may reflect reduced flexibility for progressive preparatory and reactive adjustments over behavioral control.
Collapse
Affiliation(s)
- David P. Richardson
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| | - John J. Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| | - Edward G. Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry Rochester, New York, USA
| |
Collapse
|
9
|
Patelaki E, Foxe JJ, McFerren AL, Freedman EG. Maintaining Task Performance Levels Under Cognitive Load While Walking Requires Widespread Reallocation of Neural Resources. Neuroscience 2023; 532:113-132. [PMID: 37774910 PMCID: PMC10842245 DOI: 10.1016/j.neuroscience.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
This study elucidates the neural mechanisms underlying increasing cognitive load while walking by employing 2 versions of a response inhibition task, the '1-back' version and the more cognitively demanding '2-back' version. By using the Mobile Brain/Body Imaging (MoBI) modality, electroencephalographic (EEG) activity, three-dimensional (3D) gait kinematics and task-related behavioral responses were collected while young adults (n = 61) performed either the 1-back or 2-back response inhibition task. Interestingly, increasing inhibitory difficulty from 1-back to 2-back during walking was not associated with any detectable costs in response accuracy, response speed, or gait consistency. However, the more difficult cognitive task was associated with distinct EEG component changes during both successful inhibitions (correct rejections) and successful executions (hits) of the motor response. During correct rejections, ERP changes were found over frontal regions, during latencies related to sensory gain control, conflict monitoring and working memory storage and processing. During hits, ERP changes were found over left-parietal regions during latencies related to orienting attention and subsequent selection and execution of the motor plan. The pattern of attenuation in walking-related EEG amplitude changes, during 2-back task performance, is thought to reflect more effortful recalibration of neural processes, a mechanism which might be a key driver of performance maintenance in the face of increased cognitive demands while walking. Overall, the present findings shed light on the extent of the neurocognitive capacity of young adults and may lead to a better understanding of how factors such as aging or neurological disorders could impinge on this capacity.
Collapse
Affiliation(s)
- Eleni Patelaki
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA; Department of Biomedical Engineering, University of Rochester, 201 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - John J Foxe
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Amber L McFerren
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Edward G Freedman
- The Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, The Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
10
|
Getzmann S, Reiser JE, Gajewski PD, Schneider D, Karthaus M, Wascher E. Cognitive aging at work and in daily life-a narrative review on challenges due to age-related changes in central cognitive functions. Front Psychol 2023; 14:1232344. [PMID: 37621929 PMCID: PMC10445145 DOI: 10.3389/fpsyg.2023.1232344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
Demographic change is leading to an increasing proportion of older employees in the labor market. At the same time, work activities are becoming more and more complex and require a high degree of flexibility, adaptability, and cognitive performance. Cognitive control mechanism, which is subject to age-related changes and is important in numerous everyday and work activities, plays a special role. Executive functions with its core functions updating, shifting, and inhibition comprises cognitive control mechanisms that serve to plan, coordinate, and achieve higher-level goals especially in inexperienced and conflicting actions. In this review, influences of age-related changes in cognitive control are demonstrated with reference to work and real-life activities, in which the selection of an information or response in the presence of competing but task-irrelevant stimuli or responses is particularly required. These activities comprise the understanding of spoken language under difficult listening conditions, dual-task walking, car driving in critical traffic situations, and coping with work interruptions. Mechanisms for compensating age-related limitations in cognitive control and their neurophysiological correlates are discussed with a focus on EEG measures. The examples illustrate how to access influences of age and cognitive control on and in everyday and work activities, focusing on its functional role for the work ability and well-being of older people.
Collapse
Affiliation(s)
- Stephan Getzmann
- Leibniz Research Center for Working Environment and Human Factors at the Technical University of Dortmund (IfADo), Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Lizarraga KJ, Patelaki E, Mesmer H, Hewitt A, Wensel A, Foxe JJ, Freedman EG. Mobile brain-body imaging markers of treatment-related responses in a man with Parkinson's disease. Clin Neurophysiol 2023; 152:90-92. [PMID: 37354869 DOI: 10.1016/j.clinph.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/26/2023]
Affiliation(s)
- Karlo J Lizarraga
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester Medical Center, 919 Westfall Road, Building C, Suite 100. Rochester, NY 14618, USA.
| | - Eleni Patelaki
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Hannah Mesmer
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester Medical Center, 919 Westfall Road, Building C, Suite 100. Rochester, NY 14618, USA
| | - Angela Hewitt
- Motor Physiology and Neuromodulation Program, Division of Movement Disorders, Department of Neurology, University of Rochester Medical Center, 919 Westfall Road, Building C, Suite 100. Rochester, NY 14618, USA
| | - Andrew Wensel
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, USA
| | - John J Foxe
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward G Freedman
- Frederick J. and Marion A. Schindler Cognitive Neurophysiology Laboratory, Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|