1
|
King FK, Perry MS, Papadelis C, Cooper CM. Spatiotemporal responses to emotional conflict and its psychiatric correlates in adolescents with epilepsy using magnetoencephalography. Epilepsy Behav 2024; 157:109869. [PMID: 38851125 DOI: 10.1016/j.yebeh.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
People with epilepsy often suffer from comorbid psychiatric disorders, which negatively affects their quality of life. Emotion regulation is an important cognitive process that is impaired in individuals with psychiatric disorders, such as depression. Adults with epilepsy also show difficulties in emotion regulation, particularly during later-stage, higher-order cognitive processing. Yet, the spatiotemporal and frequency correlates of these functional brain deficits in epilepsy remain unknown, as do the nature of these deficits in adolescent epilepsy. Here, we aim to elucidate the spatiotemporal profile of emotional conflict processing in adolescents with epilepsy, relative to controls, using magnetoencephalography (MEG) and relate these findings to anxiety and depression symptom severity assessed with self-report scales. We hypothesized to see blunted brain activity during emotional conflict in adolescents with epilepsy, relative to controls, in the posterior parietal, prefrontal and cingulate cortices due to their role in explicit and implicit regulation around participant response (500-1000 ms). We analyzed MEG recordings from 53 adolescents (28 epilepsy [14focal,14generalized], 25 controls) during an emotional conflict task. We showed that while controls exhibited behavioral interference to emotional conflict, adolescents with epilepsy failed to exhibit this normative response time pattern. Adolescents with epilepsy showed blunted brain responses to emotional conflict in brain regions related to error evaluation and learning around the average response time (500-700 ms), and in regions involved in decision making during post-response monitoring (800-1000 ms). Interestingly, behavioral patterns and psychiatric symptom severity varied between epilepsy subgroups, wherein those with focal epilepsy showed preserved response time interference. Thus, brain responses were regressed with depression and anxiety levels for each epilepsy subgroup separately. Analyses revealed that under activation in error evaluation regions (500-600 ms) predicted anxiety and depression in focal epilepsy, while regions related to learning (600-700 ms) predicted anxiety in generalized epilepsy, suggesting differential mechanisms of dysfunction in these subgroups. Despite similar rates of anxiety and depression across the groups, adolescents with epilepsy still exhibited deficits in emotional conflict processing in brain and behavioral responses. This suggests that these deficits may exist independently from psychopathology and may stem from underlying dysfunctions that predispose these individuals to develop both disorders. Findings such as these may provide potential targets for future research and therapies.
Collapse
Affiliation(s)
- F Kathryn King
- Jane and John Justin Institute for Mind Health, Neurosciences Research Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Neurosciences Research Center, Cook Children's Health Care System, Fort Worth, TX, United States
| | - Christos Papadelis
- Jane and John Justin Institute for Mind Health, Neurosciences Research Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States; Department of Pediatrics, Texas Christian University School of Medicine, Fort Worth, TX, United States
| | - Crystal M Cooper
- Jane and John Justin Institute for Mind Health, Neurosciences Research Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States; Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States; Department of Psychology, University of Texas at Arlington, Arlington, TX, United States.
| |
Collapse
|
2
|
Bonetti L, Fernández-Rubio G, Carlomagno F, Dietz M, Pantazis D, Vuust P, Kringelbach ML. Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding. Nat Commun 2024; 15:4313. [PMID: 38773109 PMCID: PMC11109219 DOI: 10.1038/s41467-024-48302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024] Open
Abstract
Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.
Collapse
Affiliation(s)
- L Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark.
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom.
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
- Department of Psychology, University of Bologna, Bologna, Italy.
| | - G Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - F Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - M Dietz
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - D Pantazis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - P Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - M L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Mizuguchi N, Kato K, Sugawara SK, Yoshimi T, Goto Y, Takasu K, Isaka T. Age and parous-experience dependent changes in emotional contagion for positive infant sounds. Front Psychol 2024; 15:1336126. [PMID: 38601818 PMCID: PMC11004475 DOI: 10.3389/fpsyg.2024.1336126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/15/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction Emotional contagion is achieved by inferring and emotionally resonating with other persons' feelings. It is unclear whether age-related changes in emotional contagion for infant sounds are modulated by the experience of childbirth or childcare. This study aims to evaluate changes in inference and emotional resonance for positive and negative infant sounds (laughter and crying) among women, based on age and parous experience. Methods A total of 241 women (60 young nulliparous, 60 young parous, 60 old nulliparous, and 61 old parous) completed a web-based questionnaire. After listening to three types of infant sounds (laughter, cooing, and crying), participants responded with their valence for hearing infant sounds and estimated infant valence on an 11-point Likert scale. Results The analysis for emotional resonance revealed that the correlation coefficient between self and estimated infant valences was greater in young parous and old nulliparous women than in young nulliparous women, in laughter and cooing sounds. However, correlation coefficients for crying did not differ among any of the four groups. Conclusion The degree of emotional resonance for infant valence increased depending on age and parous-experience for positive infant sounds.
Collapse
Affiliation(s)
- Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- Assistive Robot Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kenji Kato
- Assistive Robot Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sho K. Sugawara
- Neural Prosthetics Project, Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo, Japan
| | - Tatsuya Yoshimi
- Assistive Robot Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yuta Goto
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kaori Takasu
- Administrative Office, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadao Isaka
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
- College of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|