1
|
Gonzalez-Burgos G, Miyamae T, Nishihata Y, Krimer OL, Wade K, Fish KN, Arion D, Cai ZL, Xue M, Stauffer WR, Lewis DA. Synaptic alterations in pyramidal cells following genetic manipulation of neuronal excitability in monkey prefrontal cortex. J Neurophysiol 2025; 133:399-413. [PMID: 39740351 DOI: 10.1152/jn.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025] Open
Abstract
The primate dorsolateral prefrontal cortex (DLPFC) displays unique in vivo activity patterns, but how in vivo activity regulates DLPFC pyramidal neuron (PN) properties remains unclear. We assessed the effects of in vivo Kir2.1 overexpression, a genetic silencing tool, on synapses in monkey DLPFC PNs. We show for the first time that recombinant ion channel expression successfully modifies the excitability of primate cortex neurons, producing effects on synaptic properties apparently different from those in the rodent cortex.
Collapse
Affiliation(s)
| | - Takeaki Miyamae
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yosuke Nishihata
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Olga L Krimer
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kirsten Wade
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dominique Arion
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zhao-Lin Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
| | - Mingshan Xue
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - William R Stauffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
2
|
Kelley C, Antic SD, Carnevale NT, Kubie JL, Lytton WW. Simulations predict differing phase responses to excitation vs. inhibition in theta-resonant pyramidal neurons. J Neurophysiol 2023; 130:910-924. [PMID: 37609720 PMCID: PMC10648938 DOI: 10.1152/jn.00160.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023] Open
Abstract
Rhythmic activity is ubiquitous in neural systems, with theta-resonant pyramidal neurons integrating rhythmic inputs in many cortical structures. Impedance analysis has been widely used to examine frequency-dependent responses of neuronal membranes to rhythmic inputs, but it assumes that the neuronal membrane is a linear system, requiring the use of small signals to stay in a near-linear regime. However, postsynaptic potentials are often large and trigger nonlinear mechanisms (voltage-gated ion channels). The goals of this work were to 1) develop an analysis method to evaluate membrane responses in this nonlinear domain and 2) explore phase relationships between rhythmic stimuli and subthreshold and spiking membrane potential (Vmemb) responses in models of theta-resonant pyramidal neurons. Responses in these output regimes were asymmetrical, with different phase shifts during hyperpolarizing and depolarizing half-cycles. Suprathreshold theta-rhythmic stimuli produced nonstationary Vmemb responses. Sinusoidal inputs produced "phase retreat": action potentials occurred progressively later in cycles of the input stimulus, resulting from adaptation. Sinusoidal current with increasing amplitude over cycles produced "phase advance": action potentials occurred progressively earlier. Phase retreat, phase advance, and subthreshold phase shifts were modulated by multiple ion channel conductances. Our results suggest differential responses of cortical neurons depending on the frequency of oscillatory input, which will play a role in neuronal responses to shifts in network state. We hypothesize that intrinsic cellular properties complement network properties and contribute to in vivo phase-shift phenomena such as phase precession, seen in place and grid cells, and phase roll, also observed in hippocampal CA1 neurons.NEW & NOTEWORTHY We augmented electrical impedance analysis to characterize phase shifts between large-amplitude current stimuli and nonlinear, asymmetric membrane potential responses. We predict different frequency-dependent phase shifts in response excitation vs. inhibition, as well as shifts in spike timing over multiple input cycles, in theta-resonant pyramidal neurons. We hypothesize that these effects contribute to navigation-related phenomena such as phase precession and phase roll. Our neuron-level hypothesis complements, rather than falsifies, prior network-level explanations of these phenomena.
Collapse
Affiliation(s)
- Craig Kelley
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York, United States
| | - Srdjan D Antic
- Institute of Systems Genomics, Neuroscience Department, University of Connecticut Health, Farmington, Connecticut, United States
| | - Nicholas T Carnevale
- Department of Neuroscience, Yale University, New Haven, Connecticut, United States
| | - John L Kubie
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
| | - William W Lytton
- Program in Biomedical Engineering, SUNY Downstate Health Sciences University and NYU Tandon School of Engineering, Brooklyn, New York, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Physiology and Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Neurology, SUNY Downstate Health Sciences University, Brooklyn, New York, United States
- Department of Neurology, Kings County Hospital Center, Brooklyn, New York, United States
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, United States
| |
Collapse
|