1
|
Houser TM. A boundedly rational model for category learning. Front Psychol 2024; 15:1477514. [PMID: 39717468 PMCID: PMC11663663 DOI: 10.3389/fpsyg.2024.1477514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The computational modeling of category learning is typically evaluated in terms of the model's accuracy. For a model to accurately infer category membership of stimuli, it has to have sufficient representational precision. Thus, many category learning models infer category representations that guide decision-making and the model's fitness is evaluated by its ability to accurately choose. Substantial decision-making research, however, indicates that noise plays an important role. Specifically, noisy representations are assumed to introduce an element of stochasticity to decision-making. Noise can be minimized at the cost of cognitive resource expenditure. Thus, a more biologically plausible model of category learning should balance representational precision with costs. Here, we tested an autoencoder model that learns categories (the six category structures introduced by Roger Shepard and colleagues) by balancing the minimization of error with minimization of resource usage. By incorporating the goal of reducing category complexity, the currently proposed model biases category decisions toward previously learned central tendencies. We show that this model is still able to account for category learning performance in a traditional category learning benchmark. The currently proposed model additionally makes some novel predictions about category learning that future studies can test empirically. The goal of this paper is to make progress toward development of an ecologically and neurobiologically plausible model of category learning that can guide future studies and theoretical frameworks.
Collapse
Affiliation(s)
- Troy M. Houser
- Department of Psychology, University of Oregon, Eugene, OR, United States
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| |
Collapse
|
2
|
Ehrhardt SE, Wards Y, Rideaux R, Marjańska M, Jin J, Cloos MA, Deelchand DK, Zöllner HJ, Saleh MG, Hui SCN, Ali T, Shaw TB, Barth M, Mattingley JB, Filmer HL, Dux PE. Neurochemical Predictors of Generalized Learning Induced by Brain Stimulation and Training. J Neurosci 2024; 44:e1676232024. [PMID: 38531634 PMCID: PMC11112648 DOI: 10.1523/jneurosci.1676-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Methods of cognitive enhancement for humans are most impactful when they generalize across tasks. However, the extent to which such "transfer" is possible via interventions is widely debated. In addition, the contribution of excitatory and inhibitory processes to such transfer is unknown. Here, in a large-scale neuroimaging individual differences study with humans (both sexes), we paired multitasking training and noninvasive brain stimulation (transcranial direct current stimulation, tDCS) over multiple days and assessed performance across a range of paradigms. In addition, we varied tDCS dosage (1.0 and 2.0 mA), electrode montage (left or right prefrontal regions), and training task (multitasking vs a control task) and assessed GABA and glutamate concentrations via ultrahigh field 7T magnetic resonance spectroscopy. Generalized benefits were observed in spatial attention, indexed by visual search performance, when multitasking training was combined with 1.0 mA stimulation targeting either the left or right prefrontal cortex (PFC). This transfer effect persisted for ∼30 d post intervention. Critically, the transferred benefits associated with right prefrontal tDCS were predicted by pretraining concentrations of glutamate in the PFC. Thus, the effects of this combined stimulation and training protocol appear to be linked predominantly to excitatory brain processes.
Collapse
Affiliation(s)
- Shane E Ehrhardt
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yohan Wards
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Reuben Rideaux
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Psychology, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Małgorzata Marjańska
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jin Jin
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- Siemens Healthcare Pty Ltd., Brisbane, Queensland 4006, Australia
| | - Martijn A Cloos
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dinesh K Deelchand
- Department of Radiology, Centre for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota 55455
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Muhammad G Saleh
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Steve C N Hui
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Tonima Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2050, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales 2050, Australia
| | - Thomas B Shaw
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
- Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario M5G 1M1, Canada
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Wards Y, Ehrhardt SE, Garner KG, Mattingley JB, Filmer HL, Dux PE. Stimulating prefrontal cortex facilitates training transfer by increasing representational overlap. Cereb Cortex 2024; 34:bhae209. [PMID: 38771242 PMCID: PMC11654026 DOI: 10.1093/cercor/bhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
- Queensland Brain Institute, The University of Queensland,
Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales,
Mathews Building, Gate 11, Botany Street, Randwick, New South Wales
2052, Australia
- School of Psychology, University of Birmingham,
Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
- Queensland Brain Institute, The University of Queensland,
Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of Birmingham,
Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| |
Collapse
|
4
|
Whittaker HT, Khayyat L, Fortier-Lavallée J, Laverdière M, Bélanger C, Zatorre RJ, Albouy P. Information-based rhythmic transcranial magnetic stimulation to accelerate learning during auditory working memory training: a proof-of-concept study. Front Neurosci 2024; 18:1355565. [PMID: 38638697 PMCID: PMC11024337 DOI: 10.3389/fnins.2024.1355565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Rhythmic transcranial magnetic stimulation (rhTMS) has been shown to enhance auditory working memory manipulation, specifically by boosting theta oscillatory power in the dorsal auditory pathway during task performance. It remains unclear whether these enhancements (i) persist beyond the period of stimulation, (ii) if they can accelerate learning and (iii) if they would accumulate over several days of stimulation. In the present study, we investigated the lasting behavioral and electrophysiological effects of applying rhTMS over the left intraparietal sulcus (IPS) throughout the course of seven sessions of cognitive training on an auditory working memory task. Methods A limited sample of 14 neurologically healthy participants took part in the training protocol with an auditory working memory task while being stimulated with either theta (5 Hz) rhTMS or sham TMS. Electroencephalography (EEG) was recorded before, throughout five training sessions and after the end of training to assess to effects of rhTMS on behavioral performance and on oscillatory entrainment of the dorsal auditory network. Results We show that this combined approach enhances theta oscillatory activity within the fronto-parietal network and causes improvements in auditoryworking memory performance. We show that compared to individuals who received sham stimulation, cognitive training can be accelerated when combined with optimized rhTMS, and that task performance benefits can outlast the training period by ∼ 3 days. Furthermore, we show that there is increased theta oscillatory power within the recruited dorsal auditory network during training, and that sustained EEG changes can be observed ∼ 3 days following stimulation. Discussion The present study, while underpowered for definitive statistical analyses, serves to improve our understanding of the causal dynamic interactions supporting auditory working memory. Our results constitute an important proof of concept for the potential translational impact of non-invasive brain stimulation protocols and provide preliminary data for developing optimized rhTMS and training protocols that could be implemented in clinical populations.
Collapse
Affiliation(s)
- Heather T. Whittaker
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Lina Khayyat
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Megan Laverdière
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Carole Bélanger
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| | - Robert J. Zatorre
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
| | - Philippe Albouy
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) - Centre for Research on Brain Language and Music (CRBLM), Montreal, QC, Canada
- CERVO Brain Research Centre, School of Psychology, Université Laval, Québec City, QC, Canada
| |
Collapse
|