1
|
Posen JN, Lee J, Hammond FL, Housley SN, Butler AJ, Shinohara M. Synergistic Torso-Muscle-Controlled Detached Robotic Hand: A Novel Approach for Post-Stroke Hand Rehabilitation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.02.25326083. [PMID: 40385448 PMCID: PMC12083612 DOI: 10.1101/2025.05.02.25326083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
This study aimed to develop a novel rehabilitative approach for post-stroke hand movement using a simple detached robotic hand and synergistic torso muscle activities for reaching and to perform a pilot test on its functionality and feasibility. In reference to a mental practice that does not activate hand muscles, enhanced cognitive engagement would be achieved without hand activation using the externally present, visible, and audible robotic hand by activating the non-hand muscles associated with hand function. A simple and low-cost robotic hand was developed and placed distal to the hidden resting hand as if it were a functional extended hand. The opening and closing motions of the detached robotic hand were controlled by electromyogram of the anterior and posterior torso muscles associated with reaching and retrieving while providing visual and auditory feedback. The functionality of the developed system was confirmed on the repeatability of the range of duration, excursion, and response time with low variability within an acceptable range. An able-bodied adult and five mildly impaired stroke survivors embodied the detached robotic hand by successfully controlling it with or without concurrent testing of their biological finger. In the concurrent finger tests, increased reactive force and hand muscle activity were observed in most participants. These observations confirmed that the developed approach that controls a detached robotic hand with reaching-associated torso muscles is functional and applicable to stroke survivors with and without involving the biological human hand. The robotic hand system detached from the user and controlled by the voluntary effort of their reaching-associated torso muscles has enabled future studies to examine the efficacy of synergistic muscle-robot interaction as a potential rehabilitation tool.
Collapse
Affiliation(s)
- Joshua N. Posen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- ASML, Wilton, CT, USA
| | - Frank L. Hammond
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Stephen N. Housley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew J Butler
- School of Health Professions, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Minoru Shinohara
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
2
|
Adham A, Bessaguet H, Struber L, Rimaud D, Ojardias E, Giraux P. Distinct and additive effects of visual and vibratory feedback for motor rehabilitation: an EEG study in healthy subjects. J Neuroeng Rehabil 2024; 21:158. [PMID: 39267092 PMCID: PMC11391611 DOI: 10.1186/s12984-024-01453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The use of visual and proprioceptive feedback is a key property of motor rehabilitation techniques. This feedback can be used alone, for example, for vision in mirror or video therapy, for proprioception in focal tendon vibration therapy, or in combination, for example, in robot-assisted training. This Electroencephalographic (EEG) study in healthy subjects explored the distinct neurophysiological impact of adding visual (video therapy), proprioceptive (focal tendinous vibration), or combined feedback (video therapy and focal tendinous vibration) to a motor imagery task. METHODS Sixteen healthy volunteers performed 20 mental imagery (MI) tasks involving right wrist extension and flexion under four conditions: MI alone (IA), MI + video feedback observation (IO), MI + vibratory feedback (IV), and MI + observation + vibratory feedback (IOV). Brain activity was monitored with EEG, and time-frequency neurophysiological markers of movement were computed. The emotions of the patients were also measured during the task. RESULTS In the alpha band, we observed bilateral ERD in the visual feedback conditions (IO, IOV). In the beta band, the ERD was bilateral in the IA, IV and IOV but more lateralized in the IV and IOV. After movement, we observed strong ERS in the IO and IOV but not in the IA or IV. Embodiment was stronger in conditions with vibratory feedback (IOV > IV > IA and IO) CONCLUSION: Conditions with visual feedback (IO, IOV) recruit the mirror neurons system (alpha ERD) and provide more accurate feedback of the task than IA and IV, which triggers motor validation pathways (beta rebound analysis). Vibratory feedback enhances the recruitment of the left sensorimotor areas, with a synergistic effect in the IOV (beta ERD analysis), thus maximizing embodiment. Visual and vibratory feedback recruits the sensorimotor cortex during motor imagery in different ways and can be combined to maximize the benefits of both techniques TRIAL REGISTRATION: https://clinicaltrials.gov/study/NCT04449328 .
Collapse
Affiliation(s)
- Ahmed Adham
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France.
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France.
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France.
| | - Hugo Bessaguet
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Inter-University Laboratory of Human Movement Biology, "Physical Ability and Fatigue in Health and Disease" Team, Saint-Etienne "Jean Monnet" & Lyon 1 & "Savoie Mont- Blanc" Universities, Saint- Etienne, F-42023, France
| | - Lucas Struber
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Diana Rimaud
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
| | - Etienne Ojardias
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| | - Pascal Giraux
- Department of Physical Rehabilitation, CHU of St Etienne, St-Etienne, France
- Laboratory Trajectoires, INSERM 1028, CNRS 5229, University of Lyon-St-Etienne, St-Etienne, France
| |
Collapse
|
3
|
Mang J, Xu Z, Qi Y, Zhang T. Favoring the cognitive-motor process in the closed-loop of BCI mediated post stroke motor function recovery: challenges and approaches. Front Neurorobot 2023; 17:1271967. [PMID: 37881517 PMCID: PMC10595019 DOI: 10.3389/fnbot.2023.1271967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
The brain-computer interface (BCI)-mediated rehabilitation is emerging as a solution to restore motor skills in paretic patients after stroke. In the human brain, cortical motor neurons not only fire when actions are carried out but are also activated in a wired manner through many cognitive processes related to movement such as imagining, perceiving, and observing the actions. Moreover, the recruitment of motor cortexes can usually be regulated by environmental conditions, forming a closed-loop through neurofeedback. However, this cognitive-motor control loop is often interrupted by the impairment of stroke. The requirement to bridge the stroke-induced gap in the motor control loop is promoting the evolution of the BCI-based motor rehabilitation system and, notably posing many challenges regarding the disease-specific process of post stroke motor function recovery. This review aimed to map the current literature surrounding the new progress in BCI-mediated post stroke motor function recovery involved with cognitive aspect, particularly in how it refired and rewired the neural circuit of motor control through motor learning along with the BCI-centric closed-loop.
Collapse
Affiliation(s)
- Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - YingBin Qi
- Department of Neurology, Jilin Province People's Hospital, Changchun, China
| | - Ting Zhang
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
4
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
5
|
Mo L, Nie Y, Wan G, Zhang Y, Zhao M, Wu J, Wang H, Li Q, Liu A. Application of Transcranial Magnetic Stimulation with Electroencephalography in the Evaluation of Brain Function Changes after Stroke. Int J Clin Pract 2023; 2023:3051175. [PMID: 37265838 PMCID: PMC10232191 DOI: 10.1155/2023/3051175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Objective Based on transcranial magnetic stimulation (TMS) with electroencephalography technology, this study analyzed the rehabilitation mechanism of patients' motor function reconstruction and nerve remodeling after stroke. It revealed the function of the cerebral cortex network at a deeper level and established a set of prognostic marker evaluation indicators for the reconstruction of motor function after stroke. Methods Twenty-one patients treated at the Beijing Rehabilitation Hospital of Capital Medical University because of ischemic stroke in the territory supplied by the middle cerebral artery were selected as the experimental group. Neurophysiological evaluation, motor function evaluation, and clinical evaluation were performed 30 and 180 d after the onset of ischemic stroke. In the control group, neurophysiological evaluation was also performed as a reference index to evaluate the changes in cortical patterns after stroke. Results The brain topographic map showed the changes in energy or power spectral density (PSD) at 1,000 ms after stimulation as compared with before stimulation, but no difference was detected in these patients. The time-frequency analysis showed that when the left primary motor cortex (M1) area was stimulated using TMS, the PSD values of the left and right M1 and posterior occipital cortex areas produced an 8-40 Hz wave band in patients S1-S11. There was no significant energy change in patients S12-S16. Conclusions For patients with different injury types, degrees of injury, and different onset periods, individualized intervention methods should be adopted. The evaluation methods should be as diverse as possible, and the rehabilitation effects of patients should be assessed from multiple perspectives to avoid the limitations of single factors. Possible mechanism: After brain injury, the nervous system can change its structure and function through different ways and maintain it for a certain period of time. This plasticity change will change with the course of the disease.
Collapse
Affiliation(s)
- Linhong Mo
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Yiqiu Nie
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Guiling Wan
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Yingbin Zhang
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Man Zhao
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Jiaojiao Wu
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Huiqi Wang
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Qing Li
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| | - Aixian Liu
- Neuro-Rehabilitation Center, Capital Medical University, Beijing Rehabilitation Hospital, Beijing 100144, China
| |
Collapse
|
6
|
Moon K, Lee M, Han K. Effects of
3D
virtual reality motionless imagery training program with an avatar. Psych J 2022; 12:169-177. [PMID: 36336337 DOI: 10.1002/pchj.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
The present study aimed to explore the effects of motionless imagery training with an avatar in virtual reality (VR) on emotion, cognition, and physiological response changes in healthy adults. Participants were 30 healthy adults aged between 19 and 35 years. All participants were randomly divided into the experimental group (n = 18), which executed the imagery training with an avatar in VR, or the control group (n = 12), which merely experienced the VR without an avatar. Both groups underwent the intervention, a 20-min session, 3 times a week for 6 weeks. VR experience questionnaires and physiological response changes were measured at pre- and post-test and emotional states and cognition tests were measured at pre-, post-, and follow-up test. The experimental group showed no significant changes in the Presence Questionnaire (PQ) and the Simulator Sickness Questionnaire (SSQ) after the intervention while the control group showed a significant decrease in the PQ after the intervention. In all emotional states, there were no significant differences in the interaction between times and groups. A significant main effect of time was revealed in all cognition tests except the delayed recall and the delayed recognition in K-Auditory Verbal Learning Test (K-AVLT). In physiological response changes, the experimental group showed significant improvements in the electromyogram (EMG) at rectus femoris on the left side after the intervention. Thus, imagery training with an avatar in VR can be considered to be effective for enhancements of cognitions and physiological response changes.
Collapse
Affiliation(s)
- Kyung‐Ji Moon
- Division of Sport Science Pusan National University Busan Republic of Korea
| | - Myung‐Chul Lee
- Division of Sport Science Pusan National University Busan Republic of Korea
| | - Kyung‐Hun Han
- Division of Sport Science Pusan National University Busan Republic of Korea
| |
Collapse
|
7
|
Hartmann M, Falconer CJ, Kaelin-Lang A, Müri RM, Mast FW. Imagined paralysis reduces motor cortex excitability. Psychophysiology 2022; 59:e14069. [PMID: 35393640 PMCID: PMC9539708 DOI: 10.1111/psyp.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2021] [Accepted: 03/26/2022] [Indexed: 11/27/2022]
Abstract
Mental imagery is a powerful capability that engages similar neurophysiological processes that underlie real sensory and motor experiences. Previous studies show that motor cortical excitability can increase during mental imagery of actions. In this study, we focused on possible inhibitory effects of mental imagery on motor functions. We assessed whether imagined arm paralysis modulates motor cortical excitability in healthy participants, as measured by motor evoked potentials (MEPs) of the hand induced by near-threshold transcranial magnetic stimulation (TMS) over the primary motor cortex hand area. We found lower MEP amplitudes during imagined arm paralysis when compared to imagined leg paralysis or baseline stimulation without paralysis imagery. These results show that purely imagined bodily constraints can selectively inhibit basic motor corticospinal functions. The results are discussed in the context of motoric embodiment/disembodiment.
Collapse
Affiliation(s)
- Matthias Hartmann
- Department of Psychology, University of Bern, Bern, Switzerland.,Faculty of Psychology, UniDistance Suisse, Brig, Switzerland
| | - Caroline J Falconer
- Department of Psychology, University of Bern, Bern, Switzerland.,Department of Clinical Educational and Health Psychology, University College London, London, UK
| | - Alain Kaelin-Lang
- Department of Neurology, University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University Hospital, University of Bern, Bern, Switzerland.,Neurocenter of Southern Switzerland, Regional Hospital of Lugano, Lugano, Switzerland.,Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - René M Müri
- Department of Neurology, University Hospital, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University Hospital, University of Bern, Bern, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Bazzini MC, Nuara A, Scalona E, De Marco D, Rizzolatti G, Avanzini P, Fabbri-Destro M. The Proactive Synergy Between Action Observation and Execution in the Acquisition of New Motor Skills. Front Hum Neurosci 2022; 16:793849. [PMID: 35399362 PMCID: PMC8986982 DOI: 10.3389/fnhum.2022.793849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Motor learning can be defined as a process that leads to relatively permanent changes in motor behavior through repeated interactions with the environment. Different strategies can be adopted to achieve motor learning: movements can be overtly practiced leading to an amelioration of motor performance; alternatively, covert strategies (e.g., action observation) can promote neuroplastic changes in the motor system even in the absence of real movement execution. However, whether a training regularly alternating action observation and execution (i.e., Action Observation Training, AOT) may surpass the pure motor practice (MP) and observational learning (OL) remains to be established. To address this issue, we enrolled 54 subjects requiring them to learn tying nautical knots via one out of three types of training (AOT, MP, OL) with the scope to investigate which element mostly contributes to motor learning. We evaluated the overall improvement of each group, along with the predictive role that neuropsychological indexes exert on each treatment outcome. The AOT group exhibited the highest performance improvement (42%), indicating that the regular alternation between observation and execution biases participants toward a better performance. The reiteration of this sequence provides an incremental, adjunct value that super-adds onto the efficacy of motor practice or observational learning in isolation (42% > 25% + 10%, i.e., OL + MP). These findings extend the use of the AOT from clinical and rehabilitative contexts to daily routines requiring the learning and perfectioning of new motor skills such as sports training, music, and occupational activities requiring fine motor control.
Collapse
Affiliation(s)
- Maria Chiara Bazzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Arturo Nuara
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Emilia Scalona
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Doriana De Marco
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
| | - Giacomo Rizzolatti
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Pietro Avanzini
- Consiglio Nazionale delle Ricerche, Istituto di Neuroscienze, Parma, Italy
- Istituto Clinico Humanitas, Humanitas Clinical and Research Center, Milan, Italy
| | | |
Collapse
|
9
|
Motor Imagery-Based Brain-Computer Interface Combined with Multimodal Feedback to Promote Upper Limb Motor Function after Stroke: A Preliminary Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1116126. [PMID: 34777531 PMCID: PMC8580676 DOI: 10.1155/2021/1116126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 01/21/2023]
Abstract
Background Recently, the brain-computer interface (BCI) has seen rapid development, which may promote the recovery of motor function in chronic stroke patients. Methods Twelve stroke patients with severe upper limb and hand motor impairment were enrolled and randomly assigned into two groups: motor imagery (MI)-based BCI training with multimodal feedback (BCI group, n = 7) and classical motor imagery training (control group, n = 5). Motor function and electrophysiology were evaluated before and after the intervention. The Fugl-Meyer assessment-upper extremity (FMA-UE) is the primary outcome measure. Secondary outcome measures include an increase in wrist active extension or surface electromyography (the amplitude and cocontraction of extensor carpi radialis during movement), the action research arm test (ARAT), the motor status scale (MSS), and Barthel index (BI). Time-frequency analysis and power spectral analysis were used to reflect the electroencephalogram (EEG) change before and after the intervention. Results Compared with the baseline, the FMA-UE score increased significantly in the BCI group (p = 0.006). MSS scores improved significantly in both groups, while ARAT did not improve significantly. In addition, before the intervention, all patients could not actively extend their wrists or just had muscle contractions. After the intervention, four patients regained the ability to extend their paretic wrists (two in each group). The amplitude and area under the curve of extensor carpi radialis improved to some extent, but there was no statistical significance between the groups. Conclusion MI-based BCI combined with sensory and visual feedback might improve severe upper limb and hand impairment in chronic stroke patients, showing the potential for application in rehabilitation medicine.
Collapse
|
10
|
Veldema J, Nowak DA, Gharabaghi A. Resting motor threshold in the course of hand motor recovery after stroke: a systematic review. J Neuroeng Rehabil 2021; 18:158. [PMID: 34732203 PMCID: PMC8564987 DOI: 10.1186/s12984-021-00947-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Background Resting motor threshold is an objective measure of cortical excitability. Numerous studies indicate that the success of motor recovery after stroke is significantly determined by the direction and extent of cortical excitability changes. A better understanding of this topic (particularly with regard to the level of motor impairment and the contribution of either cortical hemisphere) may contribute to the development of effective therapeutical strategies in this cohort. Objectives This systematic review collects and analyses the available evidence on resting motor threshold and hand motor recovery in stroke patients. Methods PubMed was searched from its inception through to 31/10/2020 on studies investigating resting motor threshold of the affected and/or the non-affected hemisphere and motor function of the affected hand in stroke cohorts. Results Overall, 92 appropriate studies (including 1978 stroke patients and 377 healthy controls) were identified. The analysis of the data indicates that severe hand impairment is associated with suppressed cortical excitability within both hemispheres and with great between-hemispheric imbalance of cortical excitability. Favorable motor recovery is associated with an increase of ipsilesional motor cortex excitability and reduction of between-hemispheric imbalance. The direction of change of contralesional motor cortex excitability depends on the amount of hand motor impairment. Severely disabled patients show an increase of contralesional motor cortex excitability during motor recovery. In contrast, recovery of moderate to mild hand motor impairment is associated with a decrease of contralesional motor cortex excitability. Conclusions This data encourages a differential use of rehabilitation strategies to modulate cortical excitability. Facilitation of the ipsilesional hemisphere may support recovery in general, whereas facilitation and inhibition of the contralesional hemisphere may enhance recovery in severe and less severely impaired patients, respectively.
Collapse
Affiliation(s)
- Jitka Veldema
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076, Tübingen, Germany.
| | - Dennis Alexander Nowak
- Department of Neurology, VAMED Hospital Kipfenberg, Konrad-Regler-Straße 1, 85110, Kipfenberg, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, University Hospital and University of Tübingen, Otfried-Mueller-Str.45, 72076, Tübingen, Germany
| |
Collapse
|
11
|
Tecuapetla-Trejo JE, Cantillo-Negrete J, Carrillo-Mora P, Valdés-Cristerna R, Ortega-Robles E, Arias-Carrion O, Carino-Escobar RI. Automatic selection and feature extraction of motor-evoked potentials by transcranial magnetic stimulation in stroke patients. Med Biol Eng Comput 2021; 59:449-456. [DOI: 10.1007/s11517-021-02315-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
|
12
|
O’Brien J, Bracewell RM, Castillo JA. The effects of kinesthetic and visual motor imagery on interjoint coordination in the hemiplegic index finger: an experimental study using the index of temporal coordination. CADERNOS BRASILEIROS DE TERAPIA OCUPACIONAL 2021. [DOI: 10.1590/2526-8910.ctoao2170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Upper limb hemiparesis is a common impairment following stroke and can affect interjoint coordination. Motor imagery training is one treatment strategy. However, motor imagery can use visual or kinesthetic modalities and there has been a lack of research comparing the effectiveness of these modalities when treating the upper limb. The aim of this study was to compare visual and kinesthetic motor imagery in improving interjoint coordination in the hemiparetic index finger. Fifteen stroke survivors with upper limb hemiparesis were allocated to groups using kinesthetic or visual motor imagery, or a control group using guided relaxation. Reaching and grasping movements of the upper limb were captured using optoelectronic motion capture. Interjoint coordination of the hemiparetic index finger was analysed using the index of temporal coordination. No significant differences were found for interjoint coordination following treatment in either condition. Future work should focus on comparing kinesthetic and visual motor imagery in the rehabilitation of more proximal upper limb joints.
Collapse
|
13
|
Liepert J, Stürner J, Büsching I, Sehle A, Schoenfeld MA. Effects of a single mental chronometry training session in subacute stroke patients - a randomized controlled trial. BMC Sports Sci Med Rehabil 2020; 12:66. [PMID: 33101692 PMCID: PMC7579870 DOI: 10.1186/s13102-020-00212-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/05/2020] [Indexed: 11/10/2022]
Abstract
Background Motor imagery training might be helpful in stroke rehabilitation. This study explored if a single session of motor imagery (MI) training induces performance changes in mental chronometry (MC), motor execution, or changes of motor excitability. Methods Subacute stroke patients (n = 33) participated in two training sessions. The order was randomized. One training consisted of a mental chronometry task, the other training was a hand identification task, each lasting 30 min. Before and after the training session, the Box and Block Test (BBT) was fully executed and also performed as a mental version which served as a measure of MC. A subgroup analysis based on the presence of sensory deficits was performed. Patients were allocated to three groups (no sensory deficits, moderate sensory deficits, severe sensory deficits). Motor excitability was measured by transcranial magnetic stimulation (TMS) pre and post training. Amplitudes of motor evoked potentials at rest and during pre-innervation as well as the duration of cortical silent period were measured in the affected and the non-affected hand. Results Pre-post differences of MC showed an improved MC after the MI training, whereas MC was worse after the hand identification training. Motor execution of the BBT was significantly improved after mental chronometry training but not after hand identification task training. Patients with severe sensory deficits performed significantly inferior in BBT execution and MC abilities prior to the training session compared to patients without sensory deficits or with moderate sensory deficits. However, pre-post differences of MC were similar in the 3 groups. TMS results were not different between pre and post training but showed significant differences between affected and unaffected side. Conclusion Even a single training session can modulate MC abilities and BBT motor execution in a task-specific way. Severe sensory deficits are associated with poorer motor performance and poorer MC ability, but do not have a negative impact on training-associated changes of mental chronometry. Studies with longer treatment periods should explore if the observed changes can further be expanded. Trial registration DRKS, DRKS00020355, registered March 9th, 2020, retrospectively registered
Collapse
Affiliation(s)
- Joachim Liepert
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | - Jana Stürner
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | | | - Aida Sehle
- Department of Neurorehabilitation, Kliniken Schmieder, Zum Tafelholz 8, 78476 Allensbach, Germany
| | - Mircea A Schoenfeld
- Department of Neurorehabilitation, Kliniken Schmieder, Heidelberg, Germany.,Department of Experimental Neurology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
14
|
Chew E, Teo WP, Tang N, Ang KK, Ng YS, Zhou JH, Teh I, Phua KS, Zhao L, Guan C. Using Transcranial Direct Current Stimulation to Augment the Effect of Motor Imagery-Assisted Brain-Computer Interface Training in Chronic Stroke Patients-Cortical Reorganization Considerations. Front Neurol 2020; 11:948. [PMID: 32973672 PMCID: PMC7481473 DOI: 10.3389/fneur.2020.00948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 12/29/2022] Open
Abstract
Introduction: Transcranial direct current stimulation (tDCS) has been shown to modulate cortical plasticity, enhance motor learning and post-stroke upper extremity motor recovery. It has also been demonstrated to facilitate activation of brain-computer interface (BCI) in stroke patients. We had previously demonstrated that BCI-assisted motor imagery (MI-BCI) can improve upper extremity impairment in chronic stroke participants. This study was carried out to investigate the effects of priming with tDCS prior to MI-BCI training in chronic stroke patients with moderate to severe upper extremity paresis and to investigate the cortical activity changes associated with training. Methods: This is a double-blinded randomized clinical trial. Participants were randomized to receive 10 sessions of 20-min 1 mA tDCS or sham-tDCS before MI-BCI, with the anode applied to the ipsilesional, and the cathode to the contralesional primary motor cortex (M1). Upper extremity sub-scale of the Fugl-Meyer Assessment (UE-FM) and corticospinal excitability measured by transcranial magnetic stimulation (TMS) were assessed before, after and 4 weeks after intervention. Results: Ten participants received real tDCS and nine received sham tDCS. UE-FM improved significantly in both groups after intervention. Of those with unrecordable motor evoked potential (MEP-) to the ipsilesional M1, significant improvement in UE-FM was found in the real-tDCS group, but not in the sham group. Resting motor threshold (RMT) of ipsilesional M1 decreased significantly after intervention in the real-tDCS group. Short intra-cortical inhibition (SICI) in the contralesional M1 was reduced significantly following intervention in the sham group. Correlation was found between baseline UE-FM score and changes in the contralesional SICI for all, as well as between changes in UE-FM and changes in contralesional RMT in the MEP- group. Conclusion: MI-BCI improved the motor function of the stroke-affected arm in chronic stroke patients with moderate to severe impairment. tDCS did not confer overall additional benefit although there was a trend toward greater benefit. Cortical activity changes in the contralesional M1 associated with functional improvement suggests a possible role for the contralesional M1 in stroke recovery in more severely affected patients. This has important implications in designing neuromodulatory interventions for future studies and tailoring treatment. Clinical Trial Registration: The study was registered at https://clinicaltrials.gov (NCT01897025).
Collapse
Affiliation(s)
- Effie Chew
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Peng Teo
- National Institute of Education, Nanyang Technological University, Singapore, Singapore.,School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Melbourne, VIC, Australia
| | - Ning Tang
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research (I2R), ASTAR, Singapore, Singapore
| | - Yee Sien Ng
- Department of Rehabilitation Medicine, Singapore General Hospital, Singapore, Singapore
| | - Juan Helen Zhou
- Center for Sleep and Cognition, Center for Translational MR Research, Yong Loo Lin School of Medicine, Singapore, Singapore.,Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore
| | - Irvin Teh
- School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Kok Soon Phua
- Institute for Infocomm Research (I2R), ASTAR, Singapore, Singapore
| | - Ling Zhao
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
15
|
Bunno Y. Motor Imagery for Neurorehabilitation: The F-Wave Study. Somatosens Mot Res 2020. [DOI: 10.5772/intechopen.91834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Yoxon E, Welsh TN. Motor system activation during motor imagery is positively related to the magnitude of cortical plastic changes following motor imagery training. Behav Brain Res 2020; 390:112685. [DOI: 10.1016/j.bbr.2020.112685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
|
17
|
Irie S, Nakajima T, Suzuki S, Ariyasu R, Komiyama T, Ohki Y. Motor imagery enhances corticospinal transmission mediated by cervical premotoneurons in humans. J Neurophysiol 2020; 124:86-101. [DOI: 10.1152/jn.00574.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imaging movement has positive effects on the reacquisition of motor functions after damage to the central nervous system. This study shows that motor imagery facilitates oligosynaptic corticospinal excitation that is mediated via cervical premotoneurons, which may be important for motor recovery in monkeys and humans. Current findings highlight how this imagery might be a beneficial tool for movement disorders through effects on premotoneuron circuitry.
Collapse
Affiliation(s)
- Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei City, Tokyo, Japan
- Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba City, Chiba, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| |
Collapse
|
18
|
Yoxon E, Welsh TN. Rapid motor cortical plasticity can be induced by motor imagery training. Neuropsychologia 2019; 134:107206. [PMID: 31563576 DOI: 10.1016/j.neuropsychologia.2019.107206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 11/27/2022]
Abstract
Previous behavioural research has revealed that motor imagery (MI) can be an effective technique to generate and enhance motor learning and rehabilitation. This MI-enhanced motor performance may emerge because MI shares overlapping neural networks with movement execution and observation and leads to the activation and neuro-plasticity of the motor system. Neurophysiological studies using transcranial magnetic stimulation (TMS) have shown that physical and observational practice can elicit use-dependent, neuro-plastic changes in the cortical representation of movement. The purpose of the current experiment was to determine if similar changes in cortical representation of thumb movements could be elicited with MI training. Single-pulse TMS was provided over primary motor cortex to generate involuntary thumb movements before and after each of five training blocks. The dominant direction (flexion or extension) of TMS-evoked thumb movements was used as an index of the representation of thumb movements in primary motor cortex. During training, participants either imagined moving (experimental MI group) or physically moved (control PT group) their thumbs in the direction opposite to the dominant direction of their TMS-evoked thumb movements determined in the pre-training assessment. Both PT and MI training resulted in increases in the percentage of TMS-evoked thumb movements in the trained direction. These changes were apparent for the MI group after 900 imagery trials, whereas the changes were detectable in the PT group after 300 trials. These results indicate that MI can induce plastic changes similar to those of physical training, although more trials may be needed for these changes to occur.
Collapse
Affiliation(s)
- Emma Yoxon
- Centre for Motor Control, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada.
| | - Timothy N Welsh
- Centre for Motor Control, Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Tsuchimoto S, Shindo K, Hotta F, Hanakawa T, Liu M, Ushiba J. Sensorimotor Connectivity after Motor Exercise with Neurofeedback in Post-Stroke Patients with Hemiplegia. Neuroscience 2019; 416:109-125. [PMID: 31356896 DOI: 10.1016/j.neuroscience.2019.07.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 11/27/2022]
Abstract
Impaired finger motor function in post-stroke hemiplegia is a debilitating condition with no evidence-based or accessible treatments. Here, we evaluated the neurophysiological effectiveness of direct brain control of robotic exoskeleton that provides movement support contingent with brain activity. To elucidate the mechanisms underlying the neurofeedback intervention, we assessed resting-state functional connectivity with functional magnetic resonance imaging (rsfcMRI) between the ipsilesional sensory and motor cortices before and after a single 1-h intervention. Eighteen stroke patients were randomly assigned to crossover interventions in a double-blind and sham-controlled design. One patient dropped out midway through the study, and 17 patients were included in this analysis. Interventions involved motor imagery, robotic assistance, and neuromuscular electrical stimulation administered to a paretic finger. The neurofeedback intervention delivered stimulations contingent on desynchronized ipsilesional electroencephalographic (EEG) oscillations during imagined movement, and the control intervention delivered sensorimotor stimulations that were independent of EEG oscillations. There was a significant time × intervention interaction in rsfcMRI in the ipsilesional sensorimotor cortex. Post-hoc analysis showed a larger gain in increased functional connectivity during the neurofeedback intervention. Although the neurofeedback intervention delivered fewer total sensorimotor stimulations compared to the sham-control, rsfcMRI in the ipsilesional sensorimotor cortices was increased during the neurofeedback intervention compared to the sham-control. Higher coactivation of the sensory and motor cortices during neurofeedback intervention enhanced rsfcMRI in the ipsilesional sensorimotor cortices. This study showed neurophysiological evidence that EEG-contingent neurofeedback is a promising strategy to induce intrinsic ipsilesional sensorimotor reorganization, supporting the importance of integrating closed-loop sensorimotor processing at a neurophysiological level.
Collapse
Affiliation(s)
- Shohei Tsuchimoto
- School of Fundamental Science and Technology, Graduate School of Keio University, Kanagawa, 223-8522, Japan; Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Keiichiro Shindo
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan; Shonan Keiiku Hospital, Kanagawa, 252-0816, Japan
| | - Fujiko Hotta
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan; Tokyo Metropolitan Rehabilitation Hospital, Tokyo, 131-0034, Japan
| | - Takashi Hanakawa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan; Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 332-0012, Saitama, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, 223-8522, Japan; Keio Institute of Pure and Applied Sciences, Faculty of Science and Technology Graduate School of Science and Technology, Keio University, Kanagawa, 223-8522, Japan.
| |
Collapse
|
20
|
Turco CV, Fassett HJ, Locke MB, El-Sayes J, Nelson AJ. Parallel modulation of interhemispheric inhibition and the size of a cortical hand muscle representation during active contraction. J Neurophysiol 2019; 122:368-377. [PMID: 31116626 DOI: 10.1152/jn.00030.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interhemispheric inhibition (IHI) between motor cortexes is thought to suppress unwanted mirror movements during voluntary behaviors and can be assessed using paired-pulse transcranial magnetic stimulation (TMS). The magnitude of IHI may be related to the size of the cortical representation for a given muscle as a mechanism for facilitating unimanual control. To date, the relationship between IHI and cortical muscle representations remains unknown. Fifteen healthy, right-handed individuals participated in the present study. IHI was examined in the right first dorsal interosseous (FDI) muscle by delivering conditioning TMS to ipsilateral (right) primary motor cortex (M1) followed by a test TMS pulse to contralateral (left) M1. The size of the FDI representation in M1 was determined by delivering suprathreshold TMS over a 5 × 5-cm grid centered on the FDI motor hotspot of the left M1. Both IHI and cortical territory were obtained during three conditions: rest, contralateral (right) FDI contraction, and ipsilateral (left) FDI contraction. Results indicate a significant association between IHI and the size of the FDI representation only in the context of contraction and not when the FDI muscle was relaxed. Specifically, reduced IHI corresponded to larger cortical FDI representations during both contralateral and ipsilateral contraction. These data demonstrate that, for a muscle of the hand, the magnitude of IHI and the cortical territory are associated within the context of muscle contraction. NEW & NOTEWORTHY This study provides evidence from noninvasive brain stimulation that communication between the motor cortexes of the two hemispheres plays a role in shaping the motor cortical map that outputs to a hand muscle during active contraction of that muscle. This relationship exists only when the hand muscle is contracted. The findings presented further our understanding of motor control during unilateral movement and may inform future research targeting clinical populations that exhibit impaired unilateral control.
Collapse
Affiliation(s)
- Claudia V Turco
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Hunter J Fassett
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Mitchell B Locke
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Jenin El-Sayes
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| | - Aimee J Nelson
- Department of Kinesiology, McMaster University , Hamilton, Ontario , Canada
| |
Collapse
|
21
|
Jeunet C, Glize B, McGonigal A, Batail JM, Micoulaud-Franchi JA. Using EEG-based brain computer interface and neurofeedback targeting sensorimotor rhythms to improve motor skills: Theoretical background, applications and prospects. Neurophysiol Clin 2018; 49:125-136. [PMID: 30414824 DOI: 10.1016/j.neucli.2018.10.068] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022] Open
Abstract
Many Brain Computer Interface (BCI) and neurofeedback studies have investigated the impact of sensorimotor rhythm (SMR) self-regulation training procedures on motor skills enhancement in healthy subjects and patients with motor disabilities. This critical review aims first to introduce the different definitions of SMR EEG target in BCI/Neurofeedback studies and to summarize the background from neurophysiological and neuroplasticity studies that led to SMR being considered as reliable and valid EEG targets to improve motor skills through BCI/neurofeedback procedures. The second objective of this review is to introduce the main findings regarding SMR BCI/neurofeedback in healthy subjects. Third, the main findings regarding BCI/neurofeedback efficiency in patients with hypokinetic activities (in particular, motor deficit following stroke) as well as in patients with hyperkinetic activities (in particular, Attention Deficit Hyperactivity Disorder, ADHD) will be introduced. Due to a range of limitations, a clear association between SMR BCI/neurofeedback training and enhanced motor skills has yet to be established. However, SMR BCI/neurofeedback appears promising, and highlights many important challenges for clinical neurophysiology with regards to therapeutic approaches using BCI/neurofeedback.
Collapse
Affiliation(s)
- Camille Jeunet
- Laboratoire cognition, langues, langage, ergonomie (CLLE), CNRS/Université Toulouse Jean-Jaurès, 31058 Toulouse, France
| | - Bertrand Glize
- EA4136, Physical and Rehabilitation Medicine Unit, University of Bordeaux, Bordeaux University Hospital, 33000 Bordeaux, France
| | - Aileen McGonigal
- Inserm, Aix Marseille Université, INS, institut de neurosciences des systèmes, 13005 Marseille, France; Service de neurophysiologie clinique, centre hospitalo universitaire de la Timone, 264, rue Saint-Pierre, 13005 Marseille, France
| | - Jean-Marie Batail
- Academic Psychiatry Department, centre hospitalier Guillaume-Régnier, 35033 Rennes, France; EA 4712 Behavior and Basal Ganglia, Rennes 1 University, CHU de Rennes, 35033 Rennes, France
| | - Jean-Arthur Micoulaud-Franchi
- Service d'explorations fonctionnelles du système nerveux, clinique du sommeil, CHU de Bordeaux, place Amélie Raba-Léon, 33076 Bordeaux, France; USR CNRS 3413 SANPSY, université de Bordeaux, CHU Pellegrin, 33076 Bordeaux, France.
| |
Collapse
|
22
|
Berger CC, Ehrsson HH. Mental Imagery Induces Cross-Modal Sensory Plasticity and Changes Future Auditory Perception. Psychol Sci 2018; 29:926-935. [DOI: 10.1177/0956797617748959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Can what we imagine in our minds change how we perceive the world in the future? A continuous process of multisensory integration and recalibration is responsible for maintaining a correspondence between the senses (e.g., vision, touch, audition) and, ultimately, a stable and coherent perception of our environment. This process depends on the plasticity of our sensory systems. The so-called ventriloquism aftereffect—a shift in the perceived localization of sounds presented alone after repeated exposure to spatially mismatched auditory and visual stimuli—is a clear example of this type of plasticity in the audiovisual domain. In a series of six studies with 24 participants each, we investigated an imagery-induced ventriloquism aftereffect in which imagining a visual stimulus elicits the same frequency-specific auditory aftereffect as actually seeing one. These results demonstrate that mental imagery can recalibrate the senses and induce the same cross-modal sensory plasticity as real sensory stimuli.
Collapse
Affiliation(s)
- Christopher C. Berger
- Department of Neuroscience, Karolinska Institutet
- Division of Biology and Biological Engineering, California Institute of Technology
| | | |
Collapse
|
23
|
van de Ruit M, Grey MJ. The TMS Motor Map Does Not Change Following a Single Session of Mirror Training Either with Or without Motor Imagery. Front Hum Neurosci 2017; 11:601. [PMID: 29311869 PMCID: PMC5732933 DOI: 10.3389/fnhum.2017.00601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/27/2017] [Indexed: 11/21/2022] Open
Abstract
Both motor imagery and mirror training have been used in motor rehabilitation settings to promote skill learning and plasticity. As motor imagery and mirror training are suggested to be closely linked, it was hypothesized that mirror training augmented by motor imagery would increase corticospinal excitability (CSE) significantly compared to mirror training alone. Forty-four participants were split over two experimental groups. Each participant visited the laboratory once to receive either mirror training alone or mirror training augmented with layered stimulus response training (LSRT), a type of motor imagery training. Participants performed 16 min of mirror training, making repetitive grasping movements paced by a metronome. Transcranial magnetic stimulation (TMS) mapping was performed before and after the mirror training to test for changes in CSE of the untrained hand. Self-reports suggested that the imagery training was effective in helping the participant to perform the mirror training task as instructed. Nonetheless, neither training type resulted in a significant change of TMS map area, nor was there an interaction between the groups. The results from the study revealed no effect of a single session of 16 min of either mirror training or mirror training enhanced by imagery on TMS map area. Despite the negative result of the present experiment, this does not suggest that either motor imagery or mirror training might be ineffective as a rehabilitation therapy. Further study is required to allow disentangling the role of imagery and action observation in mirror training so that mirror training can be further tailored to the individual according to their abilities.
Collapse
Affiliation(s)
- Mark van de Ruit
- Neuromuscular Control Laboratory, Department of Biomechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Michael J Grey
- Acquired Brain Injury Rehabilitation Alliance, School of Health Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
24
|
Zich C, Debener S, Schweinitz C, Sterr A, Meekes J, Kranczioch C. High-Intensity Chronic Stroke Motor Imagery Neurofeedback Training at Home: Three Case Reports. Clin EEG Neurosci 2017; 48:403-412. [PMID: 28677413 DOI: 10.1177/1550059417717398] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Motor imagery (MI) with neurofeedback has been suggested as promising for motor recovery after stroke. Evidence suggests that regular training facilitates compensatory plasticity, but frequent training is difficult to integrate into everyday life. Using a wireless electroencephalogram (EEG) system, we implemented a frequent and efficient neurofeedback training at the patients' home. Aiming to overcome maladaptive changes in cortical lateralization patterns we presented a visual feedback, representing the degree of contralateral sensorimotor cortical activity and the degree of sensorimotor cortex lateralization. Three stroke patients practiced every other day, over a period of 4 weeks. Training-related changes were evaluated on behavioral, functional, and structural levels. All 3 patients indicated that they enjoyed the training and were highly motivated throughout the entire training regime. EEG activity induced by MI of the affected hand became more lateralized over the course of training in all three patients. The patient with a significant functional change also showed increased white matter integrity as revealed by diffusion tensor imaging, and a substantial clinical improvement of upper limb motor functions. Our study provides evidence that regular, home-based practice of MI neurofeedback has the potential to facilitate cortical reorganization and may also increase associated improvements of upper limb motor function in chronic stroke patients.
Collapse
Affiliation(s)
- Catharina Zich
- 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,2 Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Stefan Debener
- 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,3 Cluster of Excellence Hearing4all, University of Oldenburg, Oldenburg, Germany.,4 Research Center Neurosensory Systems, University of Oldenburg, Oldenburg, Germany
| | - Clara Schweinitz
- 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Annette Sterr
- 5 Brain and Behaviour Research Group, School of Psychology, University of Surrey, Guildford, UK
| | - Joost Meekes
- 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- 1 Neuropsychology Lab, Department of Psychology, European Medical School, University of Oldenburg, Oldenburg, Germany.,4 Research Center Neurosensory Systems, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
25
|
McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: A meta-analysis. Brain Stimul 2017; 10:721-734. [DOI: 10.1016/j.brs.2017.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/27/2017] [Accepted: 03/20/2017] [Indexed: 01/05/2023] Open
|
26
|
Henz D, Schöllhorn WI. EEG Brain Activity in Dynamic Health Qigong Training: Same Effects for Mental Practice and Physical Training? Front Psychol 2017; 8:154. [PMID: 28223957 PMCID: PMC5293832 DOI: 10.3389/fpsyg.2017.00154] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/23/2017] [Indexed: 11/13/2022] Open
Abstract
In recent years, there has been significant uptake of meditation and related relaxation techniques, as a means of alleviating stress and fostering an attentive mind. Several electroencephalogram (EEG) studies have reported changes in spectral band frequencies during Qigong meditation indicating a relaxed state. Much less is reported on effects of brain activation patterns induced by Qigong techniques involving bodily movement. In this study, we tested whether (1) physical Qigong training alters EEG theta and alpha activation, and (2) mental practice induces the same effect as a physical Qigong training. Subjects performed the dynamic Health Qigong technique Wu Qin Xi (five animals) physically and by mental practice in a within-subjects design. Experimental conditions were randomized. Two 2-min (eyes-open, eyes-closed) EEG sequences under resting conditions were recorded before and immediately after each 15-min exercise. Analyses of variance were performed for spectral power density data. Increased alpha power was found in posterior regions in mental practice and physical training for eyes-open and eyes-closed conditions. Theta power was increased after mental practice in central areas in eyes-open conditions, decreased in fronto-central areas in eyes-closed conditions. Results suggest that mental, as well as physical Qigong training, increases alpha activity and therefore induces a relaxed state of mind. The observed differences in theta activity indicate different attentional processes in physical and mental Qigong training. No difference in theta activity was obtained in physical and mental Qigong training for eyes-open and eyes-closed resting state. In contrast, mental practice of Qigong entails a high degree of internalized attention that correlates with theta activity, and that is dependent on eyes-open and eyes-closed resting state.
Collapse
Affiliation(s)
- Diana Henz
- Institute of Sports Science, University of MainzMainz, Germany
| | | |
Collapse
|
27
|
Neural plasticity during motor learning with motor imagery practice: Review and perspectives. Neuroscience 2016; 341:61-78. [PMID: 27890831 DOI: 10.1016/j.neuroscience.2016.11.023] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/11/2016] [Accepted: 11/17/2016] [Indexed: 10/20/2022]
Abstract
In the last decade, many studies confirmed the benefits of mental practice with motor imagery. In this review we first aimed to compile data issued from fundamental and clinical investigations and to provide the key-components for the optimization of motor imagery strategy. We focused on transcranial magnetic stimulation studies, supported by brain imaging research, that sustain the current hypothesis of a functional link between cortical reorganization and behavioral improvement. As perspectives, we suggest a model of neural adaptation following mental practice, in which synapse conductivity and inhibitory mechanisms at the spinal level may also play an important role.
Collapse
|
28
|
Bigoni M, Baudo S, Cimolin V, Cau N, Galli M, Pianta L, Tacchini E, Capodaglio P, Mauro A. Does kinematics add meaningful information to clinical assessment in post-stroke upper limb rehabilitation? A case report. J Phys Ther Sci 2016; 28:2408-13. [PMID: 27630445 PMCID: PMC5011609 DOI: 10.1589/jpts.28.2408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/07/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aims of this case study were to: (a) quantify the impairment and activity
restriction of the upper limb in a hemiparetic patient; (b) quantitatively evaluate
rehabilitation program effectiveness; and (c) discuss whether more clinically meaningful
information can be gained with the use of kinematic analysis in addition to clinical
assessment. The rehabilitation program consisted of the combined use of different
traditional physiotherapy techniques, occupational therapy sessions, and the so-called
task-oriented approach. [Subject and Methods] Subject was a one hemiplegic patient. The
patient was assessed at the beginning and after 1 month of daily rehabilitation using the
Medical Research Council scale, Nine Hole Peg Test, Motor Evaluation Scale for Upper
Extremity in Stroke Patients, and Hand Grip Dynamometer test as well as a kinematic
analysis using an optoelectronic system. [Results] After treatment, significant
improvements were evident in terms of total movement duration, movement completion
velocity, and some smoothness parameters. [Conclusion] Our case report showed that the
integration of clinical assessment with kinematic evaluation appears to be useful for
quantitatively assessing performance changes.
Collapse
Affiliation(s)
- Matteo Bigoni
- Department of Neurology and NeuroRehabilitation, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy
| | - Silvia Baudo
- Department of Neurology and NeuroRehabilitation, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Nicola Cau
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; IRCCS "San Raffaele Pisana", Tosinvest Sanità, Roma, Italy
| | - Lucia Pianta
- Department of Neurology and NeuroRehabilitation, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy
| | - Elena Tacchini
- Department of Neurology and NeuroRehabilitation, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy; Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy
| | - Paolo Capodaglio
- Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy
| | - Alessandro Mauro
- Department of Neurology and NeuroRehabilitation, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy; Orthopaedic Rehabilitation Unit and Clinical Lab for Gait Analysis and Posture, Ospedale San Giuseppe, Istituto Auxologico Italiano, IRCCS, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Italy; IRCCS "San Raffaele Pisana", Tosinvest Sanità, Roma, Italy; Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| |
Collapse
|
29
|
Mapping cortical hand motor representation using TMS: A method to assess brain plasticity and a surrogate marker for recovery of function after stroke? Neurosci Biobehav Rev 2016; 69:239-51. [PMID: 27435238 DOI: 10.1016/j.neubiorev.2016.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/06/2016] [Accepted: 07/06/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Stroke is associated with reorganization within motor areas of both hemispheres. Mapping the cortical hand motor representation using transcranial magnetic stimulation may help to understand the relationship between motor cortex reorganization and motor recovery of the affected hand after stroke. METHODS A standardized review of the pertinent literature was performed. RESULTS We identified 20 trials, which analyzed the relationship between the extent and/or location of cortical hand motor representation using transcranial magnetic stimulation and motor function and recovery of the affected hand. Several correlations were found between cortical reorganization and measures of hand motor impairment and recovery. CONCLUSION A better understanding of the relationships between the extent and location of cortical hand motor representation and the motor impairment and motor recovery of the affected hand after stroke may contribute to a targeted use of non-invasive brain stimulation protocols. In the future motor mapping may help to guide brain stimulation techniques to the most effective motor area in an affected individual.
Collapse
|
30
|
Oh HS, Kim EJ, Kim DY, Kim SJ. Effects of Adjuvant Mental Practice on Affected Upper Limb Function Following a Stroke: Results of Three-Dimensional Motion Analysis, Fugl-Meyer Assessment of the Upper Extremity and Motor Activity Logs. Ann Rehabil Med 2016; 40:401-11. [PMID: 27446776 PMCID: PMC4951358 DOI: 10.5535/arm.2016.40.3.401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. Methods In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Results Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Conclusion Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings.
Collapse
Affiliation(s)
- Hyun Seung Oh
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Eun Joo Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| | - Doo Young Kim
- Goseong Community Health Center, Gyeongsangnam-do, Korea
| | - Soo Jeong Kim
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, Korea
| |
Collapse
|
31
|
Hamedi M, Salleh SH, Noor AM. Electroencephalographic Motor Imagery Brain Connectivity Analysis for BCI: A Review. Neural Comput 2016; 28:999-1041. [PMID: 27137671 DOI: 10.1162/neco_a_00838] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent research has reached a consensus on the feasibility of motor imagery brain-computer interface (MI-BCI) for different applications, especially in stroke rehabilitation. Most MI-BCI systems rely on temporal, spectral, and spatial features of single channels to distinguish different MI patterns. However, no successful communication has been established for a completely locked-in subject. To provide more useful and informative features, it has been recommended to take into account the relationships among electroencephalographic (EEG) sensor/source signals in the form of brain connectivity as an efficient tool of neuroscience. In this review, we briefly report the challenges and limitations of conventional MI-BCIs. Brain connectivity analysis, particularly functional and effective, has been described as one of the most promising approaches for improving MI-BCI performance. An extensive literature on EEG-based MI brain connectivity analysis of healthy subjects is reviewed. We subsequently discuss the brain connectomes during left and right hand, feet, and tongue MI movements. Moreover, key components involved in brain connectivity analysis that considerably affect the results are explained. Finally, possible technical shortcomings that may have influenced the results in previous research are addressed and suggestions are provided.
Collapse
Affiliation(s)
- Mahyar Hamedi
- Center for Biomedical Engineering and Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
| | - Sh-Hussain Salleh
- Center for Biomedical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
| | - Alias Mohd Noor
- Center for Biomedical Engineering, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Malaysia
| |
Collapse
|
32
|
Furlan L, Conforto AB, Cohen LG, Sterr A. Upper Limb Immobilisation: A Neural Plasticity Model with Relevance to Poststroke Motor Rehabilitation. Neural Plast 2015; 2016:8176217. [PMID: 26843992 PMCID: PMC4710952 DOI: 10.1155/2016/8176217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 11/26/2022] Open
Abstract
Advances in our understanding of the neural plasticity that occurs after hemiparetic stroke have contributed to the formulation of theories of poststroke motor recovery. These theories, in turn, have underpinned contemporary motor rehabilitation strategies for treating motor deficits after stroke, such as upper limb hemiparesis. However, a relative drawback has been that, in general, these strategies are most compatible with the recovery profiles of relatively high-functioning stroke survivors and therefore do not easily translate into benefit to those individuals sustaining low-functioning upper limb hemiparesis, who otherwise have poorer residual function. For these individuals, alternative motor rehabilitation strategies are currently needed. In this paper, we will review upper limb immobilisation studies that have been conducted with healthy adult humans and animals. Then, we will discuss how the findings from these studies could inspire the creation of a neural plasticity model that is likely to be of particular relevance to the context of motor rehabilitation after stroke. For instance, as will be elaborated, such model could contribute to the development of alternative motor rehabilitation strategies for treating poststroke upper limb hemiparesis. The implications of the findings from those immobilisation studies for contemporary motor rehabilitation strategies will also be discussed and perspectives for future research in this arena will be provided as well.
Collapse
Affiliation(s)
- Leonardo Furlan
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Adriana Bastos Conforto
- Neurology Clinical Division, Clinics Hospital, São Paulo University, Avenida Dr. Enéas C. Aguiar 255/5084, 05403-010 São Paulo, SP, Brazil
- Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Avenida Albert Einstein 627/701, 05601-901 São Paulo, SP, Brazil
| | - Leonardo G. Cohen
- Human Cortical Physiology and Stroke Rehabilitation Section, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Building 10, Room 7D54, Bethesda, MD 20892, USA
| | - Annette Sterr
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
- Neurology Clinical Division, Clinics Hospital, São Paulo University, Avenida Dr. Enéas C. Aguiar 255/5084, 05403-010 São Paulo, SP, Brazil
| |
Collapse
|
33
|
Integrating Mental Practice with Task-specific Training and Behavioral Supports in Poststroke Rehabilitation. Phys Med Rehabil Clin N Am 2015; 26:715-27. [DOI: 10.1016/j.pmr.2015.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Bunno Y, Onigata C, Suzuki T. Excitability of spinal motor neurons during motor imagery of thenar muscle activity under maximal voluntary contractions of 50% and 100. J Phys Ther Sci 2015; 27:2775-8. [PMID: 26504291 PMCID: PMC4616092 DOI: 10.1589/jpts.27.2775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/03/2015] [Indexed: 01/13/2023] Open
Abstract
[Purpose] We often perform physical therapy using motor imagery of muscle contraction to
improve motor function for healthy subjects and central nerve disorders. This study aimed
to determine the differences in the excitability of spinal motor neurons during motor
imagery of a muscle contraction at different contraction strengths. [Subjects] We recorded
the F-wave in 15 healthy subjects. [Methods] In resting trial, the muscle was relaxed
during F-wave recording. For motor imagery trial, subjects were instructed to imagine
maximal voluntary contractions of 50% and 100% while holding the sensor of a pinch meter,
and F-waves were recorded for each contraction. The F-wave was recorded immediately after
motor imagery. [Results] Persistence and F/M amplitude ratio during motor imagery under
maximal voluntary contractions of 50% and 100% were significantly higher than that at
rest. In addition, the relative values of persistence, F/M amplitude ratio, and latency
were similar during motor imagery under the two muscle contraction strengths. [Conclusion]
Motor imagery under maximal voluntary contractions of 50% and 100% can increase the
excitability of spinal motor neurons. Differences in the imagined muscle contraction
strengths are not involved in changes in the excitability of spinal motor neurons.
Collapse
Affiliation(s)
- Yoshibumi Bunno
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Japan ; Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Chieko Onigata
- Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| | - Toshiaki Suzuki
- Graduate School of Health Sciences, Graduate School of Kansai University of Health Sciences, Japan ; Clinical Physical Therapy Laboratory, Faculty of Health Sciences, Kansai University of Health Sciences, Japan
| |
Collapse
|
35
|
Kim SS, Lee HJ, You YY. Effects of ankle strengthening exercises combined with motor imagery training on the timed up and go test score and weight bearing ratio in stroke patients. J Phys Ther Sci 2015; 27:2303-5. [PMID: 26311971 PMCID: PMC4540868 DOI: 10.1589/jpts.27.2303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/16/2015] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of the present study was to compare the effects of ankle strengthening exercises combined with motor imagery training and those of ankle strengthening exercises alone in stroke patients. [Subjects and Methods] Thirty stroke patients were randomly assigned to one of the following two groups: experimental group (15 patients) and control group (15 patients). The experimental group underwent motor imagery training for 15 minutes and ankle joint strengthening exercises for 15 minutes, while the control group underwent only ankle joint strengthening exercises for 30 minutes. Each session and training program was implemented four times a week for 4 weeks. The timed up and go (TUG) test score, affected-side weight bearing ratio, and affected-side front/rear weight bearing ratio were assessed. [Results] Both groups demonstrated improvement on the TUG test, and in the affected-side weight bearing ratios, affected-side front/rear weight bearing ratios, and balance errors. The experimental group demonstrated greater improvement than the control group in all variables. [Conclusion] Motor imagery training is an effective treatment method for improving static balance ability in stroke patients.
Collapse
Affiliation(s)
- Sung Shin Kim
- Department of Rehabilitation Therapy, Graduate School of Hallym University, Republic of Korea
| | - Hyung Jin Lee
- Department of Rehabilitation Therapy, Graduate School of Hallym University, Republic of Korea
| | | |
Collapse
|
36
|
McDonnell MN, Hillier SL, Opie GM, Nowosilskyj M, Haberfield M, Todd G. Continuous passive movement does not influence motor maps in healthy adults. Front Hum Neurosci 2015; 9:230. [PMID: 25972802 PMCID: PMC4413560 DOI: 10.3389/fnhum.2015.00230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/10/2015] [Indexed: 11/19/2022] Open
Abstract
Hand weakness following stroke is often associated with a reduced representation of the hand in the primary motor cortex. Meaningful sensory input can induce sensorimotor reorganization in the brain, but the after-effect of continuous passive motion (CPM) on the cortical representation is unknown. The purpose of this study was to determine whether repeated sessions of continuous passive movement of the thumb induce a lasting increase in the motor cortical representation of a thumb muscle in healthy adults. Thirteen right-handed healthy adults (mean age 24.3 ± 4.3 years) participated in the study. Single-pulse Transcranial Magnetic Stimulation (TMS) was delivered over the motor area of the target muscle (abductor pollicis brevis) before and/or after a thirty minute session of thumb CPM administered on three consecutive days. TMS was also delivered 5 days after cessation of the CPM intervention. The response to TMS (motor evoked potential) was recorded in the target muscle with surface EMG. Resting motor threshold (RMT), motor evoked potential amplitude at a specified intensity, and the area and volume of the cortical representation of the target muscle were measured. Thumb CPM had no significant effect on TMS parameters (p > 0.05 all measures) and performance of an attention task remained unchanged within and across CPM sessions. The results suggest that three sessions of repetitive passive thumb movement is not sufficient to induce a change in the cortical representation of the thumb and is unlikely to reverse the decreased representation of the affected hand following stroke.
Collapse
Affiliation(s)
- Michelle N McDonnell
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, School of Health Sciences, University of South Australia Adelaide, Australia
| | - Susan L Hillier
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, School of Health Sciences, University of South Australia Adelaide, Australia
| | - George M Opie
- Department of Physiology, The University of Adelaide Adelaide, Australia
| | - Matthew Nowosilskyj
- International Centre for Allied Health Evidence, Sansom Institute for Health Research, School of Health Sciences, University of South Australia Adelaide, Australia
| | - Miranda Haberfield
- School of Pharmacy and Medical Sciences and Sansom Institute for Health Research, University of South Australia Adelaide, Australia
| | - Gabrielle Todd
- School of Pharmacy and Medical Sciences and Sansom Institute for Health Research, University of South Australia Adelaide, Australia
| |
Collapse
|
37
|
Morone G, Pisotta I, Pichiorri F, Kleih S, Paolucci S, Molinari M, Cincotti F, Kübler A, Mattia D. Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch Phys Med Rehabil 2015; 96:S71-8. [PMID: 25721550 DOI: 10.1016/j.apmr.2014.05.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the feasibility of brain-computer interface (BCI)-assisted motor imagery training to support hand/arm motor rehabilitation after stroke during hospitalization. DESIGN Proof-of-principle study. SETTING Neurorehabilitation hospital. PARTICIPANTS Convenience sample of patients (N=8) with new-onset arm plegia or paresis caused by unilateral stroke. INTERVENTIONS The BCI-based intervention was administered as an "add-on" to usual care and lasted 4 weeks. Under the supervision of a therapist, patients were asked to practice motor imagery of their affected hand and received as a discrete feedback the movements of a "virtual" hand superimposed on their own. Such a BCI-based device was installed in a rehabilitation hospital ward. MAIN OUTCOME MEASURES Following a user-centered design, we assessed system usability in terms of motivation, satisfaction (by means of visual analog scales), and workload (National Aeronautics and Space Administration-Task Load Index). The usability of the BCI-based system was also evaluated by 15 therapists who participated in a focus group. RESULTS All patients successfully accomplished the BCI training. Significant positive correlations were found between satisfaction and motivation (P=.001, r=.393). BCI performance correlated with interest (P=.027, r=.257) and motivation (P=.012, r=.289). During the focus group, professionals positively acknowledged the opportunity offered by BCI-assisted training to measure patients' adherence to rehabilitation. CONCLUSIONS An ecological BCI-based device to assist motor imagery practice was found to be feasible as an add-on intervention and tolerable by patients who were exposed to the system in the rehabilitation environment.
Collapse
Affiliation(s)
- Giovanni Morone
- Neuroelectrical Imaging and BCI Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; Clinical Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Iolanda Pisotta
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Floriana Pichiorri
- Neuroelectrical Imaging and BCI Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Sonja Kleih
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Stefano Paolucci
- Clinical Laboratory of Experimental Neurorehabilitation, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Marco Molinari
- Experimental Neurorehabilitation Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Febo Cincotti
- Neuroelectrical Imaging and BCI Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy; Department of Computer, Control, and Management Engineering, Sapienza University of Rome, Italy
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Donatella Mattia
- Neuroelectrical Imaging and BCI Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
38
|
Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, Mattia D. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol 2015; 77:851-65. [PMID: 25712802 DOI: 10.1002/ana.24390] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Motor imagery (MI) is assumed to enhance poststroke motor recovery, yet its benefits are debatable. Brain-computer interfaces (BCIs) can provide instantaneous and quantitative measure of cerebral functions modulated by MI. The efficacy of BCI-monitored MI practice as add-on intervention to usual rehabilitation care was evaluated in a randomized controlled pilot study in subacute stroke patients. METHODS Twenty-eight hospitalized subacute stroke patients with severe motor deficits were randomized into 2 intervention groups: 1-month BCI-supported MI training (BCI group, n = 14) and 1-month MI training without BCI support (control group; n = 14). Functional and neurophysiological assessments were performed before and after the interventions, including evaluation of the upper limbs by Fugl-Meyer Assessment (FMA; primary outcome measure) and analysis of oscillatory activity and connectivity at rest, based on high-density electroencephalographic (EEG) recordings. RESULTS Better functional outcome was observed in the BCI group, including a significantly higher probability of achieving a clinically relevant increase in the FMA score (p < 0.03). Post-BCI training changes in EEG sensorimotor power spectra (ie, stronger desynchronization in the alpha and beta bands) occurred with greater involvement of the ipsilesional hemisphere in response to MI of the paralyzed trained hand. Also, FMA improvements (effectiveness of FMA) correlated with the changes (ie, post-training increase) at rest in ipsilesional intrahemispheric connectivity in the same bands (p < 0.05). INTERPRETATION The introduction of BCI technology in assisting MI practice demonstrates the rehabilitative potential of MI, contributing to significantly better motor functional outcomes in subacute stroke patients with severe motor impairments.
Collapse
Affiliation(s)
- Floriana Pichiorri
- Santa Lucia Foundation Institute of Hospitalization and Scientific Care; Department of Neurology and Psychiatry, Sapienza University of Rome
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Park EC, Hwangbo G. The effects of action observation gait training on the static balance and walking ability of stroke patients. J Phys Ther Sci 2015; 27:341-4. [PMID: 25729163 PMCID: PMC4339133 DOI: 10.1589/jpts.27.341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/24/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of the study was to investigate the effects of action observation training on the static balance and walking ability of patients who had suffered a stroke. [Subjects] Forty patients with hemiplegia resulting from a stroke were divided into an action observation gait training group (AOGT group, n=20) and a general gait training group (GGT group, n=20). [Methods] The AOGT group watched a training video on flatland gait, slope gait, and stair gait. The GGT group watched a video on nature. Both groups watched their respective video for 10 minutes and then had gait training for 20 minutes per day, five times per week, for eight weeks. [Results] The static balance and gait ability of both groups significantly improved. Although there were significant differences between the groups, the AOTG group showed greater improvements in sway speed, limit of stability, and gait ability. [Conclusion] We recommend action observation training over general gait training for patients with hemiplegia. Action observational training had a positive effect on static balance and gait ability in stroke patients' static balance and gait ability. Further research is needed to generalize the results of this study.
Collapse
Affiliation(s)
- Eun Cho Park
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Republic of Korea
| | - Gak Hwangbo
- Department of Physical Therapy, College of Rehabilitation Science, Daegu University, Republic of Korea
| |
Collapse
|
40
|
|
41
|
Mokienko OA, Chernikova LA, Frolov AA, Bobrov PD. Motor Imagery and Its Practical Application. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11055-014-9937-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Di Rienzo F, Collet C, Hoyek N, Guillot A. Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations. Neuropsychol Rev 2014; 24:116-47. [DOI: 10.1007/s11065-014-9257-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 03/02/2014] [Indexed: 12/16/2022]
|
43
|
Teo WP, Chew E. Is motor-imagery brain-computer interface feasible in stroke rehabilitation? PM R 2014; 6:723-8. [PMID: 24429072 DOI: 10.1016/j.pmrj.2014.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 01/02/2014] [Accepted: 01/09/2014] [Indexed: 11/28/2022]
Abstract
In the past 3 decades, interest has increased in brain-computer interface (BCI) technology as a tool for assisting, augmenting, and rehabilitating sensorimotor functions in clinical populations. Initially designed as an assistive device for partial or total body impairments, BCI systems have since been explored as a possible adjuvant therapy in the rehabilitation of patients who have had a stroke. In particular, BCI systems incorporating a robotic manipulanda to passively manipulate affected limbs have been studied. These systems can use a range of invasive (ie, intracranial implanted electrodes) or noninvasive neurophysiologic recording techniques (ie, electroencephalography [EEG], near-infrared spectroscopy, and magnetoencephalography) to establish communication links between the brain and the BCI system. Trials are most commonly performed on EEG-based BCI in comparison with the other techniques because of its high temporal resolution, relatively low setup costs, portability, and noninvasive nature. EEG-based BCI detects event-related desynchronization/synchronization in sensorimotor oscillatory rhythms associated with motor imagery (MI), which in turn drives the BCI. Previous evidence suggests that the process of MI preferentially activates sensorimotor regions similar to actual task performance and that repeated practice of MI can induce plasticity changes in the brain. It is therefore postulated that the combination of MI and BCI may augment rehabilitation gains in patients who have had a stroke by activating corticomotor networks via MI and providing sensory feedback from the affected limb using end-effector robots. In this review we examine the current literature surrounding the feasibility of EEG-based MI-BCI systems in stroke rehabilitation. We also discuss the limitations of using EEG-based MI-BCI in patients who have had a stroke and suggest possible solutions to overcome these limitations.
Collapse
Affiliation(s)
- Wei-Peng Teo
- School of Medical and Applied Sciences, Central Queensland University, Bruce Highway, Rockhampton, Queensland, 4702, Australia(∗).
| | - Effie Chew
- Division of Neurology and Yong Loo Lin School of Medicine, National University Health Systems, Singapore(†)
| |
Collapse
|
44
|
Mokienko OA, Chervyakov AV, Kulikova SN, Bobrov PD, Chernikova LA, Frolov AA, Piradov MA. Increased motor cortex excitability during motor imagery in brain-computer interface trained subjects. Front Comput Neurosci 2013; 7:168. [PMID: 24319425 PMCID: PMC3837244 DOI: 10.3389/fncom.2013.00168] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/02/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Motor imagery (MI) is the mental performance of movement without muscle activity. It is generally accepted that MI and motor performance have similar physiological mechanisms. PURPOSE To investigate the activity and excitability of cortical motor areas during MI in subjects who were previously trained with an MI-based brain-computer interface (BCI). SUBJECTS AND METHODS Eleven healthy volunteers without neurological impairments (mean age, 36 years; range: 24-68 years) were either trained with an MI-based BCI (BCI-trained, n = 5) or received no BCI training (n = 6, controls). Subjects imagined grasping in a blocked paradigm task with alternating rest and task periods. For evaluating the activity and excitability of cortical motor areas we used functional MRI and navigated transcranial magnetic stimulation (nTMS). RESULTS fMRI revealed activation in Brodmann areas 3 and 6, the cerebellum, and the thalamus during MI in all subjects. The primary motor cortex was activated only in BCI-trained subjects. The associative zones of activation were larger in non-trained subjects. During MI, motor evoked potentials recorded from two of the three targeted muscles were significantly higher only in BCI-trained subjects. The motor threshold decreased (median = 17%) during MI, which was also observed only in BCI-trained subjects. CONCLUSION Previous BCI training increased motor cortex excitability during MI. These data may help to improve BCI applications, including rehabilitation of patients with cerebral palsy.
Collapse
Affiliation(s)
- Olesya A Mokienko
- Research Center of Neurology Russian Academy of Medical Science Moscow, Russia ; Institute of Higher Nervous Activity and Neurophysiology of RAS Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
45
|
Transcranial direct current stimulation in stroke rehabilitation: a review of recent advancements. Stroke Res Treat 2013; 2013:170256. [PMID: 23533955 PMCID: PMC3600193 DOI: 10.1155/2013/170256] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/17/2012] [Accepted: 01/14/2013] [Indexed: 01/25/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising technique to treat a wide range of neurological conditions including stroke. The pathological processes following stroke may provide an exemplary system to investigate how tDCS promotes neuronal plasticity and functional recovery. Changes in synaptic function after stroke, such as reduced excitability, formation of aberrant connections, and deregulated plastic modifications, have been postulated to impede recovery from stroke. However, if tDCS could counteract these negative changes by influencing the system's neurophysiology, it would contribute to the formation of functionally meaningful connections and the maintenance of existing pathways. This paper is aimed at providing a review of underlying mechanisms of tDCS and its application to stroke. In addition, to maximize the effectiveness of tDCS in stroke rehabilitation, future research needs to determine the optimal stimulation protocols and parameters. We discuss how stimulation parameters could be optimized based on electrophysiological activity. In particular, we propose that cortical synchrony may represent a biomarker of tDCS efficacy to indicate communication between affected areas. Understanding the mechanisms by which tDCS affects the neural substrate after stroke and finding ways to optimize tDCS for each patient are key to effective rehabilitation approaches.
Collapse
|
46
|
Liepert J, Greiner J, Nedelko V, Dettmers C. Reduced upper limb sensation impairs mental chronometry for motor imagery after stroke: clinical and electrophysiological findings. Neurorehabil Neural Repair 2012; 26:470-8. [PMID: 22247502 DOI: 10.1177/1545968311425924] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor imagery (MI) is increasingly recognized as a treatment option after stroke, but not all stroke patients are able to perform MI. OBJECTIVE To examine if severe somatosensory deficits would affect MI ability. METHODS The Box and Block Test (BBT) was used to evaluate mental chronometry as 1 component of MI. Two groups of stroke patients and an age-matched healthy control group (CG) were studied. Patient group 1 (n = 10, PG1) had a severe somatosensory impairment on the affected side and PG2 (n = 10) had pure motor strokes. All subjects first performed the BBT in a mental and in a real version. The time needed to move 15 blocks from 1 side of the box to the other was measured. To compare the groups independently of their performance level, a (real performance--MI)/(real performance) ratio was calculated. Corticospinal excitability was measured by transcranial magnetic stimulation at rest and while the subjects performed an imagined pinch grip. RESULTS The CG performed the BBT faster than both patient groups, and PG1 was slower than PG2. MI ability was impaired in PG1 but only for the affected hand. Transcranial magnetic stimulation data showed an abnormally low MI-induced corticospinal excitability increase for the affected hand in PG1, but not in PG2. CONCLUSIONS Severe somatosensory deficits impaired mental chronometry. A controlled study is necessary to clarify if these patients benefit at all from MI as an additional treatment.
Collapse
|
47
|
Pichiorri F, De Vico Fallani F, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kübler A, Mattia D. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J Neural Eng 2011; 8:025020. [PMID: 21436514 DOI: 10.1088/1741-2560/8/2/025020] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.
Collapse
Affiliation(s)
- F Pichiorri
- Neurolelectrical Imaging and BCI Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Modulation of Event-related Desynchronization duringMotor Imagery with Transcranial Direct Current Stimulationin a Patient with Severe Hemiparetic Stroke: A Case Report. Keio J Med 2011; 60:114-8. [DOI: 10.2302/kjm.60.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Lee G, Song C, Lee Y, Cho H, Lee S. Effects of Motor Imagery Training on Gait Ability of Patients with Chronic Stroke. J Phys Ther Sci 2011. [DOI: 10.1589/jpts.23.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- GyuChang Lee
- Department of Physical Therapy, Sahmyook University
| | - ChangHo Song
- Department of Physical Therapy, Sahmyook University
| | - YongWoo Lee
- Department of Physical Therapy, Sahmyook University
| | - HwiYoung Cho
- Department of Physical Therapy, Sahmyook University
| | - SeungWon Lee
- Department of Physical Therapy, Sahmyook University
| |
Collapse
|
50
|
Ionta S, Ferretti A, Merla A, Tartaro A, Romani GL. Step-by-step: the effects of physical practice on the neural correlates of locomotion imagery revealed by fMRI. Hum Brain Mapp 2010; 31:694-702. [PMID: 19862697 DOI: 10.1002/hbm.20898] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Previous studies have shown that mental imagery is a suitable tool to study the progression of the effect of practice on brain activation. Nevertheless, there is still poor knowledge of changes in brain activation patterns during the very early stages of physical practice. In this study, early and late practice stages of different kinds of locomotion (i.e., balanced and unbalanced) have been investigated using functional magnetic resonance imaging during mental imagery of locomotion and stance. During the task, cardiac activity was also recorded. The cerebral network comprising supplementary motor area, basal ganglia, bilateral thalamus, and right cerebellum showed a stronger activation during the imagery of locomotion with respect to imagery of stance. The heart beat showed a significant increase in frequency during the imagery of locomotion with respect to the imagery of stance. Moreover, early stages of practice determined an increased activation in basal ganglia and thalamus with respect to late stages. In this way, it is proposed the modulation of the brain network involved in the imagery of locomotion as a function of physical practice time.
Collapse
Affiliation(s)
- Silvio Ionta
- ITAB-Institute for Advanced Biomedical Technologies, G. D'Annunzio University Foundation, Chieti, Italy.
| | | | | | | | | |
Collapse
|