1
|
Wang XM, Karlinsky A, Constable MD, Gregory SEA, Welsh TN. Social gaze cueing elicits facilitatory and inhibitory effects on movement execution when the model might act on an object. Q J Exp Psychol (Hove) 2024; 77:230-241. [PMID: 36999402 PMCID: PMC10798020 DOI: 10.1177/17470218231162546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 04/01/2023]
Abstract
Social cues, such as eye gaze and pointing fingers, can increase the prioritisation of specific locations for cognitive processing. A previous study using a manual reaching task showed that, although both gaze and pointing cues altered target prioritisation (reaction times [RTs]), only pointing cues affected action execution (trajectory deviations). These differential effects of gaze and pointing cues on action execution could be because the gaze cue was conveyed through a disembodied head; hence, the model lacked the potential for a body part (i.e., hands) to interact with the target. In the present study, the image of a male gaze model, whose gaze direction coincided with two potential target locations, was centrally presented. The model either had his arms and hands extended underneath the potential target locations, indicating the potential to act on the targets (Experiment 1), or had his arms crossed in front of his chest, indicating the absence of potential to act (Experiment 2). Participants reached to a target that followed a nonpredictive gaze cue at one of three stimulus onset asynchronies. RTs and reach trajectories of the movements to cued and uncued targets were analysed. RTs showed a facilitation effect for both experiments, whereas trajectory analysis revealed facilitatory and inhibitory effects, but only in Experiment 1 when the model could potentially act on the targets. The results of this study suggested that when the gaze model had the potential to interact with the cued target location, the model's gaze affected not only target prioritisation but also movement execution.
Collapse
Affiliation(s)
- Xiaoye Michael Wang
- Faculty of Kinesiology & Physical Education, Centre for Motor Control, University of Toronto, Toronto, Ontario, Canada
| | - April Karlinsky
- Department of Kinesiology, California State University, San Bernardino, San Bernardino, CA, USA
| | - Merryn D Constable
- Department of Psychology, Northumbria University, Newcastle upon Tyne, UK
| | | | - Timothy N Welsh
- Faculty of Kinesiology & Physical Education, Centre for Motor Control, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
He X, Bao M. Neuroimaging evidence of visual-vestibular interaction accounting for perceptual mislocalization induced by head rotation. NEUROPHOTONICS 2024; 11:015005. [PMID: 38298609 PMCID: PMC10828893 DOI: 10.1117/1.nph.11.1.015005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
Significance A fleeting flash aligned vertically with an object remaining stationary in the head-centered space would be perceived as lagging behind the object during the observer's horizontal head rotation. This perceptual mislocalization is an illusion named head-rotation-induced flash-lag effect (hFLE). While many studies have investigated the neural mechanism of the classical visual FLE, the hFLE has been hardly investigated. Aim We measured the cortical activity corresponding to the hFLE on participants experiencing passive head rotations using functional near-infrared spectroscopy. Approach Participants were asked to judge the relative position of a flash to a fixed reference while being horizontally rotated or staying static in a swivel chair. Meanwhile, functional near-infrared spectroscopy signals were recorded in temporal-parietal areas. The flash duration was manipulated to provide control conditions. Results Brain activity specific to the hFLE was found around the right middle/inferior temporal gyri, and bilateral supramarginal gyri and superior temporal gyri areas. The activation was positively correlated with the rotation velocity of the participant around the supramarginal gyrus and negatively related to the hFLE intensity around the middle temporal gyrus. Conclusions These results suggest that the mechanism underlying the hFLE involves multiple aspects of visual-vestibular interactions including the processing of multisensory conflicts mediated by the temporoparietal junction and the modulation of vestibular signals on object position perception in the human middle temporal complex.
Collapse
Affiliation(s)
- Xin He
- Chinese Academy of Sciences, Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, China
| | - Min Bao
- Chinese Academy of Sciences, Institute of Psychology, CAS Key Laboratory of Behavioral Science, Beijing, China
- University of Chinese Academy of Sciences, Department of Psychology, Beijing, China
- State Key Laboratory of Brain and Cognitive Science, Beijing, China
| |
Collapse
|
3
|
Abekawa N, Doya K, Gomi H. Body and visual instabilities functionally modulate implicit reaching corrections. iScience 2022; 26:105751. [PMID: 36590158 PMCID: PMC9800534 DOI: 10.1016/j.isci.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/31/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Hierarchical brain-information-processing schemes have frequently assumed that the flexible but slow voluntary action modulates a direct sensorimotor process that can quickly generate a reaction in dynamical interaction. Here we show that the quick visuomotor process for manual movement is modulated by postural and visual instability contexts that are related but remote and prior states to manual movements. A preceding unstable postural context significantly enhanced the reflexive manual response induced by a large-field visual motion during hand reaching while the response was evidently weakened by imposing a preceding random-visual-motion context. These modulations are successfully explained by the Bayesian optimal formulation in which the manual response elicited by visual motion is ascribed to the compensatory response to the estimated self-motion affected by the preceding contextual situations. Our findings suggest an implicit and functional mechanism that links the variability and uncertainty of remote states to the quick sensorimotor transformation.
Collapse
Affiliation(s)
- Naotoshi Abekawa
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Co., Kanawaga, 243-0198, Japan
| | - Kenji Doya
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Co., Kanawaga, 243-0198, Japan,Corresponding author
| |
Collapse
|
4
|
Wang W, Lei X, Gong W, Liang K, Chen L. Facilitation and inhibition effects of anodal and cathodal tDCS over areas MT+ on the flash-lag effect. J Neurophysiol 2022; 128:239-248. [PMID: 35766444 DOI: 10.1152/jn.00091.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perceived position of a moving object in vision entails an accumulation of neural signals over space and time. Due to neural signal transmission delays, the visual system can not acquire immediate information about the moving object's position. Although physiological and psychophysical studies on the flash-lag effect (FLE), a moving object is perceived ahead of a flash even they are aligned at the same location, have shown that the visual system develops the mechanisms of predicting the object's location to compensate for the neural delays, the neural mechanisms of motion-induced location prediction are not still understood well. Here, we investigated the role of neural activity changes in areas MT+ (specialized for motion processing) and the potential contralateral processing preference of MT+ in modulating the FLE. Using transcranial direct current stimulations (tDCS) over the left and right MT+ between pre-and post-tests of the FLE in different motion directions, we measured the effects of tDCS on the FLE. The results found that anodal and cathodal tDCS enhanced and reduced the FLE with the moving object heading to but not deviating from the side of the brain stimulated, respectively, compared to sham tDCS. These findings suggest a causal role of area MT+ in motion-induced location prediction, which may involve the integration of position information.
Collapse
Affiliation(s)
- Wu Wang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Xiao Lei
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wenxiao Gong
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Kun Liang
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Lihan Chen
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Gómez-Granados A, Barany DA, Schrayer M, Kurtzer IL, Bonnet CT, Singh T. Age-related deficits in rapid visuomotor decision-making. J Neurophysiol 2021; 126:1592-1603. [PMID: 34614375 DOI: 10.1152/jn.00073.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many goal-directed actions that require rapid visuomotor planning and perceptual decision-making are affected in older adults, causing difficulties in execution of many functional activities of daily living. Visuomotor planning and perceptual identification are mediated by the dorsal and ventral visual streams, respectively, but it is unclear how age-induced changes in sensory processing in these streams contribute to declines in visuomotor decision-making performance. Previously, we showed that in young adults, task demands influenced movement strategies during visuomotor decision-making, reflecting differential integration of sensory information between the two streams. Here, we asked the question if older adults would exhibit deficits in interactions between the two streams during demanding motor tasks. Older adults (n = 15) and young controls (n = 26) performed reaching or interception movements toward virtual objects. In some blocks of trials, participants also had to select an appropriate movement goal based on the shape of the object. Our results showed that older adults corrected fewer initial decision errors during both reaching and interception movements. During the interception decision task, older adults made more decision- and execution-related errors than young adults, which were related to early initiation of their movements. Together, these results suggest that older adults have a reduced ability to integrate new perceptual information to guide online action, which may reflect impaired ventral-dorsal stream interactions.NEW & NOTEWORTHY Older adults show declines in vision, decision-making, and motor control, which can lead to functional limitations. We used a rapid visuomotor decision task to examine how these deficits may interact to affect task performance. Compared with healthy young adults, older adults made more errors in both decision-making and motor execution, especially when the task required intercepting moving targets. This suggests that age-related declines in integrating perceptual and motor information may contribute to functional deficits.
Collapse
Affiliation(s)
| | - Deborah A Barany
- Department of Kinesiology, University of Georgia, Athens, Georgia.,Augusta University/University of Georgia Medical Partnership, Athens, Georgia
| | | | - Isaac L Kurtzer
- Department of Biomedical Science, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, New York
| | - Cédrick T Bonnet
- Univ. Lille, CNRS, UMR 9193-SCALab-Sciences Cognitives et Sciences Affectives, Lille, France
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
6
|
Roberts JW, Grierson LEM. Contribution of Retinal Motion to the Impulse Control of Target-Directed Aiming. AMERICAN JOURNAL OF PSYCHOLOGY 2021. [DOI: 10.5406/amerjpsyc.134.3.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
Contemporary models of sensorimotor control contend that visually regulated movement adjustments may unfold early during a target-directed limb movement through an impulse control process that makes use of anticipatory forward models. To date, evidence surrounding impulse control has involved adjustments to a purported misperception in limb velocity following the unexpected onset of a moving background. That is, the limb is perceived to move faster and undershoots more when there is an incongruent moving background and vice versa. However, this particular behavior may manifest from an independent oculo-manual-following response. The present study aimed to deconstruct these proposals and, with them, the processes that underlie impulse control. Participants had to rapidly reach upward to land their index finger accurately on a target. On 33% of trials, the background, over which the movement was made, moved either up, down, right, or left. Displacements in the primary and perpendicular directions of movement showed spatial trajectories that were consistent with the directions of the moving backgrounds. This behavior was most prevalent in measurements taken at the movements’ peak negative acceleration and endpoints. Moreover, analysis of standardized displacements in the moving background conditions indicated no significant differences in the extent of the movements toward each of the moving backgrounds. These findings indicate that movement adjustments can manifest from an oculo-manual-following response rather than a misperception of limb velocity. We suggest that the anticipatory forward model that comprises impulse control may incorporate features of the environment that surround the vicinity of the limb.
Collapse
|
7
|
Visual Cortical Area MT Is Required for Development of the Dorsal Stream and Associated Visuomotor Behaviors. J Neurosci 2021; 41:8197-8209. [PMID: 34417331 DOI: 10.1523/jneurosci.0824-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/07/2021] [Accepted: 08/09/2021] [Indexed: 01/11/2023] Open
Abstract
The middle temporal (MT) area of the extrastriate visual cortex has long been studied in adulthood for its distinctive physiological properties and function as a part of the dorsal stream, yet interestingly it possesses a similar maturation profile as the primary visual cortex (V1). Here, we examined whether an early-life lesion in MT of marmoset monkeys (six female, two male) altered the dorsal stream development and the behavioral precision of reaching-to-grasp sequences. We observed permanent changes in the anatomy of cortices associated with both reaching (parietal and medial intraparietal areas) and grasping (anterior intraparietal area), as well as in reaching-and-grasping behaviors. In addition, we observed a significant impact on the anatomy of V1 and the direction sensitivity of V1 neurons in the lesion projection zone. These findings indicate that area MT is a crucial node in the development of primate vision, affecting both V1 and areas in the dorsal visual pathway known to mediate visually guided manual behaviors.SIGNIFICANCE STATEMENT Previous studies have identified a role for the MT area of the visual cortex in perceiving motion, yet none have examined its central role in the development of the visual cortex and in the establishment of visuomotor behaviors. To address this, we used a unilateral MT lesion model in neonatal marmosets before examining the anatomic, physiological, and behavioral consequences. In adulthood, we observed perturbations in goal-orientated reach-and-grasp behavior, altered direction selectivity of V1 neurons, and changes in the cytoarchitecture throughout dorsal stream areas. This study highlights the importance of MT as a central node in visual system development and consequential visuomotor activity.
Collapse
|
8
|
Przekoracka K, Michalak KP, Olszewski J, Michalski A, Przekoracka‐Krawczyk A. Computerised dynamic posturography for postural control assessment in subjects wearing multifocal contact lenses dedicated for myopia control. Ophthalmic Physiol Opt 2021; 41:486-495. [DOI: 10.1111/opo.12818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Katarzyna Przekoracka
- Laboratory of Bionics and Experimental Medical Biology Department of Bionics and Bioimpendance University of Medical Sciences Poznań Poland
- Laboratory of Vision and Neuroscience NanoBioMedical Centre Adam Mickiewicz University of Poznań Poznań Poland
| | - Krzysztof Piotr Michalak
- Laboratory of Vision and Neuroscience NanoBioMedical Centre Adam Mickiewicz University of Poznań Poznań Poland
- Laboratory of Vision Science and Optometry Faculty of Physics Adam Mickiewicz University of Poznań Poznań Poland
| | - Jan Olszewski
- Laboratory of Bionics and Experimental Medical Biology Department of Bionics and Bioimpendance University of Medical Sciences Poznań Poland
| | - Andrzej Michalski
- Department of Ophthalmology University of Medical Sciences Poznań Poland
| | - Anna Przekoracka‐Krawczyk
- Laboratory of Vision and Neuroscience NanoBioMedical Centre Adam Mickiewicz University of Poznań Poznań Poland
- Laboratory of Vision Science and Optometry Faculty of Physics Adam Mickiewicz University of Poznań Poznań Poland
| |
Collapse
|
9
|
Pigeons integrate visual motion signals differently than humans. Sci Rep 2019; 9:13411. [PMID: 31527647 PMCID: PMC6746846 DOI: 10.1038/s41598-019-49839-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/02/2019] [Indexed: 11/08/2022] Open
Abstract
Perceiving motion is a fundamental ability for animals. Primates integrate local 1D motion across orientation and space to compute a rigid 2D motion. It is unknown whether the rule of 2D motion integration is universal within the vertebrate clade; comparative studies of animals with different ecological backgrounds from primates may help answer that question. Here we investigated 2D motion integration in pigeons, using hierarchically structured motion stimuli, namely a barber-pole illusion and plaid motion. The pigeons were trained to report the direction of motion of random dots. When a barber-pole or plaid stimulus was presented, they reported the direction perpendicular to the grating orientation for barber-pole and the vector average of two component gratings for plaid motion. These results demonstrate that pigeons perceive different directions than humans from the same motion stimuli, and suggest that the 2D integrating rules in the primate brain has been elaborated through phylogenetic or ecological factors specific to the clade.
Collapse
|
10
|
Abstract
Transection of the median nerve typically causes lifelong restriction of fine sensory and motor skills of the affected hand despite the best available surgical treatment. Inspired by recent findings on activity-dependent structural plasticity of the adult brain, we used voxel-based morphometry to analyze the brains of 16 right-handed adults who more than two years earlier had suffered injury to the left or right median nerve followed by microsurgical repair. Healthy individuals served as matched controls. Irrespective of side of injury, we observed gray matter reductions in left ventral and right dorsal premotor cortex, and white matter reductions in commissural pathways interconnecting those motor areas. Only left-side injured participants showed gray matter reduction in the hand area of the contralesional primary motor cortex. We interpret these effects as structural manifestations of reduced neural processing linked to restrictions in the diversity of the natural manual dexterity repertoire. Furthermore, irrespective of side of injury, we observed gray matter increases bilaterally in a motion-processing visual area. We interpret this finding as a consequence of increased neural processing linked to greater dependence on vision for control of manual dexterity after median nerve injury because of a compromised somatosensory innervation of the affected hand.
Collapse
|
11
|
Two visual pathways – Where have they taken us and where will they lead in future? Cortex 2018; 98:283-292. [DOI: 10.1016/j.cortex.2017.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
|
12
|
Chakraborty A, Anstice NS, Jacobs RJ, Paudel N, LaGasse LL, Lester BM, McKinlay CJD, Harding JE, Wouldes TA, Thompson B. Global motion perception is related to motor function in 4.5-year-old children born at risk of abnormal development. Vision Res 2017; 135:16-25. [PMID: 28435122 DOI: 10.1016/j.visres.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 12/13/2022]
Abstract
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children.
Collapse
Affiliation(s)
- Arijit Chakraborty
- School of Optometry and Vision Science, University of Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Canada
| | - Nicola S Anstice
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Robert J Jacobs
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Nabin Paudel
- School of Optometry and Vision Science, University of Auckland, New Zealand
| | - Linda L LaGasse
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, USA
| | - Barry M Lester
- Brown Center for the Study of Children at Risk, Warren Alpert Medical School at Brown University, USA
| | - Christopher J D McKinlay
- Liggins Institute, University of Auckland, New Zealand; Department of Paediatrics: Child and Youth Health, University of Auckland, New Zealand
| | | | - Trecia A Wouldes
- Department of Psychological Medicine, University of Auckland, New Zealand
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Auckland, New Zealand; School of Optometry and Vision Science, University of Waterloo, Canada.
| | | |
Collapse
|
13
|
Kohler PJ, Cavanagh P, Tse PU. Motion-Induced Position Shifts Activate Early Visual Cortex. Front Neurosci 2017; 11:168. [PMID: 28420952 PMCID: PMC5376622 DOI: 10.3389/fnins.2017.00168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 11/24/2022] Open
Abstract
The ability to correctly determine the position of objects in space is a fundamental task of the visual system. The perceived position of briefly presented static objects can be influenced by nearby moving contours, as demonstrated by various illusions collectively known as motion-induced position shifts. Here we use a stimulus that produces a particularly strong effect of motion on perceived position. We test whether several regions-of-interest (ROIs), at different stages of visual processing, encode the perceived rather than retinotopically veridical position. Specifically, we collect functional MRI data while participants experience motion-induced position shifts and use a multivariate pattern analysis approach to compare the activation patterns evoked by illusory position shifts with those evoked by matched physical shifts. We find that the illusory perceived position is represented at the earliest stages of the visual processing stream, including primary visual cortex. Surprisingly, we found no evidence of percept-based encoding of position in visual areas beyond area V3. This result suggests that while it is likely that higher-level visual areas are involved in position encoding, early visual cortex also plays an important role.
Collapse
Affiliation(s)
- Peter J Kohler
- Department of Psychology, Stanford UniversityStanford, CA, USA
| | - Patrick Cavanagh
- Laboratoire Psychologie de la Perception, Centre Biomédical des Saints Pères, Université Paris DescartesParis, France.,Department of Psychological and Brain Sciences, Dartmouth CollegeHanover, NH, USA
| | - Peter U Tse
- Department of Psychological and Brain Sciences, Dartmouth CollegeHanover, NH, USA
| |
Collapse
|
14
|
Rodríguez-Herreros B, Rodríguez-Fornells A, López-Moliner J. The neural correlates of motion-induced shifts in reaching. Psychophysiology 2015; 52:1577-89. [DOI: 10.1111/psyp.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/27/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Borja Rodríguez-Herreros
- Department of Basic Psychology; Universitat de Barcelona; Barcelona Spain
- Cognition and Brain Plasticity Group; Bellvitge Biomedical Research Institute-IDIBELL; Barcelona Spain
- LREN and Service de Génetique Médicale; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| | - Antoni Rodríguez-Fornells
- Department of Basic Psychology; Universitat de Barcelona; Barcelona Spain
- Cognition and Brain Plasticity Group; Bellvitge Biomedical Research Institute-IDIBELL; Barcelona Spain
- Catalan Institution for Research and Advanced Studies, ICREA; Barcelona Spain
| | - Joan López-Moliner
- Department of Basic Psychology; Universitat de Barcelona; Barcelona Spain
- Institute for Brain, Cognition and Behavior (IR3C), Universitat de Barcelona; Barcelona Spain
| |
Collapse
|
15
|
Mizelle JC, Oparah A, Wheaton LA. Reliability of Visual and Somatosensory Feedback in Skilled Movement: The Role of the Cerebellum. Brain Topogr 2015; 29:27-41. [PMID: 26306810 DOI: 10.1007/s10548-015-0446-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
The integration of vision and somatosensation is required to allow for accurate motor behavior. While both sensory systems contribute to an understanding of the state of the body through continuous updating and estimation, how the brain processes unreliable sensory information remains to be fully understood in the context of complex action. Using functional brain imaging, we sought to understand the role of the cerebellum in weighting visual and somatosensory feedback by selectively reducing the reliability of each sense individually during a tool use task. We broadly hypothesized upregulated activation of the sensorimotor and cerebellar areas during movement with reduced visual reliability, and upregulated activation of occipital brain areas during movement with reduced somatosensory reliability. As specifically compared to reduced somatosensory reliability, we expected greater activations of ipsilateral sensorimotor cerebellum for intact visual and somatosensory reliability. Further, we expected that ipsilateral posterior cognitive cerebellum would be affected with reduced visual reliability. We observed that reduced visual reliability results in a trend towards the relative consolidation of sensorimotor activation and an expansion of cerebellar activation. In contrast, reduced somatosensory reliability was characterized by the absence of cerebellar activations and a trend towards the increase of right frontal, left parietofrontal activation, and temporo-occipital areas. Our findings highlight the role of the cerebellum for specific aspects of skillful motor performance. This has relevance to understanding basic aspects of brain functions underlying sensorimotor integration, and provides a greater understanding of cerebellar function in tool use motor control.
Collapse
Affiliation(s)
- J C Mizelle
- Department of Kinesiology, East Carolina University, Greenville, NC, 27858, USA
- Cognitive Motor Control Laboratory, School of Applied Physiology, Georgia Institute of Technology, 555 14th St., Atlanta, GA, 30332-0356, USA
| | - Alexis Oparah
- Department of Psychology & Neuroscience, Duke University, Box 90086, 417 Chapel Drive, Durham, NC, 27708, USA
| | - Lewis A Wheaton
- Cognitive Motor Control Laboratory, School of Applied Physiology, Georgia Institute of Technology, 555 14th St., Atlanta, GA, 30332-0356, USA.
| |
Collapse
|
16
|
Frey SH, Hansen M, Marchal N. Grasping with the Press of a Button: Grasp-selective Responses in the Human Anterior Intraparietal Sulcus Depend on Nonarbitrary Causal Relationships between Hand Movements and End-effector Actions. J Cogn Neurosci 2014; 27:1146-60. [PMID: 25436672 DOI: 10.1162/jocn_a_00766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Evidence implicates ventral parieto-premotor cortices in representing the goal of grasping independent of the movements or effectors involved [Umilta, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, U.S.A., 105, 2209-2213, 2008; Tunik, E., Frey, S. H., & Grafton, S. T. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8, 505-511, 2005]. Modern technologies that enable arbitrary causal relationships between hand movements and tool actions provide a strong test of this hypothesis. We capitalized on this unique opportunity by recording activity with fMRI during tasks in which healthy adults performed goal-directed reach and grasp actions manually or by depressing buttons to initiate these same behaviors in a remotely located robotic arm (arbitrary causal relationship). As shown previously [Binkofski, F., Dohle, C., Posse, S., Stephan, K. M., Hefter, H., Seitz, R. J., et al. Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology, 50, 1253-1259, 1998], we detected greater activity in the vicinity of the anterior intraparietal sulcus (aIPS) during manual grasp versus reach. In contrast to prior studies involving tools controlled by nonarbitrarily related hand movements [Gallivan, J. P., McLean, D. A., Valyear, K. F., & Culham, J. C. Decoding the neural mechanisms of human tool use. Elife, 2, e00425, 2013; Jacobs, S., Danielmeier, C., & Frey, S. H. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. Journal of Cognitive Neuroscience, 22, 2594-2608, 2010], however, responses within the aIPS and premotor cortex exhibited no evidence of selectivity for grasp when participants employed the robot. Instead, these regions showed comparable increases in activity during both the reach and grasp conditions. Despite equivalent sensorimotor demands, the right cerebellar hemisphere displayed greater activity when participants initiated the robot's actions versus when they pressed a button known to be nonfunctional and watched the very same actions undertaken autonomously. This supports the hypothesis that the cerebellum predicts the forthcoming sensory consequences of volitional actions [Blakemore, S. J., Frith, C. D., & Wolpert, D. M. The cerebellum is involved in predicting the sensory consequences of action. NeuroReport, 12, 1879-1884, 2001]. We conclude that grasp-selective responses in the human aIPS and premotor cortex depend on the existence of nonarbitrary causal relationships between hand movements and end-effector actions.
Collapse
|
17
|
Leclercq G, Blohm G, Lefèvre P. Accounting for direction and speed of eye motion in planning visually guided manual tracking. J Neurophysiol 2013; 110:1945-57. [DOI: 10.1152/jn.00130.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Accurate motor planning in a dynamic environment is a critical skill for humans because we are often required to react quickly and adequately to the visual motion of objects. Moreover, we are often in motion ourselves, and this complicates motor planning. Indeed, the retinal and spatial motions of an object are different because of the retinal motion component induced by self-motion. Many studies have investigated motion perception during smooth pursuit and concluded that eye velocity is partially taken into account by the brain. Here we investigate whether the eye velocity during ongoing smooth pursuit is taken into account for the planning of visually guided manual tracking. We had 10 human participants manually track a target while in steady-state smooth pursuit toward another target such that the difference between the retinal and spatial target motion directions could be large, depending on both the direction and the speed of the eye. We used a measure of initial arm movement direction to quantify whether motor planning occurred in retinal coordinates (not accounting for eye motion) or was spatially correct (incorporating eye velocity). Results showed that the eye velocity was nearly fully taken into account by the neuronal areas involved in the visuomotor velocity transformation (between 75% and 102%). In particular, these neuronal pathways accounted for the nonlinear effects due to the relative velocity between the target and the eye. In conclusion, the brain network transforming visual motion into a motor plan for manual tracking adequately uses extraretinal signals about eye velocity.
Collapse
Affiliation(s)
- Guillaume Leclercq
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| | - Gunnar Blohm
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; and
- Canadian Action and Perception Network (CAPnet), Toronto, Ontario, Canada
| | - Philippe Lefèvre
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
18
|
Abstract
How is visual space represented in cortical area MT+? At a relatively coarse scale, the organization of MT+ is debated; retinotopic, spatiotopic, or mixed representations have all been proposed. However, none of these representations entirely explain the perceptual localization of objects at a fine spatial scale--a scale relevant for tasks like navigating or manipulating objects. For example, perceived positions of objects are strongly modulated by visual motion; stationary flashes appear shifted in the direction of nearby motion. Does spatial coding in MT+ reflect these shifts in perceived position? We performed an fMRI experiment employing this "flash-drag" effect and found that flashes presented near motion produced patterns of activity similar to physically shifted flashes in the absence of motion. This reveals a motion-dependent change in the neural representation of object position in human MT+, a process that could help compensate for perceptual and motor delays in localizing objects in dynamic scenes.
Collapse
|
19
|
Maus GW, Ward J, Nijhawan R, Whitney D. The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect. ACTA ACUST UNITED AC 2012; 23:241-7. [PMID: 22302116 DOI: 10.1093/cercor/bhs021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
How does the visual system assign the perceived position of a moving object? This question is surprisingly complex, since sluggish responses of photoreceptors and transmission delays along the visual pathway mean that visual cortex does not have immediate information about a moving object's position. In the flash-lag effect (FLE), a moving object is perceived ahead of an aligned flash. Psychophysical work on this illusion has inspired models for visual localization of moving objects. However, little is known about the underlying neural mechanisms. Here, we investigated the role of neural activity in areas MT+ and V1/V2 in localizing moving objects. Using short trains of repetitive Transcranial Magnetic Stimulation (TMS) or single pulses at different time points, we measured the influence of TMS on the perceived location of a moving object. We found that TMS delivered to MT+ significantly reduced the FLE; single pulse timings revealed a broad temporal tuning with maximum effect for TMS pulses, 200 ms after the flash. Stimulation of V1/V2 did not significantly influence perceived position. Our results demonstrate that area MT+ contributes to the perceptual localization of moving objects and is involved in the integration of position information over a long time window.
Collapse
Affiliation(s)
- Gerrit W Maus
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
20
|
Downing PE, Peelen MV. The role of occipitotemporal body-selective regions in person perception. Cogn Neurosci 2011; 2:186-203. [PMID: 24168534 DOI: 10.1080/17588928.2011.582945] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Thaler L, Goodale MA. Neural substrates of visual spatial coding and visual feedback control for hand movements in allocentric and target-directed tasks. Front Hum Neurosci 2011; 5:92. [PMID: 21941474 PMCID: PMC3171072 DOI: 10.3389/fnhum.2011.00092] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 08/13/2011] [Indexed: 11/29/2022] Open
Abstract
Neuropsychological evidence suggests that different brain areas may be involved in movements that are directed at visual targets (e.g., pointing or reaching), and movements that are based on allocentric visual information (e.g., drawing or copying). Here we used fMRI to investigate the neural correlates of these two types of movements in healthy volunteers. Subjects (n = 14) performed right hand movements in either a target-directed task (moving a cursor to a target dot) or an allocentric task (moving a cursor to reproduce the distance and direction between two distal target dots) with or without visual feedback about their hand movement. Movements were monitored with an MR compatible touch panel. A whole brain analysis revealed that movements in allocentric conditions led to an increase in activity in the fundus of the left intra-parietal sulcus (IPS), in posterior IPS, in bilateral dorsal premotor cortex (PMd), and in the lateral occipital complex (LOC). Visual feedback in both target-directed and allocentric conditions led to an increase in activity in area MT+, superior parietal–occipital cortex (SPOC), and posterior IPS (all bilateral). In addition, we found that visual feedback affected brain activity differently in target-directed as compared to allocentric conditions, particularly in the pre-supplementary motor area, PMd, IPS, and parieto-occipital cortex. Our results, in combination with previous findings, suggest that the LOC is essential for allocentric visual coding and that SPOC is involved in visual feedback control. The differences in brain activity between target-directed and allocentric visual feedback conditions may be related to behavioral differences in visual feedback control. Our results advance the understanding of the visual coordinate frame used by the LOC. In addition, because of the nature of the allocentric task, our results have relevance for the understanding of neural substrates of magnitude estimation and vector coding of movements.
Collapse
Affiliation(s)
- Lore Thaler
- Department of Psychology, The University of Western Ontario London, ON, Canada
| | | |
Collapse
|
22
|
Modulatory effects of binocular disparity and aging upon the perception of speed. Vision Res 2011; 50:65-71. [PMID: 19836410 DOI: 10.1016/j.visres.2009.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/08/2009] [Accepted: 10/09/2009] [Indexed: 11/23/2022]
Abstract
Two experiments investigated modulatory effects of a surround upon the perceived speed of a moving central region. Both the surround's depth and velocity (relative to the center) were manipulated. The abilities of younger observers (mean age was 23.1 years) were evaluated in Experiment 1, while Experiment 2 was devoted to older participants (mean age was 71.3 years). The results of Experiment 1 revealed that changes in the perceived depth of a surround (in this case caused by changes in binocular disparity) significantly influence the perceived speed of a central target. In particular, the center's motion was perceived as fastest when the surround possessed uncrossed binocular disparity relative to the central target. This effect, that targets that are closer than their background are perceived to be faster, only occurred when the center and surround moved in the same directions (and did not occur when center and surround moved in opposite directions). The results of Experiment 2 showed that the perceived speeds of older adults are different: older observers generally perceive nearer targets as faster both when center and surround move in the same direction and when they move in opposite directions. In addition, the older observers' judgments of speed were less precise. These age-related changes in the perception of speed are broadly consistent with the results of recent neurophysiological investigations that find age-related changes in the functionality of cortical area MT.
Collapse
|
23
|
Abstract
Saccades are very rapid eye movements in between two phases of fixation, which offer a precise measure of behaviour for the direction of the spotlight of attention. The onset of global motion is known to attract our attention reflexively. We asked whether brief global motion stimuli are able to modify the execution of saccades. When participants performed visually guided saccades towards a target presented in front of a structured background, saccade latency was 174 ms on average and correctness of saccades was 100%. If the presentation of the target occurred at the same time as the onset of a brief global motion signal, then the saccade latency increased dramatically to 243 ms with a slight decrease in correctness to 89%. However, if the motion stimulus preceded the presentation of the target, then the latency decreased to 114 ms while the correctness dropped close to chance levels (62%).
Collapse
|
24
|
Abekawa N, Gomi H. Spatial coincidence of intentional actions modulates an implicit visuomotor control. J Neurophysiol 2010; 103:2717-27. [PMID: 20237310 DOI: 10.1152/jn.91133.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated a visuomotor mechanism contributing to reach correction: the manual following response (MFR), which is a quick response to background visual motion that frequently occurs as a reafference when the body moves. Although several visual specificities of the MFR have been elucidated, the functional and computational mechanisms of its motor coordination remain unclear mainly because it involves complex relationships among gaze, reaching target, and visual stimuli. To directly explore how these factors interact in the MFR, we assessed the impact of spatial coincidences among gaze, arm reaching, and visual motion on the MFR. When gaze location was displaced from the reaching target with an identical visual motion kept on the retina, the amplitude of the MFR significantly decreased as displacement increased. A factorial manipulation of gaze, reaching-target, and visual motion locations showed that the response decrease is due to the spatial separation between gaze and reaching target but is not due to the spatial separation between visual motion and reaching target. Additionally, elimination of visual motion around the fovea attenuated the MFR. The effects of these spatial coincidences on the MFR are completely different from their effects on the perceptual mislocalization of targets caused by visual motion. Furthermore, we found clear differences between the modulation sensitivities of the MFR and the ocular following response to spatial mismatch between gaze and reaching locations. These results suggest that the MFR modulation observed in our experiment is not due to changes in visual interaction between target and visual motion or to modulation of motion sensitivity in early visual processing. Instead the motor command of the MFR appears to be modulated by the spatial relationship between gaze and reaching.
Collapse
Affiliation(s)
- Naotoshi Abekawa
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone, Atsugi, Kanagawa, Japan
| | | |
Collapse
|
25
|
Grinter EJ, Maybery MT, Badcock DR. Vision in developmental disorders: is there a dorsal stream deficit? Brain Res Bull 2010; 82:147-60. [PMID: 20211706 DOI: 10.1016/j.brainresbull.2010.02.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 01/09/2010] [Accepted: 02/28/2010] [Indexed: 12/12/2022]
Abstract
The main aim of this review is to evaluate the proposal that several developmental disorders affecting vision share an impairment of the dorsal visual stream. First, the current definitions and common measurement approaches used to assess differences in both local and global functioning within the visual system are considered. Next, studies assessing local and global processing in the dorsal and ventral visual pathways are reviewed for five developmental conditions for which early to mid level visual abilities have been assessed: developmental dyslexia, autism spectrum disorders, developmental dyspraxia, Williams syndrome and Fragile X syndrome. The reviewed evidence is broadly consistent with the idea that the dorsal visual stream is affected in developmental disorders. However, the potential for a unique profile of visual abilities that distinguish some of the conditions is posited, given that for some of these disorders ventral stream deficits have also been found. We conclude with ideas regarding future directions for the study of visual perception in children with developmental disorders using psychophysical measures.
Collapse
Affiliation(s)
- Emma J Grinter
- School of Psychology, University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia, 6008, Australia.
| | | | | |
Collapse
|
26
|
Beauchamp MS, Laconte S, Yasar N. Distributed representation of single touches in somatosensory and visual cortex. Hum Brain Mapp 2009; 30:3163-71. [PMID: 19224618 DOI: 10.1002/hbm.20735] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Multi-voxel pattern analysis (MVPA) was used to analyze blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI) data, which were acquired as human subjects received brief vibrotactile stimulation of their hands and feet. Support vector machines trained and tested on the whole brain fMRI data were able to accurately decode the body site of single touches, with mean performance of 92% in a two-way discrimination task (chance performance 50%) and 70% in a four-way discrimination task (chance performance 25%). Primary and secondary somatosensory areas (S1 and S2) alone decoded the touched body site with high accuracy. S1 was more accurate at decoding touches closely spaced on the body surface (different fingers of the same hand) whereas S2 and S1 were equally accurate at decoding widely spaced touches (hand vs. foot). The hand and foot regions of S1 (S1hand and S1foot) were separately examined in a two-way classification task. S1hand was better able to decode the hand of stimulation (left vs. right), and S1foot was better able to decode the foot of stimulation. In addition to S1 and S2, vibrotactile responses were observed in a region of visual cortex, areas MST and STP (MST/STP) in lateral occipito-temporal lobe. MST/STP was able to accurately decode the hand but not the foot of stimulation, supporting the idea of a role for MST/STP in eye-hand coordination.
Collapse
Affiliation(s)
- Michael S Beauchamp
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
27
|
Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency. Neuropsychologia 2009; 47:3118-24. [PMID: 19643118 PMCID: PMC2935969 DOI: 10.1016/j.neuropsychologia.2009.07.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/20/2022]
Abstract
To date, several posterior brain regions have been identified that play a role in the visual perception of other people and their movements. The aim of the present study is to understand how these areas may be involved in relating body movements to their visual consequences. We used fMRI to examine the extrastriate body area (EBA), the fusiform body area (FBA), and an area in the posterior superior temporal sulcus (pSTS) that responds to patterns of human biological motion. Each area was localized in individual participants with independent scans. In the main experiment, participants performed and/or viewed simple, intransitive hand actions while in the scanner. An MR-compatible camera with a near-egocentric view of the participant's hand was used to manipulate the relationship between motor output and the visual stimulus. Participants’ only view of their hands was via this camera. In the Compatible condition, participants viewed their own live hand movements projected onto the screen. In the Incompatible condition, participants viewed actions that were different from the actions they were executing. In pSTS, the BOLD response in the Incompatible condition was significantly higher than in the Compatible condition. Further, the response in the Compatible condition was below baseline, and no greater than that found in a control condition in which hand actions were performed without any visual input. This indicates a strong suppression in pSTS of the response to the visual stimulus that arises from one's own actions. In contrast, in EBA and FBA, we found a large but equivalent response to the Compatible and Incompatible conditions, and this response was the same as that elicited in a control condition in which hand actions were viewed passively, with no concurrent motor task. These findings indicate that, in contrast to pSTS, EBA and FBA are decoupled from motor systems. Instead we propose that their role is limited to perceptual analysis of body-related visual input.
Collapse
|
28
|
Contributions of the human temporoparietal junction and MT/V5+ to the timing of interception revealed by transcranial magnetic stimulation. J Neurosci 2009; 28:12071-84. [PMID: 19005072 DOI: 10.1523/jneurosci.2869-08.2008] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To intercept a fast target at destination, hand movements must be centrally triggered ahead of target arrival to compensate for neuromechanical delays. The role of visual-motion cortical areas is unclear. They likely feed downstream parietofrontal networks with signals reflecting target motion, but do they also contribute internal timing signals to trigger the motor response? We disrupted the activity of human temporoparietal junction (TPJ) and middle temporal area (hMT/V5+) by means of transcranial magnetic stimulation (TMS) while subjects pressed a button to intercept targets accelerated or decelerated in the vertical or horizontal direction. Target speed was randomized, making arrival time unpredictable across trials. We used either repetitive TMS (rTMS) before task execution or double-pulse TMS (dpTMS) during target motion. We found that after rTMS and dpTMS at 100-200 ms from motion onset, but not after dpTMS at 300-400 ms, the button-press responses occurred earlier than in the control, with time shifts independent of target speed. This suggests that activity in TPJ and hMT/V5+ can feed downstream regions not only with visual-motion information, but also with internal timing signals used for interception at destination. Moreover, we found that TMS of hMT/V5+ affected interception of all tested motion types, whereas TMS of TPJ significantly affected only interception of motion coherent with natural gravity. TPJ might specifically gate visual-motion information according to an internal model of the effects of gravity.
Collapse
|
29
|
Gomi H. Implicit online corrections of reaching movements. Curr Opin Neurobiol 2008; 18:558-64. [PMID: 19095435 DOI: 10.1016/j.conb.2008.11.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/09/2008] [Accepted: 11/09/2008] [Indexed: 10/21/2022]
Abstract
Many neuroscience studies of arm control have attempted to explain how aimed movements are planned, generated, and corrected. The mechanisms of subconscious online reaching correction to a target shift are now being widely examined from computational, physiological, and pathological viewpoints. Recent evidence of a quick manual response to surrounding visual motion suggests an additional online compensatory mechanism in reaching movements for bodily and/or external environmental changes, although the computational principle underlying this process remains controversial. Together with preprogrammed voluntary motor command generation, it appears that multiple online visually guided correction mechanisms implicitly govern reaching control to bring the hand to the goal. It is important to reveal unknown mechanisms and underlying neural substrates of generating the response to visual motion, which is additionally modulated by action contexts.
Collapse
Affiliation(s)
- Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Morinosato, Atsugi, Kanagawa-Pref, Japan.
| |
Collapse
|
30
|
Dvorkin AY, Kenyon RV, Keshner EA. Effects of roll visual motion on online control of arm movement: reaching within a dynamic virtual environment. Exp Brain Res 2008; 193:95-107. [PMID: 18936925 DOI: 10.1007/s00221-008-1598-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 09/25/2008] [Indexed: 11/30/2022]
Abstract
Reaching toward a visual target involves the transformation of visual information into appropriate motor commands. Complex movements often occur either while we are moving or when objects in the world move around us, thus changing the spatial relationship between our hand and the space in which we plan to reach. This study investigated whether rotation of a wide field-of-view immersive scene produced by a virtual environment affected online visuomotor control during a double-step reaching task. A total of 20 seated healthy subjects reached for a visual target that remained stationary in space or unpredictably shifted to a second position (either to the right or left of its initial position) with different inter-stimulus intervals. Eleven subjects completed two experiments which were similar except for the duration of the target's appearance. The final target was either visible throughout the entire trial or only for a period of 200 ms. Movements were performed under two visual field conditions: the virtual scene was matched to the subject's head motion or rolled about the line of sight counterclockwise at 130 degrees/s. Nine additional subjects completed a third experiment in which the direction of the rolling scene was manipulated (i.e., clockwise and counterclockwise). Our results showed that while all subjects were able to modify their hand trajectory in response to the target shift with both visual scenes, some of the double-step movements contained a pause prior to modifying trajectory direction. Furthermore, our findings indicated that both the timing and kinematic adjustments of the reach were affected by roll motion of the scene. Both planning and execution of the reach were affected by roll motion. Changes in proportion of trajectory types, and significantly longer pauses that occurred during the reach in the presence of roll motion suggest that background roll motion mainly interfered with the ability to update the visuomotor response to the target displacement. Furthermore, the reaching movement was affected differentially by the direction of roll motion. Subjects demonstrated a stronger effect of visual motion on movements taking place in the direction of visual roll (e.g., leftward movements during counterclockwise roll). Further investigation of the hand path revealed significant changes during roll motion for both the area and shape of the 95% tolerance ellipses that were constructed from the hand position following the main movement termination. These changes corresponded with a hand drift that would suggest that subjects were relying more on proprioceptive information to estimate the arm position in space during roll motion of the visual field. We conclude that both the spatial and temporal kinematics of the reach movement were affected by the motion of the visual field, suggesting interference with the ability to simultaneously process two consecutive stimuli.
Collapse
Affiliation(s)
- Assaf Y Dvorkin
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
31
|
Rodríguez-Herreros B, López-Moliner J. The influence of motion signals in hand movements. Exp Brain Res 2008; 191:321-9. [DOI: 10.1007/s00221-008-1527-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 07/28/2008] [Indexed: 11/28/2022]
|
32
|
Abstract
AbstractAccurate perception of moving objects would be useful; accurate visually guided action is crucial. Visual motion across the scene influences perceived object location and the trajectory of reaching movements to objects. In this commentary, I propose that the visual system assigns the position of any object based on the predominant motion present in the scene, and that this is used to guide reaching movements to compensate for delays in visuomotor processing.
Collapse
|
33
|
Abstract
Previous reports of tactile responses in human visual area MT/V5 have used complex stimuli, such as a brush stroking the arm. These complex moving stimuli are likely to induce imagery of visual motion, which is known to be a powerful activator of MT. The area described as "MT" in previous reports consists of at least two distinct cortical areas, MT and MST. Using functional magnetic resonance imaging, we separately localized human MT and MST and measured their response to vibrotactile stimuli unlikely to induce imagery of visual motion. Strong vibrotactile responses were observed in MST but not in MT. Vibrotactile responses in MST were approximately one-half as large as the response to visual motion and were distinct from those in another visual area previously reported to respond to tactile stimulation, the lateral occipital complex. To examine somatotopic organization, we separately stimulated the left and right hand and foot. No spatial segregation between hand and foot responses was observed in MST. The average response profile of MST was similar to that of somatosensory cortex, with a strong preference for the contralateral hand. These results offer evidence for the existence of somatosensory responses in MST, but not MT, independent of imagery of visual motion.
Collapse
Affiliation(s)
- Michael S Beauchamp
- Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | | | |
Collapse
|