1
|
Dell'Acqua R, Doro M, Brigadoi S, Drisdelle B, Simal A, Baro V, Jolicœur P. On target selection as reflected by posterior ERP components in feature-guided visual search. Psychophysiology 2022; 59:e14131. [PMID: 35766411 PMCID: PMC9788165 DOI: 10.1111/psyp.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
The N2pc event-related potential is a widely studied ERP component that reflects the covert deployment of visuo-spatial attention to target stimuli displayed laterally relative to fixation. Recently, an analogous ERP component, named N2pcb, has been proposed as a marker of the deployment of visuo-spatial attention to targets displayed on the vertical midline. Two studies that investigated the N2pcb component found analogous results, using however two different algorithms to compute the amplitude of N2pcb. One study subtracted the ipsilateral activity elicited by a lateral target from the bilateral activity elicited by a target displayed on the vertical midline, whereas the other study subtracted the bilateral activity elicited by target-absent displays from the bilateral activity elicited by a target displayed on the vertical midline. Here we show both algorithms estimate properly the N2pc as well as the N2pcb components. In addition, we explored whether the singleton detection positivity (SDP) component, a posterior bilateral positivity temporally concomitant to N2pc recently reported in studies using singleton search, could be observed in the present study in which a target was defined by a combination of features. Given that such component was indeed found using feature search, we named this component posterior processing positivity (PPP), and showed that bilateral activity elicited by target-absent displays is an adequate baseline for its correct isolation.
Collapse
Affiliation(s)
- Roberto Dell'Acqua
- Department of Developmental PsychologyUniversity of PadovaPadovaItaly,Padova Neuroscience CenterUniversity of PadovaPadovaItaly
| | - Mattia Doro
- Department of Developmental PsychologyUniversity of PadovaPadovaItaly
| | - Sabrina Brigadoi
- Department of Developmental PsychologyUniversity of PadovaPadovaItaly
| | | | - Amour Simal
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| | - Valentina Baro
- Padova Neuroscience CenterUniversity of PadovaPadovaItaly,Department of NeuroscienceUniversity of PadovaPadovaItaly
| | - Pierre Jolicœur
- Department of PsychologyUniversité de MontréalMontrealQuebecCanada
| |
Collapse
|
2
|
Chen Y, Brigadoi S, Schiano Lomoriello A, Jolicœur P, Simal A, Fu S, Baro V, Dell'Acqua R. A bilateral SPCN is elicited by to-be-memorized visual stimuli displayed along the vertical midline. Psychophysiology 2022; 59:e14045. [PMID: 35315938 PMCID: PMC9539522 DOI: 10.1111/psyp.14045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/03/2022]
Abstract
We recently showed that deploying attention to target stimuli displayed along the vertical meridian elicits a bilateral N2pc, that we labeled N2pcb (Psychophysiology). Here we investigated whether a different component, the sustained posterior contralateral negativity (SPCN), shows the same property when a varying number of visual stimuli are displayed either laterally or on the vertical meridian. We displayed one or two cues that designated candidate targets to be detected in a search array that was displayed after a retention interval. The cues were either on the horizontal meridian or on the vertical meridian. When the cues were on the horizontal meridian, we observed an N2pc followed by an SPCN in their classic form, as negativity increments contralateral to the cues. As expected, SPCN amplitude was greater when two cues had to be memorized than when only one cue had to be memorized. When the cues were on the vertical meridian, we observed an N2pcb followed by a bilateral SPCN (or SPCNb). Critically, like SPCN, SPCNb amplitude was greater when two cues had to be memorized than when only one cue had to be memorized. A series of additional parametrical and topographical comparisons between N2pcb and SPCNb revealed similarities but also some important differences between these two components that we interpreted as evidence for their distinct neural sources. We challenge the view that the SPCN ERP component cannot track the memory maintenance of objects displayed along the vertical meridian. Owing to the receptive fields of posterior neurons straddling on the intersection of the two visual hemifields, bilateral N2pc (N2pcb) and SPCN (SPCNb) activity can be detected using a cued visual search design.
Collapse
Affiliation(s)
- Yanzhang Chen
- Department of Developmental Psychology, University of Padova, Padova, Italy
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova, Padova, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Pierre Jolicœur
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Amour Simal
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Shimin Fu
- Department of Psychology and Center for Brain and Cognitive Sciences, Guangzhou University, Guangzhou, China
| | - Valentina Baro
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Roberto Dell'Acqua
- Department of Developmental Psychology, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
3
|
Khalil R, Gonzalez C, Alsuwaidi S, Levitt JB. Developmental refinement of visual callosal inputs to ferret area 17. J Comp Neurol 2021; 530:804-816. [PMID: 34611910 DOI: 10.1002/cne.25246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Corticocortical connections link visual cortical areas in both the ipsilateral and contralateral hemispheres. We studied the postnatal refinement of callosal connections linking multiple cortical areas with ferret area 17 during the period from just before eye opening (4 weeks) to 10 weeks of age. We aimed to determine (1) whether callosal projections from multiple visual cortical areas to area 17 refine with a similar rate and (2) whether the refinement of callosal projections parallels that of intrahemispheric cortical circuits. We injected the bidirectional tracer CTb into area 17, and mapped the areal and laminar distribution of labeled cells in visual areas of the contralateral hemisphere. Like intrahemispheric projections, callosal inputs to area 17 before eye opening are dominated by Suprasylvian area Ssy (with lesser and comparable input from areas 17, 18, 19, and 21), but within 2 weeks of eye opening are jointly dominated by area 18 and Ssy inputs; however, there are fewer labeled cells in the contralateral hemisphere. Unlike intrahemispheric projections, there is no laminar reorganization of callosal inputs; in all visual areas and at all ages studied, the greatest proportion of callosal projections arises from the infragranular layers. Also, unlike intrahemispheric projections, the peak density of callosal cells in each area projecting to area 17 declines more modestly. These results reveal important similarities and differences in the postnatal reorganization of inter- and intrahemispheric projections to area 17.
Collapse
Affiliation(s)
- Reem Khalil
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, UAE.,Department of Biology MR526, City College of New York, New York, New York, USA.,Graduate Center of the City University of New York, New York, New York, USA
| | - Cyndi Gonzalez
- Department of Biology MR526, City College of New York, New York, New York, USA
| | - Shaima Alsuwaidi
- Biology, Chemistry, and Environmental Sciences Department, American University of Sharjah, Sharjah, UAE.,Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Jonathan B Levitt
- Department of Biology MR526, City College of New York, New York, New York, USA.,Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
4
|
Doro M, Bellini F, Brigadoi S, Eimer M, Dell'Acqua R. A bilateral N2pc (N2pcb) component is elicited by search targets displayed on the vertical midline. Psychophysiology 2019; 57:e13512. [DOI: 10.1111/psyp.13512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Mattia Doro
- Department of Developmental Psychology University of Padova Padova Italy
| | - Francesco Bellini
- Department of Developmental Psychology University of Padova Padova Italy
| | - Sabrina Brigadoi
- Department of Developmental Psychology University of Padova Padova Italy
| | - Martin Eimer
- Department of Psychological Sciences Birkbeck University of London London UK
| | - Roberto Dell'Acqua
- Department of Developmental Psychology University of Padova Padova Italy
- Padova Neuroscience Center University of Padova Padova Italy
| |
Collapse
|
5
|
Shin SS, Pelled G. Novel Neuromodulation Techniques to Assess Interhemispheric Communication in Neural Injury and Neurodegenerative Diseases. Front Neural Circuits 2017; 11:15. [PMID: 28337129 PMCID: PMC5343068 DOI: 10.3389/fncir.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/20/2017] [Indexed: 12/23/2022] Open
Abstract
Interhemispheric interaction has a major role in various neurobehavioral functions. Its disruption is a major contributor to the pathological changes in the setting of brain injury such as traumatic brain injury, peripheral nerve injury, and stroke, as well as neurodegenerative diseases. Because interhemispheric interaction has a crucial role in functional consequence in these neuropathological states, a review of noninvasive and state-of-the-art molecular based neuromodulation methods that focus on or have the potential to elucidate interhemispheric interaction have been performed. This yielded approximately 170 relevant articles on human subjects or animal models. There has been a recent surge of reports on noninvasive methods such as transcranial magnetic stimulation and transcranial direct current stimulation. Since these are noninvasive techniques with little to no side effects, their widespread use in clinical studies can be easily justified. The overview of novel neuromodulation methods and how they can be applied to study the role of interhemispheric communication in neural injury and neurodegenerative disease is provided. Additionally, the potential of each method in therapeutic use as well as investigating the pathophysiology of interhemispheric interaction in neurodegenerative diseases and brain injury is discussed. New technologies such as transcranial magnetic stimulation or transcranial direct current stimulation could have a great impact in understanding interhemispheric pathophysiology associated with acquired injury and neurodegenerative diseases, as well as designing improved rehabilitation therapies. Also, advances in molecular based neuromodulation techniques such as optogenetics and other chemical, thermal, and magnetic based methods provide new capabilities to stimulate or inhibit a specific brain location and a specific neuronal population.
Collapse
Affiliation(s)
- Samuel S Shin
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger InstituteBaltimore, MD, USA; Department of Radiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
6
|
Bocci T, Pietrasanta M, Cerri C, Restani L, Caleo M, Sartucci F. Visual callosal connections: role in visual processing in health and disease. Rev Neurosci 2014; 25:113-27. [DOI: 10.1515/revneuro-2013-0025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/07/2013] [Indexed: 11/15/2022]
|
7
|
Bock AS, Kroenke CD, Taber EN, Olavarria JF. Retinal input influences the size and corticocortical connectivity of visual cortex during postnatal development in the ferret. J Comp Neurol 2012; 520:914-32. [PMID: 21830218 DOI: 10.1002/cne.22738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retinal input plays an important role in the specification of topographically organized circuits and neuronal response properties, but the mechanism and timing of this effect is not known in most species. A system that shows dramatic dependence on retinal influences is the interhemispheric connection through the corpus callosum. Using ferrets, we analyzed the extent to which development of the visual callosal pattern depends on retinal influences, and explored the period during which these influences are required for normal pattern formation. We studied the mature callosal patterns in normal ferrets and in ferrets bilaterally enucleated (BE) at postnatal day 7 (P7) or P20. Callosal patterns were revealed in tangential sections from unfolded and flattened brains following multiple injections of horseradish peroxidase in the opposite hemisphere. We also estimated the effect of enucleation on the surface areas of striate and extrastriate visual cortex by using magnetic resonance imaging (MRI) data from intact brains. In BEP7 ferrets we found that the pattern of callosal connections was highly anomalous and the sizes of both striate and extrastriate visual cortex were significantly reduced. In contrast, enucleation at P20 had no significant effect on the callosal pattern, but it still caused a reduction in the size of striate and extrastriate visual cortex. Finally, retinal deafferentation had no significant effect on the number of visual callosal neurons. These results indicate that the critical period during which the eyes influence the development of callosal patterns, but not the size of visual cortex, ends by P20 in the ferret.
Collapse
Affiliation(s)
- A S Bock
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525, USA
| | | | | | | |
Collapse
|
8
|
Bui Quoc E, Ribot J, Quenech’Du N, Doutremer S, Lebas N, Grantyn A, Aushana Y, Milleret C. Asymmetrical interhemispheric connections develop in cat visual cortex after early unilateral convergent strabismus: anatomy, physiology, and mechanisms. Front Neuroanat 2012; 5:68. [PMID: 22275883 PMCID: PMC3257851 DOI: 10.3389/fnana.2011.00068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 12/19/2011] [Indexed: 11/13/2022] Open
Abstract
In the mammalian primary visual cortex, the corpus callosum contributes to the unification of the visual hemifields that project to the two hemispheres. Its development depends on visual experience. When this is abnormal, callosal connections must undergo dramatic anatomical and physiological changes. However, data concerning these changes are sparse and incomplete. Thus, little is known about the impact of abnormal postnatal visual experience on the development of callosal connections and their role in unifying representation of the two hemifields. Here, the effects of early unilateral convergent strabismus (a model of abnormal visual experience) were fully characterized with respect to the development of the callosal connections in cat visual cortex, an experimental model for humans. Electrophysiological responses and 3D reconstruction of single callosal axons show that abnormally asymmetrical callosal connections develop after unilateral convergent strabismus, resulting from an extension of axonal branches of specific orders in the hemisphere ipsilateral to the deviated eye and a decreased number of nodes and terminals in the other (ipsilateral to the non-deviated eye). Furthermore this asymmetrical organization prevents the establishment of a unifying representation of the two visual hemifields. As a general rule, we suggest that crossed and uncrossed retino-geniculo-cortical pathways contribute successively to the development of the callosal maps in visual cortex.
Collapse
Affiliation(s)
- Emmanuel Bui Quoc
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
- Service d’Ophtalmologie, Hôpital Robert DebréParis, France
| | - Jérôme Ribot
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| | - Nicole Quenech’Du
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| | - Suzette Doutremer
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| | - Nicolas Lebas
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| | - Alexej Grantyn
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| | - Yonane Aushana
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| | - Chantal Milleret
- Laboratoire de Physiologie de la Perception et de l’Action, Collège de FranceParis, France
- Laboratoire de Physiologie de la Perception et de l’Action, CNRS UMR 7152Paris, France
| |
Collapse
|
9
|
Cell diversity and connection specificity between callosal projection neurons in the frontal cortex. J Neurosci 2011; 31:3862-70. [PMID: 21389241 DOI: 10.1523/jneurosci.5795-10.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent advances have established that intralaminar and interlaminar excitatory networks between neocortical pyramidal cells are specialized into subnetworks. Here, we have investigated how the commissural system organizes the intracortical excitatory subnetworks to communicate between cortical hemispheres. Whole-cell recordings were obtained from callosal projection neurons [commissural (COM) cells], identified by in vivo injection of retrograde fluorescent tracer into one hemisphere, in rat frontal cortical slices. We found that layer V (L5) COM cells were heterogeneous in physiological and morphological properties that correlated with projection patterns to contralateral and ipsilateral cortical areas. The probability of synaptically connected pairs of L5 COM cells was higher in cell pairs of the same firing subtypes than that in different cell subtype pairs. In interlaminar connections, layer II/III (L2/3) COM cells preferentially innervated L5 COM cells. Moreover, pairs of the same L5 COM subtypes were more likely to share inputs from L2/3 COM cells than were different COM subtype cell pairs. In addition, common inputs from L2/3 COM cells were frequently observed in L5 pairs of corticopontine cells and given firing subtypes of COM cells. Our results suggest that callosal communications are achieved via several distinct COM cell subnetworks differentiated according to the ipsilateral corticocortical and subcortical projection patterns.
Collapse
|
10
|
Manger PR, Restrepo CE, Innocenti GM. The superior colliculus of the ferret: Cortical afferents and efferent connections to dorsal thalamus. Brain Res 2010; 1353:74-85. [PMID: 20682301 DOI: 10.1016/j.brainres.2010.07.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 10/19/2022]
|
11
|
Schmidt KE, Lomber SG, Innocenti GM. Specificity of neuronal responses in primary visual cortex is modulated by interhemispheric corticocortical input. ACTA ACUST UNITED AC 2010; 20:2776-86. [PMID: 20211943 PMCID: PMC2978237 DOI: 10.1093/cercor/bhq024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Within the visual cortex, it has been proposed that interhemispheric interactions serve to re-establish the continuity of the visual field across its vertical meridian (VM) by mechanisms similar to those used by intrinsic connections within a hemisphere. However, other specific functions of transcallosal projections have also been proposed, including contributing to disparity tuning and depth perception. Here, we consider whether interhemispheric connections modulate specific response properties, orientation and direction selectivity, of neurons in areas 17 and 18 of the ferret by combining reversible thermal deactivation in one hemisphere with optical imaging of intrinsic signals and single-cell electrophysiology in the other hemisphere. We found interhemispheric influences on both the strength and specificity of the responses to stimulus orientation and direction of motion, predominantly at the VM. However, neurons and domains preferring cardinal contours, in particular vertical contours, seem to receive stronger interhemispheric input than others. This finding is compatible with interhemispheric connections being involved in horizontal disparity tuning. In conclusion, our results support the view that interhemispheric interactions mainly perform integrative functions similar to those of connections intrinsic to one hemisphere.
Collapse
Affiliation(s)
- Kerstin E Schmidt
- Max-Planck Research Group: Cortical Function and Dynamics, Max Planck Institute for Brain Research, Deutschordenstraße 46, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
12
|
Dynamic interactions between the cerebral hemispheres. Exp Brain Res 2008; 192:417-23. [PMID: 18685835 DOI: 10.1007/s00221-008-1484-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/28/2008] [Indexed: 10/21/2022]
Abstract
The cortical areas of the two hemispheres interact via the corpus callosum. This paper reviews recent findings in animals and man, showing that the visual areas of the two hemispheres control each other's dynamics. The interaction is stimulus-dependent and stimulus-specific. It consists of both excitatory and inhibitory inputs controlling the formation of synchronous neuronal assemblies across and within the hemispheres. The findings are consistent with the geometry of callosal axons and their inferred computational properties. These are the first findings to suggest a direct relationship between the geometry of cortical connections, and the formation of stimulus-driven synchronous neuronal assemblies.
Collapse
|