1
|
Coelho LA, Gonzalez CLR, Tammurello C, Campus C, Gori M. Hand and foot overestimation in visually impaired human adults. Neuroscience 2024; 563:74-83. [PMID: 39521320 DOI: 10.1016/j.neuroscience.2024.10.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Previous research has shown that visual impairment results in reduced audio, tactile and proprioceptive ability. One hypothesis is that these issues arise from inaccurate body representations. Few studies have investigated metric body representations in a visually impaired population. We designed an ecologically valid behavioural task in which visually impaired adults haptically explored various sized gloves or shoes. They were asked to indicate if they perceived each clothing item as bigger than the size of their hand or foot. In the post-hoc analyses we fit psychometric curves to the data to extract the point of subjective equality. We then compared the results to age/sex matched controls. We hypothesized the blind participants body representations should be more distorted. Because previous research has shown that females are more likely to overestimate body size, we predicted sex differences in the sighted participants. However, because blind adults have no exposure to visual ideals of body size, we predicted that there would be no sex differences. Our results showed thatblind participants overestimated their hands and feetto a similar degree. Sighted controls overestimated their hands significantly more than their feet. Taken together, our results partially support our hypothesis and suggest that visual deprivation, even for short periods result in hand size overestimation.
Collapse
Affiliation(s)
- Lara A Coelho
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy.
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Faculty of Kinesiology, University of Lethbridge, Canada
| | - Carolina Tammurello
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Claudio Campus
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy
| | - Monica Gori
- Unit for visually impaired (UVIP), Italian Institute of Technology, Genova, Italy
| |
Collapse
|
2
|
Bola Ł, Vetter P, Wenger M, Amedi A. Decoding Reach Direction in Early "Visual" Cortex of Congenitally Blind Individuals. J Neurosci 2023; 43:7868-7878. [PMID: 37783506 PMCID: PMC10648511 DOI: 10.1523/jneurosci.0376-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 10/04/2023] Open
Abstract
Motor actions, such as reaching or grasping, can be decoded from fMRI activity of early visual cortex (EVC) in sighted humans. This effect can depend on vision or visual imagery, or alternatively, could be driven by mechanisms independent of visual experience. Here, we show that the actions of reaching in different directions can be reliably decoded from fMRI activity of EVC in congenitally blind humans (both sexes). Thus, neither visual experience nor visual imagery is necessary for EVC to represent action-related information. We also demonstrate that, within EVC of blind humans, the accuracy of reach direction decoding is highest in areas typically representing foveal vision and gradually decreases in areas typically representing peripheral vision. We propose that this might indicate the existence of a predictive, hard-wired mechanism of aligning action and visual spaces. This mechanism might send action-related information primarily to the high-resolution foveal visual areas, which are critical for guiding and online correction of motor actions. Finally, we show that, beyond EVC, the decoding of reach direction in blind humans is most accurate in dorsal stream areas known to be critical for visuo-spatial and visuo-motor integration in the sighted. Thus, these areas can develop space and action representations even in the lifelong absence of vision. Overall, our findings in congenitally blind humans match previous research on the action system in the sighted, and suggest that the development of action representations in the human brain might be largely independent of visual experience.SIGNIFICANCE STATEMENT Early visual cortex (EVC) was traditionally thought to process only visual signals from the retina. Recent studies proved this account incomplete, and showed EVC involvement in many activities not directly related to incoming visual information, such as memory, sound, or action processing. Is EVC involved in these activities because of visual imagery? Here, we show robust reach direction representation in EVC of humans born blind. This demonstrates that EVC can represent actions independently of vision and visual imagery. Beyond EVC, we found that reach direction representation in blind humans is strongest in dorsal brain areas, critical for action processing in the sighted. This suggests that the development of action representations in the human brain is largely independent of visual experience.
Collapse
Affiliation(s)
- Łukasz Bola
- Institute of Psychology, Polish Academy of Sciences, Warsaw, 00-378, Poland
| | - Petra Vetter
- Visual & Cognitive Neuroscience Lab, Department of Psychology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Mohr Wenger
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University Jerusalem, Jerusalem, Israel, 91120
| | - Amir Amedi
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University Jerusalem, Jerusalem, Israel, 91120
- Baruch Ivcher Institute for Brain, Cognition & Technology, Baruch Ivcher School of Psychology, Reichman University, Interdisciplinary Center Herzliya, Herzliya, Israel, 461010
| |
Collapse
|
3
|
Khan AQ, Abbas MB, Sherwani M, Khan MJ, Asif N, Kamal D. Orthopaedic problems in the blind. J Clin Orthop Trauma 2023; 45:102261. [PMID: 37868096 PMCID: PMC10589373 DOI: 10.1016/j.jcot.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023] Open
Abstract
Background Blindness is a common problem in every society and country. The problem ranges from complete blindness to partially sighted in the affected population. India has close to 12 million visually impaired people. Orthopaedic problems are not uncommon in blind. Orthopaedic Surgeons though had been aware of the postural and gait abnormalities in blind but very few published studies have systematically focused on the effect of blindness on the development of posture and gait. Methods Case Control study done for the orthopaedic evaluation of the blind and partially sighted individuals. The study population included 242 students of Ahmadi School for the Blind, Aligarh Muslim University, Aligarh (India), as the cases and another matched set of 250 non-blind children. All the children were assessed for the orthopaedic problems like degree of ligamentous laxity, spinal alignment, foot morphology and alignment of hips, knees and ankles. Standing posture and gait were also examined and recorded. Ligamentous laxity was assessed according to the method adopted by Beighton et al.10 Chi-square test was applied using IBM SPSS 23.0. Results 139 children (57.4 %) were found to have laxity of the ligaments. 72 children (29.7 %) had spine deformities, out of which kyphosis was present in 34 (47.2 %), scoliosis in 23 (31.9 %), lordosis in 13 (18.0 %), and meningomyelocele in 2 (2.9 %) children. 119 children (49.1 %) had foot deformities. 37 children (15.2 %) had knee deformity. 22 children (9.0 %) showed evidence of cerebral palsy. 216 children (89.2 %) had varying degrees of postural abnormalities. The data was statistically significant when compared with the control group (P < 0.05). Conclusion Blindness causes a wide range of complicated sensory and motor problems that frequently forces people into isolation. Blind rehabilitation requires an interdisciplinary approach. Orthopaedic problems are quite common in blind individuals and should be dealt separately.
Collapse
Affiliation(s)
- Abdul Qayyum Khan
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Baqar Abbas
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - M.K.A. Sherwani
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Jesan Khan
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Naiyer Asif
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Danish Kamal
- Department of Community Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
4
|
Bleau M, Paré S, Chebat DR, Kupers R, Nemargut JP, Ptito M. Neural substrates of spatial processing and navigation in blindness: An activation likelihood estimation meta-analysis. Front Neurosci 2022; 16:1010354. [PMID: 36340755 PMCID: PMC9630591 DOI: 10.3389/fnins.2022.1010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Even though vision is considered the best suited sensory modality to acquire spatial information, blind individuals can form spatial representations to navigate and orient themselves efficiently in space. Consequently, many studies support the amodality hypothesis of spatial representations since sensory modalities other than vision contribute to the formation of spatial representations, independently of visual experience and imagery. However, given the high variability in abilities and deficits observed in blind populations, a clear consensus about the neural representations of space has yet to be established. To this end, we performed a meta-analysis of the literature on the neural correlates of spatial processing and navigation via sensory modalities other than vision, like touch and audition, in individuals with early and late onset blindness. An activation likelihood estimation (ALE) analysis of the neuroimaging literature revealed that early blind individuals and sighted controls activate the same neural networks in the processing of non-visual spatial information and navigation, including the posterior parietal cortex, frontal eye fields, insula, and the hippocampal complex. Furthermore, blind individuals also recruit primary and associative occipital areas involved in visuo-spatial processing via cross-modal plasticity mechanisms. The scarcity of studies involving late blind individuals did not allow us to establish a clear consensus about the neural substrates of spatial representations in this specific population. In conclusion, the results of our analysis on neuroimaging studies involving early blind individuals support the amodality hypothesis of spatial representations.
Collapse
Affiliation(s)
- Maxime Bleau
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Samuel Paré
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
| | - Daniel-Robert Chebat
- Visual and Cognitive Neuroscience Laboratory (VCN Lab), Department of Psychology, Faculty of Social Sciences and Humanities, Ariel University, Ariel, Israel
- Navigation and Accessibility Research Center of Ariel University (NARCA), Ariel University, Ariel, Israel
| | - Ron Kupers
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Institute of Neuroscience, Faculty of Medicine, Université de Louvain, Brussels, Belgium
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | | | - Maurice Ptito
- École d’Optométrie, Université de Montréal, Montreal, QC, Canada
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- *Correspondence: Maurice Ptito,
| |
Collapse
|
5
|
Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms. Neuroimage 2020; 218:116981. [DOI: 10.1016/j.neuroimage.2020.116981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
|
6
|
Zhang C, Lee TMC, Fu Y, Ren C, Chan CCH, Tao Q. Properties of cross-modal occipital responses in early blindness: An ALE meta-analysis. NEUROIMAGE-CLINICAL 2019; 24:102041. [PMID: 31677587 PMCID: PMC6838549 DOI: 10.1016/j.nicl.2019.102041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/20/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022]
Abstract
ALE meta-analysis reveals distributed brain networks for object and spatial functions in individuals with early blindness. ALE contrast analysis reveals specific activations in the left cuneus and lingual gyrus for language function, suggesting a reverse hierarchical organization of the visual cortex for early blind individuals. The findings contribute to visual rehabilitation in blind individuals by revealing the function-dependent and sensory-independent networks during nonvisual processing.
Cross-modal occipital responses appear to be essential for nonvisual processing in individuals with early blindness. However, it is not clear whether the recruitment of occipital regions depends on functional domain or sensory modality. The current study utilized a coordinate-based meta-analysis to identify the distinct brain regions involved in the functional domains of object, spatial/motion, and language processing and the common brain regions involved in both auditory and tactile modalities in individuals with early blindness. Following the PRISMA guidelines, a total of 55 studies were included in the meta-analysis. The specific analyses revealed the brain regions that are consistently recruited for each function, such as the dorsal fronto-parietal network for spatial function and ventral occipito-temporal network for object function. This is consistent with the literature, suggesting that the two visual streams are preserved in early blind individuals. The contrast analyses found specific activations in the left cuneus and lingual gyrus for language function. This finding is novel and suggests a reverse hierarchical organization of the visual cortex for early blind individuals. The conjunction analyses found common activations in the right middle temporal gyrus, right precuneus and a left parieto-occipital region. Clinically, this work contributes to visual rehabilitation in early blind individuals by revealing the function-dependent and sensory-independent networks during nonvisual processing.
Collapse
Affiliation(s)
- Caiyun Zhang
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Tatia M C Lee
- Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong, CHINA; Laboratory of Cognitive Affective Neuroscience, The University of Hong Kong, Hong Kong, CHINA; The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunwei Fu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China; Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, 510632, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China
| | - Chetwyn C H Chan
- Applied Cognitive Neuroscience Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, CHINA.
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
7
|
Ricciardi E, Menicagli D, Leo A, Costantini M, Pietrini P, Sinigaglia C. Peripersonal space representation develops independently from visual experience. Sci Rep 2017; 7:17673. [PMID: 29247162 PMCID: PMC5732274 DOI: 10.1038/s41598-017-17896-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022] Open
Abstract
Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-to-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects’ reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects’ reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one’s own and others’ peripersonal space representation.
Collapse
Affiliation(s)
| | - Dario Menicagli
- MOMILab, IMT School for Advanced Studies Lucca, I-55100, Lucca, Italy
| | - Andrea Leo
- MOMILab, IMT School for Advanced Studies Lucca, I-55100, Lucca, Italy.,Research Center "E. Piaggio", University of Pisa, Pisa, I-56100, Italy
| | - Marcello Costantini
- Department of Neuroscience and Imaging and Clinical Science, University G. d'Annunzio, Chieti, I-66100, Italy.,Institute for Advanced Biomedical Technologies - ITAB, Foundation University G. d'Annunzio, Chieti, I-66100, Italy.,Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - Pietro Pietrini
- MOMILab, IMT School for Advanced Studies Lucca, I-55100, Lucca, Italy
| | - Corrado Sinigaglia
- Department of Philosophy, University of Milan, via Festa del Perdono 7, I-20122, Milano, Italy. .,CSSA, Centre for the Study of Social Action, University of Milan, Milan, I-20122, Italy.
| |
Collapse
|
8
|
Visual Experience Shapes the Neural Networks Remapping Touch into External Space. J Neurosci 2017; 37:10097-10103. [PMID: 28947578 DOI: 10.1523/jneurosci.1213-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/26/2017] [Indexed: 11/21/2022] Open
Abstract
Localizing touch relies on the activation of skin-based and externally defined spatial frames of reference. Psychophysical studies have demonstrated that early visual deprivation prevents the automatic remapping of touch into external space. We used fMRI to characterize how visual experience impacts the brain circuits dedicated to the spatial processing of touch. Sighted and congenitally blind humans performed a tactile temporal order judgment (TOJ) task, either with the hands uncrossed or crossed over the body midline. Behavioral data confirmed that crossing the hands has a detrimental effect on TOJ judgments in sighted but not in early blind people. Crucially, the crossed hand posture elicited enhanced activity, when compared with the uncrossed posture, in a frontoparietal network in the sighted group only. Psychophysiological interaction analysis revealed, however, that the congenitally blind showed enhanced functional connectivity between parietal and frontal regions in the crossed versus uncrossed hand postures. Our results demonstrate that visual experience scaffolds the neural implementation of the location of touch in space.SIGNIFICANCE STATEMENT In daily life, we seamlessly localize touch in external space for action planning toward a stimulus making contact with the body. For efficient sensorimotor integration, the brain has therefore to compute the current position of our limbs in the external world. In the present study, we demonstrate that early visual deprivation alters the brain activity in a dorsal parietofrontal network typically supporting touch localization in the sighted. Our results therefore conclusively demonstrate the intrinsic role that developmental vision plays in scaffolding the neural implementation of touch perception.
Collapse
|
9
|
Abstract
Postural control (PC) requires the interaction of the three sensory systems for a good maintenance of the balance, and in blind people, lack of visual input can harm your PC. Thus the objective is to perform a literature review concerning role of sight in the maintenance of PC and the adaptation of brain structures when vision is absent. Studies were searched from Pubmed, and EMBASE that included individuals with congenital blindness. Articles studying person with acquired blindness or low vision was excluded from this review. 26 out of 322 articles were selected for review, and we found that 1) blind individuals exhibit PC deficits and that is compensated by the intensification of the remaining systems; 2) Neuroplastic adaptation occurs throughout the entire cerebral cortex; and 3) Sensorimotor stimulation and transcranial direct current stimulation seem to be a rehabilitation strategy. According to this review, the findings suggest that improved remaining sensations in the presence of adaptations and neuroplasticity, does not translate into better postural control performance. Regarding rehabilitation strategies, more studies are needed to show which therapeutic modality best contributes to postural control.
Collapse
|
10
|
Morin-Parent F, de Beaumont L, Théoret H, Lepage JF. Superior non-specific motor learning in the blind. Sci Rep 2017; 7:6003. [PMID: 28729635 PMCID: PMC5519757 DOI: 10.1038/s41598-017-04831-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/22/2017] [Indexed: 11/16/2022] Open
Abstract
It is well established that blindness induces changes in cerebral function and structure, namely affecting the somatomotor regions. However, the behavioural significance of these changes on the motor system, and on motor learning in particular, remains elusive. In this study, we used a modified version of the serial reaction time task (SRTT) with auditory cues to assess sequence specific and non-specific motor learning in blind adults and sighted controls, and compare them with sighted controls performing the classic visual SRTT. Our results show that the auditory SRTT faithfully replicates the typical learning pattern obtained with the visual SRTT. On the auditory SRTT, blind individuals consistently showed faster reaction times than sighted controls, being at par with sighted individuals performing the visual SRTT. On the other hand, blind participants displayed a particular pattern of motor learning in comparison to both sighted groups; while controls improved prominently on sequence specific learning, blind individuals displayed comparable performance on both specific and non-specific learning, markedly outperforming the control groups on non-specific learning. These results show that blindness, in addition to causing long-term changes in cortical organisation, can also influence dynamic neuroplastic mechanisms in systems beyond those typically associated with compensatory sensory processing.
Collapse
Affiliation(s)
- Florence Morin-Parent
- Sherbrooke University Hospital Research Center, Sherbrooke, Québec, Canada.,Sherbrooke University, Department of pharmacology-physiology, Sherbrooke, Québec, Canada
| | - Louis de Beaumont
- Sacré-Coeur Hospital Research Center, Montréal, Québec, Canada.,University of Montréal, Department of Surgery, Montréal, Québec, Canada
| | - Hugo Théoret
- Université de Montréal, Department of Psychology, Montréal, Québec, Canada
| | - Jean-Francois Lepage
- Sherbrooke University Hospital Research Center, Sherbrooke, Québec, Canada. .,Sherbrooke University, Department of Pediatrics, Sherbrooke, Québec, Canada.
| |
Collapse
|
11
|
Cavallo A, Ansuini C, Gori M, Tinti C, Tonelli A, Becchio C. Anticipatory action planning in blind and sighted individuals. Sci Rep 2017; 7:44617. [PMID: 28304373 PMCID: PMC5356336 DOI: 10.1038/srep44617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/10/2017] [Indexed: 11/09/2022] Open
Abstract
Several studies on visually guided reach-to-grasp movements have documented that how objects are grasped differs depending on the actions one intends to perform subsequently. However, no previous study has examined whether this differential grasping may also occur without visual input. In this study, we used motion capture technology to investigate the influence of visual feedback and prior visual experience on the modulation of kinematics by intention in sighted (in both full-vision and no-vision conditions), early-blind and late-blind participants. Results provide evidence of modulation of kinematics by intention to a similar degree under both full-vision and no-vision conditions. Moreover, they demonstrate that prior visual experience has little impact on the tailoring of grasping movements to intention. This suggests that sequential action planning does not depend on visual input, and may instead be ascribed to the function of multisensory-motor cortical network that operates and develops not only in light, but also in darkness.
Collapse
Affiliation(s)
| | - Caterina Ansuini
- Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Carla Tinti
- Department of Psychology, University of Turin, Italy
| | - Alessia Tonelli
- Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| | - Cristina Becchio
- Department of Psychology, University of Turin, Italy.,Cognition, Motion and Neuroscience Unit, Fondazione Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
12
|
Dai R, Huang Z, Tu H, Wang L, Tanabe S, Weng X, He S, Li D. Interplay between Heightened Temporal Variability of Spontaneous Brain Activity and Task-Evoked Hyperactivation in the Blind. Front Hum Neurosci 2017; 10:632. [PMID: 28066206 PMCID: PMC5169068 DOI: 10.3389/fnhum.2016.00632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/28/2016] [Indexed: 11/13/2022] Open
Abstract
The brain's functional organization can be altered by visual deprivation. This is observed by comparing blind and sighted people's activation response to tactile discrimination tasks, like braille reading. Where, the blind have higher activation than the sighted upon tactile discrimination tasks, especially high activation difference is seen in ventral occipitotemporal (vOT) cortex. However, it remains unknown, whether this vOT hyperactivation is related to alteration of spontaneous activity. To address this question, we examined 16 blind subjects, 19 low-vision individuals, and 21 normally sighted controls using functional magnetic resonance imaging (fMRI). Subjects were scanned in resting-state and discrimination tactile task. In spontaneous activity, when compared to sighted subjects, we found both blind and low vision subjects had increased local signal synchronization and increased temporal variability. During tactile tasks, compared to sighted subjects, blind and low-vision subject's vOT had stronger tactile task-induced activation. Furthermore, through inter-subject partial correlation analysis, we found temporal variability is more related to tactile-task activation, than local signal synchronization's relation to tactile-induced activation. Our results further support that vision impairment induces vOT cortical reorganization. The hyperactivation in the vOT during tactile stimulus processing in the blind may be related to their greater dynamic range of spontaneous activity.
Collapse
Affiliation(s)
- Rui Dai
- School of Life Science, South China Normal University Guangzhou, China
| | - Zirui Huang
- Institute of Mental Health Research, University of Ottawa Ottawa, ON, Canada
| | - Huihui Tu
- Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
| | - Sean Tanabe
- Faculty of Science, University of Ottawa Ottawa, ON, Canada
| | - Xuchu Weng
- Center for Cognition and Brain Disorders, Hangzhou Normal University Hangzhou, China
| | - Sheng He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijing, China; Department of Psychology, University of MinnesotaMinneapolis, MN, USA
| | - Dongfeng Li
- School of Life Science, South China Normal University Guangzhou, China
| |
Collapse
|
13
|
Abstract
The mirror illusion uses a standard mirror to create a compelling illusion in which movements of one limb seem to be made by the other hidden limb. In this paper we adapt a motor control framework to examine which estimates of the body's configuration are affected by the illusion. We propose that the illusion primarily alters estimates related to upcoming states of the body (the desired state and the predicted state), with smaller effects on the estimate of the body state prior to movement initiation. Support for this proposal is provided both by behavioural effects of the illusion and by neuroimaging evidence from one neural region, V6A, that is critically involved in the mirror illusion and limb state estimation more generally.
Collapse
Affiliation(s)
- Tamer M Soliman
- a Moss Rehabilitation Research Institute , Elkins Park , PA , USA
| | - Laurel J Buxbaum
- a Moss Rehabilitation Research Institute , Elkins Park , PA , USA
| | - Steven A Jax
- a Moss Rehabilitation Research Institute , Elkins Park , PA , USA
| |
Collapse
|
14
|
Zhang Y, Lu S, Liu C, Zhang H, Zhou X, Ni C, Qin W, Zhang Q. Altered brain activation and functional connectivity in working memory related networks in patients with type 2 diabetes: An ICA-based analysis. Sci Rep 2016; 6:23767. [PMID: 27021340 PMCID: PMC4810460 DOI: 10.1038/srep23767] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/15/2016] [Indexed: 11/09/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) can cause multidimensional cognitive deficits, among which working memory (WM) is usually involved at an early stage. However, the neural substrates underlying impaired WM in T2DM patients are still unclear. To clarify this issue, we utilized functional magnetic resonance imaging (fMRI) and independent component analysis to evaluate T2DM patients for alterations in brain activation and functional connectivity (FC) in WM networks and to determine their associations with cognitive and clinical variables. Twenty complication-free T2DM patients and 19 matched healthy controls (HCs) were enrolled, and fMRI data were acquired during a block-designed 1-back WM task. The WM metrics of the T2DM patients showed no differences compared with those of the HCs, except for a slightly lower accuracy rate in the T2DM patients. Compared with the HCs, the T2DM patients demonstrated increased activation within their WM fronto-parietal networks, and activation strength was significantly correlated with WM performance. The T2DM patients also showed decreased FC within and between their WM networks. Our results indicate that the functional integration of WM sub-networks was disrupted in the complication-free T2DM patients and that strengthened regional activity in fronto-parietal networks may compensate for the WM impairment caused by T2DM.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shan Lu
- Department of Radiology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, 300060, China
| | - Chunlei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huimei Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xuanhe Zhou
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Changlin Ni
- Department of Cardiology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, 300060, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Quan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
15
|
Ding H, Ming D, Wan B, Li Q, Qin W, Yu C. Enhanced spontaneous functional connectivity of the superior temporal gyrus in early deafness. Sci Rep 2016; 6:23239. [PMID: 26984611 PMCID: PMC4794647 DOI: 10.1038/srep23239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/02/2016] [Indexed: 11/09/2022] Open
Abstract
Early auditory deprivation may drive the auditory cortex into cross-modal processing of non-auditory sensory information. In a recent study, we had shown that early deaf subjects exhibited increased activation in the superior temporal gyrus (STG) bilaterally during visual spatial working memory; however, the changes in the organization of the STG related spontaneous functional network, and their cognitive relevance are still unknown. To clarify this issue, we applied resting state functional magnetic resonance imaging on 42 early deafness (ED) and 40 hearing controls (HC). We also acquired the visual spatial and numerical n-back working memory (WM) information in these subjects. Compared with hearing subjects, the ED exhibited faster reaction time of visual WM tasks in both spatial and numerical domains. Furthermore, ED subjects exhibited significantly increased functional connectivity between the STG (especially of the right hemisphere) and bilateral anterior insula and dorsal anterior cingulated cortex. Finally, the functional connectivity of STG could predict visual spatial WM performance, even after controlling for numerical WM performance. Our findings suggest that early auditory deprivation can strengthen the spontaneous functional connectivity of STG, which may contribute to the cross-modal involvement of this region in visual working memory.
Collapse
Affiliation(s)
- Hao Ding
- School of Medical Imaging, Tianjin Medical University, Tianjin 300070, People's Republic of China.,Department of Biomedical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Dong Ming
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Baikun Wan
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, People's Republic of China
| | - Qiang Li
- Technical College for the Deaf, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, People's Republic of China
| |
Collapse
|
16
|
Tal Z, Geva R, Amedi A. The origins of metamodality in visual object area LO: Bodily topographical biases and increased functional connectivity to S1. Neuroimage 2015; 127:363-375. [PMID: 26673114 PMCID: PMC4758827 DOI: 10.1016/j.neuroimage.2015.11.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 10/16/2015] [Accepted: 11/24/2015] [Indexed: 11/14/2022] Open
Abstract
Recent evidence from blind participants suggests that visual areas are task-oriented and sensory modality input independent rather than sensory-specific to vision. Specifically, visual areas are thought to retain their functional selectivity when using non-visual inputs (touch or sound) even without having any visual experience. However, this theory is still controversial since it is not clear whether this also characterizes the sighted brain, and whether the reported results in the sighted reflect basic fundamental a-modal processes or are an epiphenomenon to a large extent. In the current study, we addressed these questions using a series of fMRI experiments aimed to explore visual cortex responses to passive touch on various body parts and the coupling between the parietal and visual cortices as manifested by functional connectivity. We show that passive touch robustly activated the object selective parts of the lateral–occipital (LO) cortex while deactivating almost all other occipital–retinotopic-areas. Furthermore, passive touch responses in the visual cortex were specific to hand and upper trunk stimulations. Psychophysiological interaction (PPI) analysis suggests that LO is functionally connected to the hand area in the primary somatosensory homunculus (S1), during hand and shoulder stimulations but not to any of the other body parts. We suggest that LO is a fundamental hub that serves as a node between visual-object selective areas and S1 hand representation, probably due to the critical evolutionary role of touch in object recognition and manipulation. These results might also point to a more general principle suggesting that recruitment or deactivation of the visual cortex by other sensory input depends on the ecological relevance of the information conveyed by this input to the task/computations carried out by each area or network. This is likely to rely on the unique and differential pattern of connectivity for each visual area with the rest of the brain. We studied cross-modal effects of passive somatosensory inputs on the visual cortex. Passive touch on the body evoked massive deactivation in the visual cortex. Passive hand stimulation evoked unique activation in visual object area LO. This area was also uniquely connected to the hand area in Penfield's homunculus — S1.
Collapse
Affiliation(s)
- Zohar Tal
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel.
| | - Ran Geva
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, Institute of Medical Research Israel - Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel; The Edmond and Lily Safra Center for Brain Science (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel; Program of Cognitive Science, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| |
Collapse
|
17
|
Stone KD, Gonzalez CLR. The contributions of vision and haptics to reaching and grasping. Front Psychol 2015; 6:1403. [PMID: 26441777 PMCID: PMC4584943 DOI: 10.3389/fpsyg.2015.01403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022] Open
Abstract
This review aims to provide a comprehensive outlook on the sensory (visual and haptic) contributions to reaching and grasping. The focus is on studies in developing children, normal, and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually guided grasping and a left-hand/right-hemisphere specialization for haptically guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference.
Collapse
Affiliation(s)
- Kayla D Stone
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge AB, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge AB, Canada
| |
Collapse
|
18
|
Blindness alters the microstructure of the ventral but not the dorsal visual stream. Brain Struct Funct 2015; 221:2891-903. [PMID: 26134685 DOI: 10.1007/s00429-015-1078-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Visual deprivation from birth leads to reorganisation of the brain through cross-modal plasticity. Although there is a general agreement that the primary afferent visual pathways are altered in congenitally blind individuals, our knowledge about microstructural changes within the higher-order visual streams, and how this is affected by onset of blindness, remains scant. We used diffusion tensor imaging and tractography to investigate microstructural features in the dorsal (superior longitudinal fasciculus) and ventral (inferior longitudinal and inferior fronto-occipital fasciculi) visual pathways in 12 congenitally blind, 15 late blind and 15 normal sighted controls. We also studied six prematurely born individuals with normal vision to control for the effects of prematurity on brain connectivity. Our data revealed a reduction in fractional anisotropy in the ventral but not the dorsal visual stream for both congenitally and late blind individuals. Prematurely born individuals, with normal vision, did not differ from normal sighted controls, born at term. Our data suggest that although the visual streams are structurally developing without normal visual input from the eyes, blindness selectively affects the microstructure of the ventral visual stream regardless of the time of onset. We suggest that the decreased fractional anisotropy of the ventral stream in the two groups of blind subjects is the combined result of both degenerative and cross-modal compensatory processes, affecting normal white matter development.
Collapse
|
19
|
Impact of Parkinson's disease on proprioceptively based on-line movement control. Exp Brain Res 2015; 233:2707-21. [PMID: 26055990 DOI: 10.1007/s00221-015-4343-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
Abstract
Evidence suggests that Parkinson's disease (PD) patients produce large spatial errors when reaching to proprioceptively defined targets. Here, we examined whether these movement inaccuracies result mainly from impaired use of proprioceptive inputs for movement planning mechanisms or from on-line movement guidance. Medicated and non-medicated PD patients and healthy controls performed three-dimensional reaching movements in four sensorimotor conditions that increase proprioceptive processing requirements. We assessed the influence of these sensorimotor conditions on the final accuracy and initial kinematics of the movements. If the patterns of final errors are primarily determined by planning processes before the initiation of the movement, the initial kinematics of reaching movements should show similar trends and predict the pattern of final errors. Medicated and non-medicated PD patients showed a greater mean level of final 3D errors than healthy controls when proprioception was the sole source of information guiding the movement, but this difference reached significance only for medicated PD patients. However, the pattern of initial kinematics and final spatial errors were markedly different both between sensorimotor conditions and between groups. Furthermore, medicated and non-medicated PD patients were less efficient than healthy controls in compensating for their initial spatial errors (hand distance from target location at peak velocity) when aiming at proprioceptively defined compared to visually defined targets. Considered together, the results are consistent with a selective deficit in proprioceptively based movement guidance in PD. Furthermore, dopaminergic medication did not improve proprioceptively guided movements in PD patients, indicating that dopaminergic dysfunction within the basal ganglia is not solely responsible for these deficits.
Collapse
|
20
|
Thomas BL, Karl JM, Whishaw IQ. Independent development of the Reach and the Grasp in spontaneous self-touching by human infants in the first 6 months. Front Psychol 2015; 5:1526. [PMID: 25620939 DOI: 10.3389/fpsyg.2014.01526] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022] Open
Abstract
The Dual Visuomotor Channel Theory proposes that visually guided reaching is a composite of two movements, a Reach that advances the hand to contact the target and a Grasp that shapes the digits for target purchase. The theory is supported by biometric analyses of adult reaching, evolutionary contrasts, and differential developmental patterns for the Reach and the Grasp in visually guided reaching in human infants. The present ethological study asked whether there is evidence for a dissociated development for the Reach and the Grasp in nonvisual hand use in very early infancy. The study documents a rich array of spontaneous self-touching behavior in infants during the first 6 months of life and subjected the Reach movements to an analysis in relation to body target, contact type, and Grasp. Video recordings were made of resting alert infants biweekly from birth to 6 months. In younger infants, self-touching targets included the head and trunk. As infants aged, targets became more caudal and included the hips, then legs, and eventually the feet. In younger infants hand contact was mainly made with the dorsum of the hand, but as infants aged, contacts included palmar contacts and eventually grasp and manipulation contacts with the body and clothes. The relative incidence of caudal contacts and palmar contacts increased concurrently and were significantly correlated throughout the period of study. Developmental increases in self-grasping contacts occurred a few weeks after the increase in caudal and palmar contacts. The behavioral and temporal pattern of these spontaneous self-touching movements suggest that the Reach, in which the hand extends to make a palmar self-contact, and the Grasp, in which the digits close and make manipulatory movements, have partially independent developmental profiles. The results additionally suggest that self-touching behavior is an important developmental phase that allows the coordination of the Reach and the Grasp prior to and concurrent with their use under visual guidance.
Collapse
Affiliation(s)
- Brittany L Thomas
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Jenni M Karl
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
21
|
Rojas-Hortelano E, Concha L, de Lafuente V. The parietal cortices participate in encoding, short-term memory, and decision-making related to tactile shape. J Neurophysiol 2014; 112:1894-902. [DOI: 10.1152/jn.00177.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We routinely identify objects with our hands, and the physical attributes of touched objects are often held in short-term memory to aid future decisions. However, the brain structures that selectively process tactile information to encode object shape are not fully identified. In this article we describe the areas within the human cerebral cortex that specialize in encoding, short-term memory, and decision-making related to the shape of objects explored with the hand. We performed event-related functional magnetic resonance imaging in subjects performing a shape discrimination task in which two sequentially presented objects had to be explored to determine whether they had the same shape or not. To control for low-level and nonspecific brain activations, subjects performed a temperature discrimination task in which they compared the temperature of two spheres. Our results show that although a large network of brain structures is engaged in somatosensory processing, it is the areas lining the intraparietal sulcus that selectively participate in encoding, maintaining, and deciding on tactile information related to the shape of objects.
Collapse
Affiliation(s)
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Victor de Lafuente
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
22
|
Grasping without sight: insights from the congenitally blind. PLoS One 2014; 9:e110175. [PMID: 25303211 PMCID: PMC4193874 DOI: 10.1371/journal.pone.0110175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/18/2014] [Indexed: 11/27/2022] Open
Abstract
We reach for and grasp different sized objects numerous times per day. Most of these movements are visually-guided, but some are guided by the sense of touch (i.e. haptically-guided), such as reaching for your keys in a bag, or for an object in a dark room. A marked right-hand preference has been reported during visually-guided grasping, particularly for small objects. However, little is known about hand preference for haptically-guided grasping. Recently, a study has shown a reduction in right-hand use in blindfolded individuals, and an absence of hand preference if grasping was preceded by a short haptic experience. These results suggest that vision plays a major role in hand preference for grasping. If this were the case, then one might expect congenitally blind (CB) individuals, who have never had a visual experience, to exhibit no hand preference. Two novel findings emerge from the current study: first, the results showed that contrary to our expectation, CB individuals used their right hand during haptically-guided grasping to the same extent as visually-unimpaired (VU) individuals did during visually-guided grasping. And second, object size affected hand use in an opposite manner for haptically- versus visually-guided grasping. Big objects were more often picked up with the right hand during haptically-guided, but less often during visually-guided grasping. This result highlights the different demands that object features pose on the two sensory systems. Overall the results demonstrate that hand preference for grasping is independent of visual experience, and they suggest a left-hemisphere specialization for the control of grasping that goes beyond sensory modality.
Collapse
|
23
|
Kober SE, Wood G, Kampl C, Neuper C, Ischebeck A. Electrophysiological correlates of mental navigation in blind and sighted people. Behav Brain Res 2014; 273:106-15. [DOI: 10.1016/j.bbr.2014.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
|
24
|
Motor coordination uses external spatial coordinates independent of developmental vision. Cognition 2014; 132:1-15. [DOI: 10.1016/j.cognition.2014.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 11/17/2022]
|
25
|
Karl JM, Whishaw IQ. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Exp Brain Res 2014; 232:3301-16. [DOI: 10.1007/s00221-014-4013-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
26
|
Hall LA, Karl JM, Thomas BL, Whishaw IQ. Reach and Grasp reconfigurations reveal that proprioception assists reaching and hapsis assists grasping in peripheral vision. Exp Brain Res 2014; 232:2807-19. [PMID: 24792500 DOI: 10.1007/s00221-014-3945-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
The dual visuomotor channel theory proposes that prehension consists of a Reach that transports the hand in relation to an object's extrinsic properties (e.g., location) and a Grasp that shapes the hand to an object's intrinsic properties (e.g., size and shape). In central vision, the Reach and the Grasp are integrated but when an object cannot be seen, the movements can decompose with the Reach first used to locate the object and the Grasp postponed until it is assisted by touch. Reaching for an object in a peripheral visual field is an everyday act, and although it is reported that there are changes in Grasp aperture with target eccentricity, it is not known whether the configuration of the Reach and the Grasp also changes. The present study examined this question by asking participants to reach for food items at 0° or 22.5° and 45° from central gaze. Participants made 15 reaches for a larger round donut ball and a smaller blueberry, and hand movements were analyzed using frame-by-frame video inspection and linear kinematics. Perception of targets was degraded as participants could not identify objects in peripheral vision but did recognize their differential size. The Reach to peripheral targets featured a more dorsal trajectory, a more open hand, and less accurate digit placement. The Grasp featured hand adjustments or target manipulations after contact, which were associated with a prolonged Grasp duration. Thus, Grasps to peripheral vision did not consist only of a simple modification of visually guided reaching but included the addition of somatosensory assistance. The kinematic and behavioral changes argue that proprioception assists the Reach and touch assists the Grasp in peripheral vision, supporting the idea that Reach and Grasp movements are used flexibly in relation to sensory guidance depending upon the salience of target properties.
Collapse
Affiliation(s)
- Lauren A Hall
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | | | | | | |
Collapse
|
27
|
Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture? Neurosci Biobehav Rev 2014; 41:64-77. [DOI: 10.1016/j.neubiorev.2013.10.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/13/2013] [Accepted: 10/03/2013] [Indexed: 11/20/2022]
|
28
|
Abstract
Mammalian central nervous systems consist of highly diverse types of neurons, which are the functional units of neural circuits. To understand the organization, assembly, and function of neural circuits, it is necessary to develop and to improve technologies that allow efficient and robust visualization of neurons in their native environment in vivo. Here we discuss various genetic strategies for achieving specific and robust neuron labeling in mice.
Collapse
|
29
|
Karl JM, Whishaw IQ. Different evolutionary origins for the reach and the grasp: an explanation for dual visuomotor channels in primate parietofrontal cortex. Front Neurol 2013; 4:208. [PMID: 24391626 PMCID: PMC3870330 DOI: 10.3389/fneur.2013.00208] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
The Dual Visuomotor Channel Theory proposes that manual prehension consists of two temporally integrated movements, each subserved by distinct visuomotor pathways in occipitoparietofrontal cortex. The Reach is mediated by a dorsomedial pathway and transports the hand in relation to the target's extrinsic properties (i.e., location and orientation). The Grasp is mediated by a dorsolateral pathway and opens, preshapes, and closes the hand in relation to the target's intrinsic properties (i.e., size and shape). Here, neuropsychological, developmental, and comparative evidence is reviewed to show that the Reach and the Grasp have different evolutionary origins. First, the removal or degradation of vision causes prehension to decompose into its constituent Reach and Grasp components, which are then executed in sequence or isolation. Similar decomposition occurs in optic ataxic patients following cortical injury to the Reach and the Grasp pathways and after corticospinal tract lesions in non-human primates. Second, early non-visual PreReach and PreGrasp movements develop into mature Reach and Grasp movements but are only integrated under visual control after a prolonged developmental period. Third, comparative studies reveal many similarities between stepping movements and the Reach and between food handling movements and the Grasp, suggesting that the Reach and the Grasp are derived from different evolutionary antecedents. The evidence is discussed in relation to the ideas that dual visuomotor channels in primate parietofrontal cortex emerged as a result of distinct evolutionary origins for the Reach and the Grasp; that foveated vision in primates serves to integrate the Reach and the Grasp into a single prehensile act; and, that flexible recombination of discrete Reach and Grasp movements under various forms of sensory and cognitive control can produce adaptive behavior.
Collapse
Affiliation(s)
- Jenni M. Karl
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Ian Q. Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
30
|
Maidenbaum S, Abboud S, Amedi A. Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 2013; 41:3-15. [PMID: 24275274 DOI: 10.1016/j.neubiorev.2013.11.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 10/06/2013] [Accepted: 11/08/2013] [Indexed: 11/25/2022]
Abstract
Sensory substitution devices (SSDs) have come a long way since first developed for visual rehabilitation. They have produced exciting experimental results, and have furthered our understanding of the human brain. Unfortunately, they are still not used for practical visual rehabilitation, and are currently considered as reserved primarily for experiments in controlled settings. Over the past decade, our understanding of the neural mechanisms behind visual restoration has changed as a result of converging evidence, much of which was gathered with SSDs. This evidence suggests that the brain is more than a pure sensory-machine but rather is a highly flexible task-machine, i.e., brain regions can maintain or regain their function in vision even with input from other senses. This complements a recent set of more promising behavioral achievements using SSDs and new promising technologies and tools. All these changes strongly suggest that the time has come to revive the focus on practical visual rehabilitation with SSDs and we chart several key steps in this direction such as training protocols and self-train tools.
Collapse
Affiliation(s)
- Shachar Maidenbaum
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Sami Abboud
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel
| | - Amir Amedi
- Department of Medical Neurobiology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91220, Israel; The Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem 91220, Israel.
| |
Collapse
|
31
|
Bedny M, Saxe R. Insights into the origins of knowledge from the cognitive neuroscience of blindness. Cogn Neuropsychol 2013; 29:56-84. [PMID: 23017086 DOI: 10.1080/02643294.2012.713342] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Children learn about the world through senses such as touch, smell, vision, and audition, but they conceive of the world in terms of objects, events, agents, and their mental states. A fundamental question in cognitive science is how nature and nurture contribute to the development of such conceptual categories. What innate mechanisms do children bring to the learning problem? How does experience contribute to development? In this article we discuss insights into these longstanding questions from cognitive neuroscience studies of blindness. Despite drastically different sensory experiences, behavioural and neuroscientific work suggests that blind children acquire typical concepts of objects, actions, and mental states. Blind people think and talk about these categories in ways that are similar to sighted people. Neuroimaging reveals that blind people make such judgements relying on the same neural mechanisms as sighted people. One way to interpret these findings is that neurocognitive development is largely hardwired, and so differences in experience have little consequence. Contrary to this interpretation, neuroimaging studies also show that blindness profoundly reorganizes the visual system. Most strikingly, developmental blindness enables "visual" circuits to participate in high-level cognitive functions, including language processing. Thus, blindness qualitatively changes sensory representations, but leaves conceptual representations largely unchanged. The effect of sensory experience on concepts is modest, despite the brain's potential for neuroplasticity.
Collapse
Affiliation(s)
- Marina Bedny
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139, USA.
| | | |
Collapse
|
32
|
Qin W, Liu Y, Jiang T, Yu C. The development of visual areas depends differently on visual experience. PLoS One 2013; 8:e53784. [PMID: 23308283 PMCID: PMC3538632 DOI: 10.1371/journal.pone.0053784] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/05/2012] [Indexed: 11/29/2022] Open
Abstract
Visual experience plays an important role in the development of the visual cortex; however, recent functional imaging studies have shown that the functional organization is preserved in several higher-tier visual areas in congenitally blind subjects, indicating that maturation of visual areas depend unequally on visual experience. In this study, we aim to validate this hypothesis using a multimodality MRI approach. We found increased cortical thickness in the congenitally blind was present in the early visual areas and absent in the higher-tier ones, suggesting that the structural development of the visual cortex depends hierarchically on visual experience. In congenitally blind subjects, the decreased resting-state functional connectivity with the primary somatosensory cortex was more prominent in the early visual areas than in the higher-tier ones and were more pronounced in the ventral stream than in the dorsal one, suggesting that the development of functional organization of the visual cortex also depends differently on visual experience. Moreover, congenitally blind subjects showed normal or increased functional connectivity between ipsilateral higher-tier and early visual areas, suggesting an indirect corticocortical pathway through which somatosenroy information can reach the early visual areas. These findings support our hypothesis that the development of visual areas depends differently on visual experience.
Collapse
Affiliation(s)
- Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yong Liu
- LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Tianzi Jiang
- LIAMA Center for Computational Medicine, National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences, Beijing, China
- * E-mail: (CY); (TJ)
| | - Chunshui Yu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- * E-mail: (CY); (TJ)
| |
Collapse
|
33
|
Jung WH, Jang JH, Shin NY, Kim SN, Choi CH, An SK, Kwon JS. Regional brain atrophy and functional disconnection in Broca's area in individuals at ultra-high risk for psychosis and schizophrenia. PLoS One 2012; 7:e51975. [PMID: 23251669 PMCID: PMC3522585 DOI: 10.1371/journal.pone.0051975] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Accepted: 11/12/2012] [Indexed: 01/14/2023] Open
Abstract
Background Abnormalities in cognitive abilities such as verbal fluency and in cognitive-related brain regions, particularly Broca’s area, have been reported in patients with schizophrenia. Additionally, previous studies have demonstrated that structural and functional abnormalities in Broca’s area were associated with clinical symptoms and cognitive deficits in patients with schizophrenia, suggesting that deficits in this area may reflect the core pathology of schizophrenia. Thus, it is important to understand how the structural volume and functional connectivity in this area changes at rest according to the course of the illness. Methods/Principal Findings We used magnetic resonance imaging (MRI) to measure the structural volume of Broca’s area as a region of interest in 16 schizophrenia, 16 ultra-high risk (UHR), and 23 healthy matched controls. We also assessed verbal fluency and analyzed differences across groups in the functional connectivity patterns using resting-state functional MRI. The UHR group showed significantly reduced structural volume in Broca’s area and significantly reduced functional connectivity between Broca’s area and the lateral and medial frontal cortex as well as decreased cognitive performance. Altered functional connectivity in patients was correlated with their positive symptoms. Conclusions/Significance Our results suggest the existence of functional disconnections in Broca’s area, even during resting-states, among those with schizophrenia as well as those at UHR for this disorder. These alterations may contribute to their clinical symptoms, suggesting that this is one of the key regions involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Wi Hoon Jung
- Clinical Cognitive Neuroscience Center, Neuroscience Institute, Seoul National University-Medical Research Center, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Joon Hwan Jang
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Na Young Shin
- Clinical Cognitive Neuroscience Center, Neuroscience Institute, Seoul National University-Medical Research Center, Seoul, South Korea
| | - Sung Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Chi-Hoon Choi
- Department of Diagnostic Radiology, National Medical Center, Seoul, South Korea
| | - Suk Kyoon An
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
| | - Jun Soo Kwon
- Clinical Cognitive Neuroscience Center, Neuroscience Institute, Seoul National University-Medical Research Center, Seoul, South Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
- Department of Brain and Cognitive Sciences-World Class University Program, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
34
|
Ballesteros S, Mayas J, Reales JM, Heller M. The effect of age on the haptic horizontal-vertical curvature illusion with raised-line shapes. Dev Neuropsychol 2012; 37:653-67. [PMID: 23145564 DOI: 10.1080/87565641.2012.688901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we investigated the effect of age in the haptic horizontal-vertical curvature illusion from adolescence to old age. Blindfolded participants explored raised-line convex curves with one finger and two fingers (Experiment 1). They judged the size of the curves (horizontal/vertical), using two sliding rulers. The results suggest that young and older haptic explorers overestimated the vertical. Adolescents did not show the haptic illusion. In Experiment 2, adolescents performed the task visually showing a stronger horizontal-vertical illusion. The findings suggest that the illusion develops later in touch than in vision. The theoretical implications of the results are discussed.
Collapse
Affiliation(s)
- Soledad Ballesteros
- Department of Basic Psychology II, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | | | | | | |
Collapse
|
35
|
Imbiriba LA, Russo MM, de Oliveira LAS, Fontana AP, Rodrigues EDC, Garcia MAC, Vargas CD. Perspective-taking in blindness: electrophysiological evidence of altered action representations. J Neurophysiol 2012; 109:405-14. [PMID: 23136345 DOI: 10.1152/jn.00332.2011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well established that the mental simulation of actions involves visual and/or somatomotor representations of those imagined actions. To investigate whether the total absence of vision affects the brain activity associated with the retrieval of motor representations, we recorded the readiness potential (RP), a marker of motor preparation preceding the execution, as well as the motor imagery of the right middle-finger extension in the first-person (1P; imagining oneself performing the movement) and in the third-person (3P; imagining the experimenter performing the movement) modes in 19 sighted and 10 congenitally blind subjects. Our main result was found for the single RP slope values at the Cz channel (likely corresponding to the supplementary motor area). No difference in RP slope was found between 1P and 3P in the sighted group, suggesting that similar motor preparation networks are recruited to simulate our own and other people's actions in spite of explicit instructions to perform the task in 1P or 3P. Conversely, reduced RP slopes in 3P compared with 1P found in the blind group indicated that they might have used an alternative, nonmotor strategy to perform the task in 3P. Moreover, movement imagery ability, assessed both by means of mental chronometry and a modified version of the Movement Imagery Questionnaire-Revised, indicated that blind and sighted individuals had similar motor imagery performance. Taken together, these results suggest that complete visual loss early in life modifies the brain networks that associate with others' action representations.
Collapse
Affiliation(s)
- Luís Aureliano Imbiriba
- Núcleo de Estudos do Movimento Humano, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | |
Collapse
|
36
|
Lingnau A, Strnad L, He C, Fabbri S, Han Z, Bi Y, Caramazza A. Cross-modal plasticity preserves functional specialization in posterior parietal cortex. Cereb Cortex 2012; 24:541-9. [PMID: 23118194 DOI: 10.1093/cercor/bhs340] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In congenitally blind individuals, many regions of the brain that are typically heavily involved in visual processing are recruited for a variety of nonvisual sensory and cognitive tasks (Rauschecker 1995; Pascual-Leone et al. 2005). This phenomenon-cross-modal plasticity-has been widely documented, but the principles that determine where and how cross-modal changes occur remain poorly understood (Bavelier and Neville 2002). Here, we evaluate the hypothesis that cross-modal plasticity respects the type of computations performed by a region, even as it changes the modality of the inputs over which they are carried out (Pascual-Leone and Hamilton 2001). We compared the fMRI signal in sighted and congenitally blind participants during proprioceptively guided reaching. We show that parietooccipital reach-related regions retain their functional role-encoding of the spatial position of the reach target-even as the dominant modality in this region changes from visual to nonvisual inputs. This suggests that the computational role of a region, independently of the processing modality, codetermines its potential cross-modal recruitment. Our findings demonstrate that preservation of functional properties can serve as a guiding principle for cross-modal plasticity even in visuomotor cortical regions, i.e. beyond the early visual cortex and other traditional visual areas.
Collapse
Affiliation(s)
- Angelika Lingnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects. Neuropsychologia 2012; 50:1663-71. [PMID: 22483742 DOI: 10.1016/j.neuropsychologia.2012.03.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/10/2012] [Accepted: 03/20/2012] [Indexed: 02/04/2023]
Abstract
Despite their lack of vision, congenitally blind subjects are able to build and manipulate cognitive maps for spatial navigation. It is assumed that they thereby rely more heavily on echolocation, proprioceptive signals and environmental cues such as ambient temperature and audition to compensate for their lack of vision. Little is known, however, about the neural mechanisms underlying spatial navigation in blind individuals in settings where these cues are absent. We therefore measured behavioural performance and blood oxygenation-level dependant (BOLD) responses using functional magnetic resonance imaging (fMRI) in congenitally blind and blindfolded sighted participants while they navigated through a tactile multiple T-maze. Both groups learned the maze task at a similar pace. In blind participants, tactile maze navigation was associated with increased BOLD responses in the right hippocampus and parahippocampus, occipital cortex and fusiform gyrus. Blindfolded sighted controls did not show increased BOLD responses in these areas; instead they activated the caudate nucleus and thalamus. Both groups activated the precuneus during tactile maze navigation. We conclude that cross-modal plastic processes allow for the recruitment of the hippocampal complex and visual cortex in congenital blindness.
Collapse
|
38
|
Striem-Amit E, Guendelman M, Amedi A. 'Visual' acuity of the congenitally blind using visual-to-auditory sensory substitution. PLoS One 2012; 7:e33136. [PMID: 22438894 PMCID: PMC3306374 DOI: 10.1371/journal.pone.0033136] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 02/04/2012] [Indexed: 11/17/2022] Open
Abstract
Sensory Substitution Devices (SSDs) convey visual information through sounds or touch, thus theoretically enabling a form of visual rehabilitation in the blind. However, for clinical use, these devices must provide fine-detailed visual information which was not yet shown for this or other means of visual restoration. To test the possible functional acuity conveyed by such devices, we used the Snellen acuity test conveyed through a high-resolution visual-to-auditory SSD (The vOICe). We show that congenitally fully blind adults can exceed the World Health Organization (WHO) blindness acuity threshold using SSDs, reaching the highest acuity reported yet with any visual rehabilitation approach. This demonstrates the potential capacity of SSDs as inexpensive, non-invasive visual rehabilitation aids, alone or when supplementing visual prostheses.
Collapse
Affiliation(s)
- Ella Striem-Amit
- Department of Medical Neurobiology, Faculty of Medicine, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
39
|
The role of visual experience for the neural basis of spatial cognition. Neurosci Biobehav Rev 2012; 36:1179-87. [PMID: 22330729 DOI: 10.1016/j.neubiorev.2012.01.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Revised: 01/16/2012] [Accepted: 01/28/2012] [Indexed: 12/20/2022]
Abstract
Blindness often results in the adaptive neural reorganization of the remaining modalities, producing sharper auditory and haptic behavioral performance. Yet, non-visual modalities might not be able to fully compensate for the lack of visual experience as in the case of congenital blindness. For example, developmental visual experience seems to be necessary for the maturation of multisensory neurons for spatial tasks. Additionally, the ability of vision to convey information in parallel might be taken into account as the main attribute that cannot be fully compensated by the spared modalities. Therefore, the lack of visual experience might impair all spatial tasks that require the integration of inputs from different modalities, such as having to represent a set of objects on the basis of the spatial relationships among the objects, rather than the spatial relationship that each object has with oneself. Here we integrate behavioral and neural evidence to conclude that visual experience is necessary for the neural development of normal spatial cognition.
Collapse
|
40
|
|
41
|
Striem-Amit E, Dakwar O, Reich L, Amedi A. The large-Scale Organization of “Visual” Streams Emerges Without Visual Experience. Cereb Cortex 2011; 22:1698-709. [DOI: 10.1093/cercor/bhr253] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
42
|
|
43
|
Functional rather than effector-specific organization of human posterior parietal cortex. J Neurosci 2011; 31:3066-76. [PMID: 21414927 DOI: 10.1523/jneurosci.4370-10.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurophysiological and neuroimaging studies have shown that the posterior parietal cortex (PPC) distinguishes between the planning of eye and hand movements. This distinction has usually been interpreted as evidence for a modular, effector-specific organization of this cerebral region. However, the eyes differ markedly from other body parts both in terms of their functional purpose and with regard to the spatial transformations required to plan goal-directed movements. PPC may therefore provide specialized subregions for eye movements, but distinguish less for other effectors. Using functional magnetic resonance imaging, we compared activity during memory-guided eye, hand, and foot movements in human participants. The results did not reveal any significant activation differences during the planning of hand and foot movements, except in the most anterior part of PPC [Brodmann's area (BA) 5], marginally extending into anterior BA 7/40. This region showed a lateral-to-medial gradient for hand versus foot movement planning. The limb-unspecific PPC regions were functionally connected with hand and foot motor regions. In contrast, a gradient-like organization was found for all of PPC for the planning of eye versus hand and foot movements. Although planning-related activity across the three effectors considerably overlapped, saccade planning activated occipitoparietal regions more than limb movements, whereas limb movements activated anterior regions of the superior parietal lobule more than saccades. We infer that PPC does not follow a strict effector-specific organization. Rather, the large-scale organization of this region might reflect the different computational constraints that need to be satisfied when planning eye and limb movements.
Collapse
|
44
|
Zhang S, Ide JS, Li CSR. Resting-state functional connectivity of the medial superior frontal cortex. ACTA ACUST UNITED AC 2011; 22:99-111. [PMID: 21572088 DOI: 10.1093/cercor/bhr088] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The medial superior frontal cortex (SFC), including the supplementary motor area (SMA) and presupplementary motor area (preSMA), is implicated in movement and cognitive control, among other functions central to decision making. Previous studies delineated the anatomical boundaries and functional connectivity of the SMA. However, it is unclear whether the preSMA, which responds to a variety of behavioral tasks, comprises functionally distinct areas. With 24 seed regions systematically demarcated throughout the anterior and posterior medial SFC, we examined here the functional divisions of the medial SFC on the basis of the "correlograms" of resting-state functional magnetic resonance imaging data of 225 adult individuals. In addition to replicating segregation of the SMA and posterior preSMA, the current results elucidated functional connectivities of anterior preSMA-the most anterior part of the medial SFC. In contrast to the caudal medial SFC, the anterior preSMA is connected with most of the prefrontal but not with somatomotor areas. Overall, the SMA is strongly connected to the thalamus and epithalamus, the posterior preSMA to putamen, pallidum, and subthalamic nucleus, and anterior preSMA to the caudate, with the caudate showing significant hemispheric asymmetry. These findings may provide a useful platform for future studies to investigate frontal cortical functions.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, CT 06519, USA.
| | | | | |
Collapse
|
45
|
|
46
|
Kupers R, Pietrini P, Ricciardi E, Ptito M. The nature of consciousness in the visually deprived brain. Front Psychol 2011; 2:19. [PMID: 21713178 PMCID: PMC3111253 DOI: 10.3389/fpsyg.2011.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 01/25/2011] [Indexed: 11/16/2022] Open
Abstract
Vision plays a central role in how we represent and interact with the world around us. The primacy of vision is structurally imbedded in cortical organization as about one-third of the cortical surface in primates is involved in visual processes. Consequently, the loss of vision, either at birth or later in life, affects brain organization and the way the world is perceived and acted upon. In this paper, we address a number of issues on the nature of consciousness in people deprived of vision. Do brains from sighted and blind individuals differ, and how? How does the brain of someone who has never had any visual perception form an image of the external world? What is the subjective correlate of activity in the visual cortex of a subject who has never seen in life? More in general, what can we learn about the functional development of the human brain in physiological conditions by studying blindness? We discuss findings from animal research as well from recent psychophysical and functional brain imaging studies in sighted and blind individuals that shed some new light on the answers to these questions.
Collapse
Affiliation(s)
- Ron Kupers
- Institute of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen Copenhagen, Denmark
| | | | | | | |
Collapse
|
47
|
Blind individuals show pseudoneglect in bisecting numerical intervals. Atten Percept Psychophys 2011; 73:1021-8. [DOI: 10.3758/s13414-011-0094-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Mahon BZ, Schwarzbach J, Caramazza A. The representation of tools in left parietal cortex is independent of visual experience. Psychol Sci 2010; 21:764-71. [PMID: 20483823 PMCID: PMC2908275 DOI: 10.1177/0956797610370754] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tool use depends on processes represented in distinct regions of left parietal cortex. We studied the role of visual experience in shaping neural specificity for tools in parietal cortex by using functional magnetic resonance imaging with sighted, late-blind, and congenitally blind participants. Using a region-of-interest approach in which tool-specific areas of parietal cortex were identified in sighted participants viewing pictures, we found that specificity in blood-oxygen-level-dependent responses for tools in the left inferior parietal lobule and the left anterior intraparietal sulcus is independent of visual experience. These findings indicate that motor- and somatosensory-based processes are sufficient to drive specificity for representations of tools in regions of parietal cortex. More generally, some aspects of the organization of the dorsal object-processing stream develop independently of the visual information that forms the major sensory input to that pathway in sighted individuals.
Collapse
|
49
|
Fiehler K, Reuschel J, Rösler F. Early non-visual experience influences proprioceptive-spatial discrimination acuity in adulthood. Neuropsychologia 2009; 47:897-906. [DOI: 10.1016/j.neuropsychologia.2008.12.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 12/14/2008] [Accepted: 12/19/2008] [Indexed: 11/16/2022]
|