1
|
Rysop AU, Williams KA, Schmitt LM, Meinzer M, Obleser J, Hartwigsen G. Aging modulates large-scale neural network interactions during speech comprehension. Neurobiol Aging 2025; 150:109-121. [PMID: 40088622 DOI: 10.1016/j.neurobiolaging.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/22/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Speech comprehension in noisy environments constitutes a critical challenge in everyday life and affects people of all ages. This challenging listening situation can be alleviated using semantic context to predict upcoming words (i.e., predictability gain)-a process associated with the domain-specific semantic network. When no such context can be used, speech comprehension in challenging listening conditions relies on cognitive control functions, underpinned by domain-general networks. Most previous studies focused on regional activity of pre-selected cortical regions or networks in healthy young listeners. Thus, it remains unclear how domain-specific and domain-general networks interact during speech comprehension in noise and how this may change across the lifespan. Here, we used correlational psychophysiological interaction (cPPI) to investigate functional network interactions during sentence comprehension under noisy conditions with varying predictability in healthy young and older listeners. Relative to young listeners, older adults showed increased task-related activity in several domain-general networks but reduced between-network connectivity. Across groups, higher predictability was associated with increased positive coupling between semantic and attention networks and increased negative coupling between semantic and control networks. These results highlight the complex interplay between the semantic network and several domain-general networks underlying the predictability gain. The observed differences in connectivity profiles with age inform the current debate on whether age-related changes in neural activity and functional connectivity reflect compensation or dedifferentiation.
Collapse
Affiliation(s)
- Anna Uta Rysop
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany; Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany.
| | - Kathleen Anne Williams
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany
| | - Lea-Maria Schmitt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Kapittelweg 29, Nijmegen 6525 EN, the Netherlands
| | - Marcus Meinzer
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, Lübeck 23562, Germany
| | - Gesa Hartwigsen
- Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, Leipzig 04103, Germany; Wilhelm Wundt Institute for Psychology, Leipzig University, Germany.
| |
Collapse
|
2
|
Hu Y, Qiu Y, Chen Y, Wang Y, Dai Y, Xu Q, Zhou Y. Neurovascular coupling alterations related to cognitive impairment in cerebral small vessel disease: A multiscale brain network perspective. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111311. [PMID: 40058519 DOI: 10.1016/j.pnpbp.2025.111311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/17/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Evidence suggests that neurovascular coupling (NVC) dysfunction in cerebral small vessel disease (CSVD) may precede typical clinical and imaging manifestations. Here, we explored the underlying brain alterations of multiscale networks in CSVD patients related to cognitive impairment based on the method of NVC. We investigated 124 CSVD patients, including 70 patients with mild cognitive impairment (MCI) and 54 patients with no cognitive impairment (NCI). Functional MRI and arterial spin labeling were employed to estimate the coupling of spontaneous neuronal activity and cerebral blood perfusion based on the regional homogeneity and cerebral blood flow at the whole-brain, modular, and regional levels. We showed that the NVC of the dorsal attention network (DOR), ventral attention network (VEN) and default mode network (DMN) in the MCI were significantly lower than those in the NCI. The NVC of the DOR, VEN, and DMN in the NCI group exhibited correlations with the executive function. Furthermore, mediation effect of CSVD lesion load was observed for the association between NVC alterations and cognitive function. The abnormal NVC features achieved effective classification performance for MCI and NCI. These findings underscore the significance of specific modular and regional NVC dysfunction in the cognitive outcomes of CSVD. This study revealed the potential of NVC as a focal point for future research on cognitive impairment in CSVD, particularly from the perspective of multiscale brain network analysis.
Collapse
Affiliation(s)
- Ying Hu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yage Qiu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuewei Chen
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuanzheng Wang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yongming Dai
- School of Biomedical Engineering, & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, PR China
| | - Qun Xu
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
3
|
Zhao X, Yin R, Chen C, Markett S, Wang X, Xue G, Dong Q, Chen C. Novel Genes Associated With Working Memory Are Identified by Combining Connectome, Transcriptome, and Genome. Hum Brain Mapp 2025; 46:e70114. [PMID: 39777759 PMCID: PMC11705410 DOI: 10.1002/hbm.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/14/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Working memory (WM) plays a crucial role in human cognition. Previous candidate and genome-wide association studies have reported many genetic variations associated with WM. However, little research has examined genetic basis of WM by using transcriptome, even though it reflects gene function more directly than does the genome. Here we propose a new approach to exploring the genetic mechanisms of WM by integrating connectome, transcriptome, and genome data in a high-quality dataset comprising 481 Chinese healthy adults. First, relevance vector regression was used to define WM-related brain regions. Second, genes differentially expressed within these regions were identified using the Allen Human Brain Atlas (AHBA) dataset. Finally, two independent datasets were used to validate these genes' contributions to WM. With this method, we identified 24 novel genes and 20 of them were confirmed in the large-scale datasets of ABCD and UK Biobank. These novel genes were enriched in the cellular component of collagen-containing extracellular matrix and the CCL18 signaling pathway. Our method offers an effective approach to integrating multimodal gene discovery and demonstrates the superiority of expression data. This new method and the newly identified genes deserve more attention in the future.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ruochen Yin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chuansheng Chen
- Department of Psychological ScienceUniversity of CaliforniaCaliforniaUSA
| | | | - Xinrui Wang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gui Xue
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Chunhui Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
4
|
Wang J, Xue T, Song D, Dong F, Cheng Y, Wang J, Ma Y, Zou M, Ding S, Tao Z, Xin W, Yu D, Yuan K. Investigation of white matter functional networks in young smokers. Neuroimage 2024; 303:120917. [PMID: 39510395 DOI: 10.1016/j.neuroimage.2024.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
AIMS This study investigated the changes in the organizational and intrinsical activities of the white matter functional networks (WMFNs) in young smokers using resting-state functional magnetic resonance imaging. METHODS A data-driven approach was used to characterize the WMFNs of 30 young smokers and 30 non-smokers. We applied K-means clustering to the neuroimaging data to delineate the WMFNs. Functional neural activities of the WMFNs were compared between the two groups. Correlation analyses were also conducted for the WMFNs neural activities of and clinical indicators of smoking. RESULTS Eight WMFNs were identified in both groups. Compared to non-smokers, young smokers demonstrated a different dorsal attention network and lack of a frontostriatal network. The neural activities in the frontal network, deep frontoparietal network, and visual network were reduced in young smokers. Further correlation analyses showed that the decreased neural activity in the deep frontal network and deep frontoparietal network were significantly negatively correlated with the Fagerström Test for Nicotine Dependence. CONCLUSION Young smokers exhibited differences in the organizational structure and neural activity intensities of the WMFNs. The present findings may indicate the importance of WMFNs in young smokers, which can help in obtaining a comprehensive understanding of the neural mechanisms underlying smoking addiction.
Collapse
Affiliation(s)
- Junxuan Wang
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Ting Xue
- School of Science College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China.
| | - Daining Song
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Fang Dong
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Yongxin Cheng
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Juan Wang
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Yuxin Ma
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Mingze Zou
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Shuailin Ding
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Zhanlong Tao
- School of Science College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Wuyuan Xin
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China
| | - Dahua Yu
- School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China.
| | - Kai Yuan
- School of Digital and Intelligent Industry, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China; School of Automation and Electrical Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia 014010, China; Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China; Hainan Free Trade Port Health Medical Research Institute, Baoting, Hainan 572300, China.
| |
Collapse
|
5
|
Shi Y, Yang L, Lu J, Yan T, Ding Y, Wang B. The dynamic reconfiguration of the functional network during episodic memory task predicts the memory performance. Sci Rep 2024; 14:20527. [PMID: 39227732 PMCID: PMC11372097 DOI: 10.1038/s41598-024-71295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Episodic memory is essential for forming and retaining personal experiences, representing a fundamental aspect of human cognition. Traditional studies of episodic memory have typically used static analysis methods, viewing the brain as an unchanging entity and overlooking its dynamic properties over time. In this study, we utilized dynamic functional connectivity analysis on fMRI data from healthy adults performing an episodic memory task. We quantified integration and recruitment metrics and examined their correlation with memory performance using Pearson correlation. During encoding, integration across the entire brain, especially within the frontoparietal subnetwork, was significantly correlated with memory performance. During retrieval, recruitment becomes significantly associated with memory performance in visual subnetwork, somatomotor subnetwork, and ventral attention subnetwork. At the nodal level, a significant negative correlation was observed between memory scores and integration of the anterior cingulate gyrus, precentral gyrus, and inferior frontal gyrus within the frontoparietal network during encoding task. During retrieval task, a significant negative correlation was found between memory scores and recruitment in the left progranular cortex and right transverse gyral ventral, whereas positive correlations were seen in the right posterior inferior temporal, left middle temporal, right frontal operculum, and left operculum nodes. Moreover, the dynamic reconfiguration of the functional network was predictive of predict memory performance, as demonstrated by a significant correlation between actual and predicted memory scores. These findings advance our understanding network mechanisms underlying memory processes and developing intervention approaches for memory-related disorders as they shed light on critical factors involved in cognitive processes and provide a deeper understanding of the underlying mechanisms driving cognitive function.
Collapse
Affiliation(s)
- Yuanbing Shi
- Department of Police Command and Tactics, Shanxi Police College, Taiyuan, China
| | - Lan Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| | - Jiayu Lu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China.
| | - Ting Yan
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, Taiyuan, China
| | - Yongkang Ding
- Department of Police Command and Tactics, Shanxi Police College, Taiyuan, China
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
6
|
Poskanzer C, Aly M. Switching between External and Internal Attention in Hippocampal Networks. J Neurosci 2023; 43:6538-6552. [PMID: 37607818 PMCID: PMC10513067 DOI: 10.1523/jneurosci.0029-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Everyday experience requires processing external signals from the world around us and internal information retrieved from memory. To do both, the brain must fluctuate between states that are optimized for external versus internal attention. Here, we focus on the hippocampus as a region that may serve at the interface between these forms of attention and ask how it switches between prioritizing sensory signals from the external world versus internal signals related to memories and thoughts. Pharmacological, computational, and animal studies have identified input from the cholinergic basal forebrain as important for biasing the hippocampus toward processing external information, whereas complementary research suggests the dorsal attention network (DAN) may aid in allocating attentional resources toward accessing internal information. We therefore tested the hypothesis that the basal forebrain and DAN drive the hippocampus toward external and internal attention, respectively. We used data from 29 human participants (17 female) who completed two attention tasks during fMRI. One task (memory-guided) required proportionally more internal attention, and proportionally less external attention, than the other (explicitly instructed). We discovered that background functional connectivity between the basal forebrain and hippocampus was stronger during the explicitly instructed versus memory-guided task. In contrast, DAN-hippocampus background connectivity was stronger during the memory-guided versus explicitly instructed task. Finally, the strength of DAN-hippocampus background connectivity was correlated with performance on the memory-guided but not explicitly instructed task. Together, these results provide evidence that the basal forebrain and DAN may modulate the hippocampus to switch between external and internal attention.SIGNIFICANCE STATEMENT How does the brain balance the need to pay attention to internal thoughts and external sensations? We focused on the human hippocampus, a region that may serve at the interface between internal and external attention, and asked how its functional connectivity varies based on attentional states. The hippocampus was more strongly coupled with the cholinergic basal forebrain when attentional states were guided by the external world rather than retrieved memories. This pattern flipped for functional connectivity between the hippocampus and dorsal attention network, which was higher for attention tasks that were guided by memory rather than external cues. Together, these findings show that distinct networks in the brain may modulate the hippocampus to switch between external and internal attention.
Collapse
Affiliation(s)
- Craig Poskanzer
- Department of Psychology, Columbia University, New York, New York 10027
| | - Mariam Aly
- Department of Psychology, Columbia University, New York, New York 10027
| |
Collapse
|
7
|
Coccaro A, Di Bono MG, Maffei A, Orefice C, Lievore R, Mammarella I, Liotti M. Resting State Dynamic Reconfiguration of Spatial Attention Cortical Networks and Visuospatial Functioning in Non-Verbal Learning Disability (NVLD): A HD-EEG Investigation. Brain Sci 2023; 13:brainsci13050731. [PMID: 37239203 DOI: 10.3390/brainsci13050731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Nonverbal learning disability (NVLD) is a neurodevelopmental disorder characterized by deficits in visuospatial processing but spared verbal competencies. Neurocognitive markers may provide confirmatory evidence for characterizing NVLD as a separate neurodevelopmental disorder. Visuospatial performance and high-density electroencephalography (EEG) were measured in 16 NLVD and in 16 typically developing (TD) children. Cortical source modeling was applied to assess resting-state functional connectivity (rs-FC) in spatial attention networks (dorsal (DAN) and ventral attention networks (VAN)) implicated in visuospatial abilities. A machine-learning approach was applied to investigate whether group membership could be predicted from rs-FC maps and if these connectivity patterns were predictive of visuospatial performance. Graph theoretical measures were applied to nodes inside each network. EEG rs-FC maps in the gamma and beta band differentiated children with and without NVLD, with increased but more diffuse and less efficient functional connections bilaterally in the NVLD group. While rs-FC of the left DAN in the gamma range predicted visuospatial scores for TD children, in the NVLD group rs-FC of the right DAN in the delta range predicted impaired visuospatial performance, confirming that NVLD is a disorder with a predominant dysfunction in right hemisphere connectivity patterns.
Collapse
Affiliation(s)
- Ambra Coccaro
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
| | - Maria Grazia Di Bono
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Antonio Maffei
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
| | - Camilla Orefice
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Rachele Lievore
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Irene Mammarella
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
| | - Mario Liotti
- Department of Developmental and Social Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, Via Orus 2/B, 35129 Padova, Italy
- Department of Psychology, Simon Fraser University, Burnaby, BC V5A1S6, Canada
| |
Collapse
|
8
|
Malinovitch T, Albouy P, Zatorre RJ, Ahissar M. Training allows switching from limited-capacity manipulations to large-capacity perceptual processing. Cereb Cortex 2023; 33:1826-1842. [PMID: 35511687 PMCID: PMC9977386 DOI: 10.1093/cercor/bhac175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/14/2022] Open
Abstract
In contrast to perceptual tasks, which enable concurrent processing of many stimuli, working memory (WM) tasks have a very small capacity, limiting cognitive skills. Training on WM tasks often yields substantial improvement, suggesting that training might increase the general WM capacity. To understand the underlying processes, we trained a test group with a newly designed tone manipulation WM task and a control group with a challenging perceptual task of pitch pattern discrimination. Functional magnetic resonance imaging (fMRI) scans confirmed that pretraining, manipulation was associated with a dorsal fronto-parietal WM network, while pitch comparison was associated with activation of ventral auditory regions. Training induced improvement in each group, which was limited to the trained task. Analyzing the behavior of the group trained with tone manipulation revealed that participants learned to replace active manipulation with a perceptual verification of the position of a single salient tone in the sequence presented as a tentative reply. Posttraining fMRI scans revealed modifications in ventral activation of both groups. Successful WMtrained participants learned to utilize auditory regions for the trained task. These observations suggest that the huge task-specific enhancement of WM capacity stems from a task-specific switch to perceptual routines, implemented in perceptual regions.
Collapse
Affiliation(s)
- Tamar Malinovitch
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
| | - Philippe Albouy
- CERVO Brain Research Centre, Laval University, 2301 Av. D'Estimauville, Québec, G1V 0A6, Canada
| | - Robert J Zatorre
- Montreal Neurological Institute, McGill University, 3801, rue University Montreal, Québec, H3A 2B4, Canada
| | - Merav Ahissar
- The Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, The Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
9
|
Li Q, Gong D, Tang H, Tian J. The neural coding of tonal working memory load: An functional magnetic resonance imaging study. Front Neurosci 2022; 16:979787. [PMID: 36330345 PMCID: PMC9623178 DOI: 10.3389/fnins.2022.979787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Tonal working memory load refers to the number of pitches held in working memory. It has been found that different verbal working memory loads have different neural coding (local neural activity pattern). However, whether there exists a comparable phenomenon for tonal working memory load remains unclear. In this study, we used a delayed match-to-sample paradigm to evoke tonal working memory. Neural coding of different tonal working memory loads was studied with a surface space and convolution neural network (CNN)-based multivariate pattern analysis (SC-MVPA) method. We found that first, neural coding of tonal working memory was significantly different from that of the control condition in the bilateral superior temporal gyrus (STG), supplement motor area (SMA), and precentral gyrus (PCG). Second, neural coding of nonadjacent tonal working memory loads was distinguishable in the bilateral STG and PCG. Third, neural coding is gradually enhanced as the memory load increases. Finally, neural coding of tonal working memory was encoded in the bilateral STG in the encoding phase and shored in the bilateral PCG and SMA in the maintenance phase.
Collapse
Affiliation(s)
- Qiang Li
- College of Education Science, Guizhou Education University, Guiyang, China
- *Correspondence: Qiang Li,
| | | | - Huiyi Tang
- College of Education Science, Guizhou Education University, Guiyang, China
| | - Jing Tian
- College of Education Science, Guizhou Education University, Guiyang, China
| |
Collapse
|
10
|
Sepe-Forrest L, Kim DJ, Quinn PD, Bolbecker AR, Wisner KM, Hetrick WP, O'Donnell BF. Evidence of familial confounding of the association between cannabis use and cerebellar-cortical functional connectivity using a twin study. Neuroimage Clin 2022; 36:103237. [PMID: 36451348 PMCID: PMC9668648 DOI: 10.1016/j.nicl.2022.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/11/2022]
Abstract
Cerebellar-cortical resting-state functional connectivity (rsFC) has been reported to be altered in cannabis users. However, this association may be due to genetic and environmental confounding rather than a causal relationship between cannabis use and changes in rsFC. In this co-twin control study, linear mixed models were used to assess relationships between the number of lifetime cannabis uses (NLCU) and age of cannabis onset (ACO) with cerebellar-cortical rsFC. The rsFC with seven functional networks was evaluated in 147 monozygotic and 82 dizygotic twin pairs. Importantly, the use of genetically informed models in this twin sample facilitated examining whether shared genetic or environmental effects underlie crude associations between cannabis measures and connectivity. Individual-level phenotypic analyses (i.e., accounting for twin-pair non-independence) showed that individuals in the full sample with earlier ACO and higher NLCU had lower cerebellar rsFC within the VA, DA, and FP networks. Yet, there were no significant differences in cerebellar-cortical rsFC between monozygotic twins who were discordant for cannabis measures. These findings suggest shared genetic or environmental confounds contribute to associations between cannabis use and altered cerebellar-cortical rsFC, rather than unique causal impacts of cannabis use on cerebellar-cortical rsFC.
Collapse
Affiliation(s)
- Linnea Sepe-Forrest
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States,Program in Neuroscience, Indiana University, Bloomington, IN, United States,Corresponding author-at: Indiana University Bloomington, Department of Psychology, Room A208A, United States.
| | - Dae-Jin Kim
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Patrick D. Quinn
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States,Program in Neuroscience, Indiana University, Bloomington, IN, United States,Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Amanda R. Bolbecker
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Krista M. Wisner
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States,Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - William P. Hetrick
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States,Program in Neuroscience, Indiana University, Bloomington, IN, United States,Department of Psychiatry, Indiana University, Indianapolis, IN, United States
| | - Brian F. O'Donnell
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States,Program in Neuroscience, Indiana University, Bloomington, IN, United States,Department of Psychiatry, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
11
|
Onofrj V, Chiarelli AM, Wise R, Colosimo C, Caulo M. Interaction of the salience network, ventral attention network, dorsal attention network and default mode network in neonates and early development of the bottom-up attention system. Brain Struct Funct 2022; 227:1843-1856. [DOI: 10.1007/s00429-022-02477-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
|
12
|
Brockhoff L, Schindler S, Bruchmann M, Straube T. Effects of perceptual and working memory load on brain responses to task-irrelevant stimuli: Review and implications for future research. Neurosci Biobehav Rev 2022; 135:104580. [DOI: 10.1016/j.neubiorev.2022.104580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/27/2022]
|
13
|
Ma L, Yuan T, Li W, Guo L, Zhu D, Wang Z, Liu Z, Xue K, Wang Y, Liu J, Man W, Ye Z, Liu F, Wang J. Dynamic Functional Connectivity Alterations and Their Associated Gene Expression Pattern in Autism Spectrum Disorders. Front Neurosci 2022; 15:794151. [PMID: 35082596 PMCID: PMC8784878 DOI: 10.3389/fnins.2021.794151] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that are highly heritable and are associated with impaired dynamic functional connectivity (DFC). However, the molecular mechanisms behind DFC alterations remain largely unknown. Eighty-eight patients with ASDs and 87 demographically matched typical controls (TCs) from the Autism Brain Imaging Data Exchange II database were included in this study. A seed-based sliding window approach was then performed to investigate the DFC changes in each of the 29 seeds in 10 classic resting-state functional networks and the whole brain. Subsequently, the relationships between DFC alterations in patients with ASDs and their symptom severity were assessed. Finally, transcription-neuroimaging association analyses were conducted to explore the molecular mechanisms of DFC disruptions in patients with ASDs. Compared with TCs, patients with ASDs showed significantly increased DFC between the right dorsolateral prefrontal cortex (DLPFC) and left fusiform/lingual gyrus, between the DLPFC and the superior temporal gyrus, between the right frontal eye field (FEF) and left middle frontal gyrus, between the FEF and the right angular gyrus, and between the left intraparietal sulcus and the right middle temporal gyrus. Moreover, significant relationships between DFC alterations and symptom severity were observed. Furthermore, the genes associated with DFC changes in ASDs were identified by performing gene-wise across-sample spatial correlation analysis between gene expression extracted from six donors’ brain of the Allen Human Brain Atlas and case-control DFC difference. In enrichment analysis, these genes were enriched for processes associated with synaptic signaling and voltage-gated ion channels and calcium pathways; also, these genes were highly expressed in autistic disorder, chronic alcoholic intoxication and several disorders related to depression. These results not only demonstrated higher DFC in patients with ASDs but also provided novel insight into the molecular mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Lin Ma
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Tengfei Yuan
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lining Guo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Dan Zhu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Department of Radiology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, China
| | - Zirui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixuan Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Kaizhong Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaoyi Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Weiqi Man
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Zhaoxiang Ye,
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Feng Liu,
| | - Junping Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Junping Wang,
| |
Collapse
|
14
|
Attout L, Leroy N, Majerus S. The Neural Representation of Ordinal Information: Domain-Specific or Domain-General? Cereb Cortex 2021; 32:1170-1183. [PMID: 34379736 DOI: 10.1093/cercor/bhab279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Ordinal processing allows for the representation of the sequential relations between stimuli and is a fundamental aspect of different cognitive domains such as verbal working memory (WM), language and numerical cognition. Several studies suggest common ordinal coding mechanisms across these different domains but direct between-domain comparisons of ordinal coding are rare and have led to contradictory evidence. This fMRI study examined the commonality of ordinal representations across the WM, the number, and the letter domains by using a multivoxel pattern analysis approach and by focusing on triplet stimuli associated with robust ordinal distance effects. Neural patterns in fronto-parietal cortices distinguished ordinal distance in all domains. Critically, between-task predictions of ordinal distance in fronto-parietal cortices were robust between serial order WM, alphabetical order judgment but not when involving the numerical order judgment tasks. Moreover, frontal ROIs further supported between-task prediction of distance for the luminance judgment control task, the serial order WM, and the alphabetical tasks. These results suggest that common neural substrates characterize processing of ordinal information in WM and alphabetical but not numerical domains. This commonality, particularly in frontal cortices, may however reflect attentional control processes involved in judging ordinal distances rather than the intervention of domain-general ordinal codes.
Collapse
Affiliation(s)
- Lucie Attout
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000 Liège, Belgium.,Fund for Scientific Research FNRS, 1000, Brussels, Belgium
| | - Nathan Leroy
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000 Liège, Belgium.,Fund for Scientific Research FNRS, 1000, Brussels, Belgium
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, 4000 Liège, Belgium.,Fund for Scientific Research FNRS, 1000, Brussels, Belgium
| |
Collapse
|
15
|
Su C, Zhou H, Wang C, Geng F, Hu Y. Individualized video recommendation modulates functional connectivity between large scale networks. Hum Brain Mapp 2021; 42:5288-5299. [PMID: 34363282 PMCID: PMC8519862 DOI: 10.1002/hbm.25616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 01/18/2023] Open
Abstract
With the emergence of AI‐powered recommender systems and their extensive use in the video streaming service, questions and concerns also arise. Why can recommended video content continuously capture users' attention? What is the impact of long‐term exposure to personalized video content on one's behaviors and brain functions? To address these questions, we designed an fMRI experiment presenting participants with personally recommended videos and generally recommended ones. To examine how large‐scale networks were modulated by personalized video content, graph theory analysis was applied to investigate the interaction between seven networks, including the ventral and dorsal attention networks (VAN, DAN), frontal–parietal network (FPN), salience network (SN), and three subnetworks of default mode network (dorsal medial prefrontal (dMPFC), Core, and medial temporal lobe (MTL)). Our results showed that viewing nonpersonalized video content mainly enhanced the connectivity in the DAN‐FPN‐Core pathway, whereas viewing personalized ones increased not only the connectivity in this pathway but also the DAN‐VAN‐dMPFC pathway. In addition, both personalized and nonpersonalized short videos decreased the couplings between SN and VAN as well as between two DMN subsystems, Core and MTL. Collectively, these findings uncovered distinct patterns of network interactions in response to short videos and provided insights into potential neural mechanisms by which human behaviors are biased by personally recommended content.
Collapse
Affiliation(s)
- Conghui Su
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Chunjie Wang
- Institute of Brain Science and Department of Psychology, School of Education, Hangzhou Normal University, Hangzhou, China
| | - Fengji Geng
- Department of Curriculum and Learning Sciences, Zhejiang University, Hangzhou, China
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Transcranial Direct Current Stimulation (tDCS) over the Intraparietal Sulcus Does Not Influence Working Memory Performance. Psychol Belg 2021; 61:200-211. [PMID: 34277028 PMCID: PMC8269793 DOI: 10.5334/pb.534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mixed results of the impact of transcranial direct current stimulation (tDCS) on working memory have been reported. Contrarily to previous studies who focused mainly on stimulating the dorsolateral prefrontal cortex, we modulated the left intraparietal sulcus (IPS) area which is considered to support attentional control aspects of working memory. Using a within-participant experimental design, participants completed three different conditions: anodal stimulation of the IPS, cathodal stimulation of the IPS, and sham stimulation of the IPS. Both visual and verbal working memory tasks were administered. In the visual task, participants had to memorize a random set of colored figures. In the verbal task, participants had to memorize a string of letters. Working memory load was manipulated in both tasks (six figures/letters vs. two figures/letters). No significant differences in accuracy or reaction time between the anodal, cathodal and sham conditions were found. Bayesian analysis supported evidence for an absence of effect. The results of the present study add to the growing body of contradictory evidence regarding the modulatory effects of single session tDCS on working memory performance.
Collapse
|
17
|
Gotcha: Working memory prioritization from automatic attentional biases. Psychon Bull Rev 2021; 29:415-429. [PMID: 34131892 DOI: 10.3758/s13423-021-01958-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2021] [Indexed: 11/08/2022]
Abstract
Attention is an important resource for prioritizing information in working memory (WM), and it can be deployed both strategically and automatically. Most research investigating the relationship between WM and attention has focused on strategic efforts to deploy attentional resources toward remembering relevant information. However, such voluntary attentional control represents a mere subset of the attentional processes that select information to be encoded and maintained in WM (Theeuwes, Journal of Cognition, 1[1]: 29, 1-15, 2018). Here, we discuss three ways in which information becomes prioritized automatically in WM-physical salience, statistical learning, and reward learning. This review integrates findings from perception and working memory studies to propose a more sophisticated understanding of the relationship between attention and working memory.
Collapse
|
18
|
Kundu S, Ming J, Stevens J. Developing Multimodal Dynamic Functional Connectivity as a Neuroimaging Biomarker. Brain Connect 2021; 11:529-542. [PMID: 33544014 DOI: 10.1089/brain.2020.0900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Background: In spite of increasing evidence highlighting the role of dynamic functional connectivity (FC) in characterizing mental disorders, there is a lack of (a) reliable statistical methods to compute dynamic connectivity and (b) rigorous dynamic FC-based approaches for predicting mental health outcomes in heterogeneous disorders such as post-traumatic stress disorder (PTSD). Methods: In one of the first such efforts, we develop a reliable and accurate approach for estimating dynamic FC guided by brain structural connectivity (SC) computed using diffusion tensor imaging data and investigate the potential of the proposed multimodal dynamic FC to predict continuous mental health outcomes. We develop concrete measures of temporal network variability that are predictive of PTSD resilience, and identify regions whose temporal connectivity fluctuations are significantly related to resilience. Results: Our results illustrate that the multimodal approach is more sensitive to connectivity change points, it can clearly detect localized brain regions with the dynamic network features such as small-worldedness, clustering coefficients, and efficiency associated with resilience, and that it has superior predictive performance compared with existing static and dynamic network models when modeling PTSD resilience. Discussion: While the majority of resting-state network modeling in psychiatry has focused on static FC, our novel multimodal dynamic network analyses that are sensitive to network fluctuations allowed us to provide a model of neural correlates of resilience with high accuracy compared with existing static connectivity approaches or those that do not use brain SC information, and provided us with an expanded understanding of the neurobiological causes for PTSD. Impact statement The methods developed in this article provide reliable and accurate dynamic functional connectivity (FC) approaches by fusing multimodal imaging data that are highly predictive of continuous clinical phenotypes in heterogeneous mental disorders. Currently, there is very little theoretical work to explain how network dynamics might contribute to individual differences in behavior or psychiatric symptoms. Our analysis conclusively discovers localized brain resting-state networks, regions, and connections where variations in dynamic FC (that is estimated after incorporating brain structural connectivity information) are associated with post-traumatic stress disorder resilience, which could potentially provide valuable tools for the development of neural circuit modeling in psychiatry in the future.
Collapse
Affiliation(s)
- Suprateek Kundu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Jin Ming
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, Georgia, USA
| | - Jennifer Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
19
|
Dhamala E, Jamison KW, Jaywant A, Dennis S, Kuceyeski A. Distinct functional and structural connections predict crystallised and fluid cognition in healthy adults. Hum Brain Mapp 2021; 42:3102-3118. [PMID: 33830577 PMCID: PMC8193532 DOI: 10.1002/hbm.25420] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
White matter pathways between neurons facilitate neuronal coactivation patterns in the brain. Insight into how these structural and functional connections underlie complex cognitive functions provides an important foundation with which to delineate disease‐related changes in cognitive functioning. Here, we integrate neuroimaging, connectomics, and machine learning approaches to explore how functional and structural brain connectivity relate to cognition. Specifically, we evaluate the extent to which functional and structural connectivity predict individual crystallised and fluid cognitive abilities in 415 unrelated healthy young adults (202 females) from the Human Connectome Project. We report three main findings. First, we demonstrate functional connectivity is more predictive of cognitive scores than structural connectivity, and, furthermore, integrating the two modalities does not increase explained variance. Second, we show the quality of cognitive prediction from connectome measures is influenced by the choice of grey matter parcellation, and, possibly, how that parcellation is derived. Third, we find that distinct functional and structural connections predict crystallised and fluid abilities. Taken together, our results suggest that functional and structural connectivity have unique relationships with crystallised and fluid cognition and, furthermore, studying both modalities provides a more comprehensive insight into the neural correlates of cognition.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Keith W Jamison
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA.,Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA.,NewYork-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Sarah Dennis
- Sarah Lawrence College, Bronxville, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA.,Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
20
|
Geva S, Truneh T, Seghier ML, Hope TMH, Leff AP, Crinion JT, Gajardo-Vidal A, Lorca-Puls DL, Green DW, PLORAS Team, Price CJ. Lesions that do or do not impair digit span: a study of 816 stroke survivors. Brain Commun 2021; 3:fcab031. [PMID: 33928246 PMCID: PMC8066865 DOI: 10.1093/braincomms/fcab031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 01/25/2021] [Indexed: 12/04/2022] Open
Abstract
Prior studies have reported inconsistency in the lesion sites associated with verbal short-term memory impairments. Here we asked: How many different lesion sites can account for selective impairments in verbal short-term memory that persist over time, and how consistently do these lesion sites impair verbal short-term memory? We assessed verbal short-term memory impairments using a forward digit span task from the Comprehensive Aphasia Test. First, we identified the incidence of digit span impairments in a sample of 816 stroke survivors (541 males/275 females; age at stroke onset 56 ± 13 years; time post-stroke 4.4 ± 5.2 years). Second, we studied the lesion sites in a subgroup of these patients (n = 39) with left hemisphere damage and selective digit span impairment-defined as impaired digit span with unimpaired spoken picture naming and spoken word comprehension (tests of speech production and speech perception, respectively). Third, we examined how often these lesion sites were observed in patients who either had no digit span impairments or digit span impairments that co-occurred with difficulties in speech perception and/or production tasks. Digit span impairments were observed in 222/816 patients. Almost all (199/222 = 90%) had left hemisphere damage to five small regions in basal ganglia and/or temporo-parietal areas. Even complete damage to one or more of these five regions was not consistently associated with persistent digit span impairment. However, when the same regions were spared, only 5% (23/455) presented with digit span impairments. These data suggest that verbal short-term memory impairments are most consistently associated with damage to left temporo-parietal and basal ganglia structures. Sparing of these regions very rarely results in persistently poor verbal short-term memory. These findings have clinical implications for predicting recovery of verbal short-term memory after stroke.
Collapse
Affiliation(s)
- Sharon Geva
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Teodros Truneh
- University College London Medical School, London WC1E 6BT, UK
| | - Mohamed L Seghier
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Cognitive Neuroimaging Unit, Emirates College for Advanced Education, Abu Dhabi, UAE
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Alex P Leff
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London WC1N 3AR, UK
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
- Department of Speech, Language and Hearing Sciences, Faculty of Health Sciences, Universidad del Desarrollo, Concepcion 4070001, Chile
| | - Diego L Lorca-Puls
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - David W Green
- Department of Experimental Psychology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
| | | | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
21
|
Washington SD, Rayhan RU, Garner R, Provenzano D, Zajur K, Addiego FM, VanMeter JW, Baraniuk JN. Exercise alters brain activation in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Brain Commun 2020; 2:fcaa070. [PMID: 32954325 PMCID: PMC7425336 DOI: 10.1093/braincomms/fcaa070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Gulf War Illness affects 25-30% of American veterans deployed to the 1990-91 Persian Gulf War and is characterized by cognitive post-exertional malaise following physical effort. Gulf War Illness remains controversial since cognitive post-exertional malaise is also present in the more common Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. An objective dissociation between neural substrates for cognitive post-exertional malaise in Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome would represent a biological basis for diagnostically distinguishing these two illnesses. Here, we used functional magnetic resonance imaging to measure neural activity in healthy controls and patients with Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome during an N-back working memory task both before and after exercise. Whole brain activation during working memory (2-Back > 0-Back) was equal between groups prior to exercise. Exercise had no effect on neural activity in healthy controls yet caused deactivation within dorsal midbrain and cerebellar vermis in Gulf War Illness relative to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients. Further, exercise caused increased activation among Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients within the dorsal midbrain, left operculo-insular cortex (Rolandic operculum) and right middle insula. These regions-of-interest underlie threat assessment, pain, interoception, negative emotion and vigilant attention. As they only emerge post-exercise, these regional differences likely represent neural substrates of cognitive post-exertional malaise useful for developing distinct diagnostic criteria for Gulf War Illness and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome.
Collapse
Affiliation(s)
- Stuart D Washington
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Rakib U Rayhan
- Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC 20059, USA
| | - Richard Garner
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Destie Provenzano
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Kristina Zajur
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - Florencia Martinez Addiego
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - John W VanMeter
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA.,Department of Physiology and Biophysics, Howard University College of Medicine, Adams Building Rm 2420, 520 W Street NW, Washington, DC 20059, USA.,Center for Functional and Molecular Imaging, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| | - James N Baraniuk
- Department of Medicine, Georgetown University Medical Center, 3900 Reservoir Rd., NW Washington, DC 20057, USA
| |
Collapse
|
22
|
Kowialiewski B, Van Calster L, Attout L, Phillips C, Majerus S. Neural Patterns in Linguistic Cortices Discriminate the Content of Verbal Working Memory. Cereb Cortex 2019; 30:2997-3014. [PMID: 31813984 DOI: 10.1093/cercor/bhz290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/16/2019] [Accepted: 06/17/2019] [Indexed: 01/11/2023] Open
Abstract
An influential theoretical account of working memory (WM) considers that WM is based on direct activation of long-term memory knowledge. While there is empirical support for this position in the visual WM domain, direct evidence is scarce in the verbal WM domain. This question is critical for models of verbal WM, as the question of whether short-term maintenance of verbal information relies on direct activation within the long-term linguistic knowledge base or not is still debated. In this study, we examined the extent to which short-term maintenance of lexico-semantic knowledge relies on neural activation patterns in linguistic cortices, and this by using a fast encoding running span task for word and nonword stimuli minimizing strategic encoding mechanisms. Multivariate analyses showed specific neural patterns for the encoding and maintenance of word versus nonword stimuli. These patterns were not detectable anymore when participants were instructed to stop maintaining the memoranda. The patterns involved specific regions within the dorsal and ventral pathways, which are considered to support phonological and semantic processing to various degrees. This study provides novel evidence for a role of linguistic cortices in the representation of long-term memory linguistic knowledge during WM processing.
Collapse
Affiliation(s)
- Benjamin Kowialiewski
- University of Liège, Liège, Belgium.,Fund for Scientific Research-F.R.S.-FNRS, Brussels, Belgium
| | - Laurens Van Calster
- University of Liège, Liège, Belgium.,University of Geneva, Geneva, Switzerland
| | | | - Christophe Phillips
- University of Liège, Liège, Belgium.,Fund for Scientific Research-F.R.S.-FNRS, Brussels, Belgium
| | - Steve Majerus
- University of Liège, Liège, Belgium.,Fund for Scientific Research-F.R.S.-FNRS, Brussels, Belgium
| |
Collapse
|
23
|
Lowe AJ, Paquola C, Vos de Wael R, Girn M, Lariviere S, Tavakol S, Caldairou B, Royer J, Schrader DV, Bernasconi A, Bernasconi N, Spreng RN, Bernhardt BC. Targeting age-related differences in brain and cognition with multimodal imaging and connectome topography profiling. Hum Brain Mapp 2019; 40:5213-5230. [PMID: 31444896 PMCID: PMC6864903 DOI: 10.1002/hbm.24767] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by accumulation of structural and metabolic changes in the brain. Recent studies suggest transmodal brain networks are especially sensitive to aging, which, we hypothesize, may be due to their apical position in the cortical hierarchy. Studying an open‐access healthy cohort (n = 102, age range = 30–89 years) with MRI and Aβ PET data, we estimated age‐related cortical thinning, hippocampal atrophy and Aβ deposition. In addition to carrying out surface‐based morphological and metabolic mapping experiments, we stratified effects along neocortical and hippocampal resting‐state functional connectome gradients derived from independent datasets. The cortical gradient depicts an axis of functional differentiation from sensory‐motor regions to transmodal regions, whereas the hippocampal gradient recapitulates its long‐axis. While age‐related thinning and increased Aβ deposition occurred across the entire cortical topography, increased Aβ deposition was especially pronounced toward higher‐order transmodal regions. Age‐related atrophy was greater toward the posterior end of the hippocampal long‐axis. No significant effect of age on Aβ deposition in the hippocampus was observed. Imaging markers correlated with behavioral measures of fluid intelligence and episodic memory in a topography‐specific manner, confirmed using both univariate as well as multivariate analyses. Our results strengthen existing evidence of structural and metabolic change in the aging brain and support the use of connectivity gradients as a compact framework to analyze and conceptualize brain‐based biomarkers of aging.
Collapse
Affiliation(s)
- Alexander J Lowe
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Casey Paquola
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos de Wael
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Manesh Girn
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Sara Lariviere
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Dewi V Schrader
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Psychiatry and Psychology, McGill University, Montreal, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Alzheimer's disease patients activate attention networks in a short-term memory task. NEUROIMAGE-CLINICAL 2019; 23:101892. [PMID: 31203170 PMCID: PMC6580312 DOI: 10.1016/j.nicl.2019.101892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022]
Abstract
Network functioning during cognitive tasks is of major interest in Alzheimer's disease (AD). Cognitive functioning in AD includes variable performance in short-term memory (STM). In most studies, the verbal STM functioning in AD patients has been interpreted within the phonological loop subsystem of Baddeley's working memory model. An alternative account considers that domain-general attentional processes explain the involvement of frontoparietal networks in verbal STM beside the functioning of modality-specific subsystems. In this study, we assessed the functional integrity of the dorsal attention network (involved in task-related attention) and the ventral attention network (involved in stimulus-driven attention) by varying attentional control demands in a STM task. Thirty-five AD patients and twenty controls in the seventies performed an fMRI STM task. Variation in load (five versus two items) allowed the dorsal (DAN) and ventral attention networks (VAN) to be studied. ANOVA revealed that performance decreased with increased load in both groups. AD patients performed slightly worse than controls, but accuracy remained above 70% in all patients. Statistical analysis of fMRI brain images revealed DAN activation for high load in both groups. There was no between-group difference or common activation for low compared to high load conditions. Psychophysiological interaction showed a negative relationship between the DAN and the VAN for high versus low load conditions in patients. In conclusion, the DAN remained activated and connected to the VAN in mild AD patients who succeeded in performing an fMRI verbal STM task. DAN was necessary for the task, but not sufficient to reach normal performance. Slightly lower performance in early AD patients compared to controls might be related to maintained bottom-up attention to distractors, to decrease in executive functions, to impaired phonological processing or to reduced capacity in serial order processing. Patients with early AD succeeded in performing an fMRI short-term memory task. Dorsal attention network activation did not differ between patients and controls. Dorsal and ventral attention networks remained connected in high load task in AD. DAN was necessary for the task, but not sufficient to reach normal performance.
Collapse
|
25
|
Stimulus-driven attention and cognitive control during encoding: An event related brain potentials study. Biol Psychol 2019; 144:1-10. [PMID: 30858074 DOI: 10.1016/j.biopsycho.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022]
Abstract
Stimulus-driven attention drawn to relevant items can improve working memory (WM) whether attentional capture is driven by salient, low level features or by contingent salience from shared features with targets. In the current work, we examined the time course of enhanced attention to contingently salient information in a non-spatial WM task using event related brain potentials (ERPs). In line with previous work, we predicted that the encoding of contingently salient stimuli would be associated with an enhancement of cognitive control processes rather than low-level salience detection. The results of this study supported this hypothesis, evidenced by a posterior P3 component of greater amplitude for contingently salient stimuli relative to stimuli of a control color, which is thought to reflect enhanced attention to information that matches a target held in WM. However, P3 amplitude during encoding was unrelated to subsequent memory accuracy. As an exploratory follow up on these results, we conducted a regression analysis including beliefs about ability to focus attention as a moderator, which interacted with P3 amplitude to predict WM recall of salient letters. Furthermore, source localization analyses implicated a significant contribution of regions in the salience network to the detection of target stimuli, but only frontal control regions showed a greater response to salient than control letters. Thus, the results of this experiment suggest that participants enhance cognitive control during the encoding of contingently salient stimuli, but that the relationship between this neural process during encoding and subsequent benefits to WM recall might depend on individual differences in attentional focus.
Collapse
|
26
|
Savill NJ, Cornelissen P, Pahor A, Jefferies E. rTMS evidence for a dissociation in short-term memory for spoken words and nonwords. Cortex 2019; 112:5-22. [DOI: 10.1016/j.cortex.2018.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
|
27
|
Verbal working memory and the phonological buffer: The question of serial order. Cortex 2019; 112:122-133. [DOI: 10.1016/j.cortex.2018.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 11/19/2022]
|
28
|
Li Y, Kong F, Ji M, Luo Y, Lan J, You X. Shared and Distinct Neural Bases of Large- and Small-Scale Spatial Ability: A Coordinate-Based Activation Likelihood Estimation Meta-Analysis. Front Neurosci 2019; 12:1021. [PMID: 30686987 PMCID: PMC6335367 DOI: 10.3389/fnins.2018.01021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Spatial ability is vital for human survival and development. However, the relationship between large-scale and small-scale spatial ability remains poorly understood. To address this issue from a novel perspective, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies to determine the shared and distinct neural bases of these two forms of spatial ability. Methods: We searched Web of Science, PubMed, PsycINFO, and Google Scholar for studies regarding "spatial ability" published within the last 20 years (January 1988 through June 2018). A final total of 103 studies (Table 1) involving 2,085 participants (male = 1,116) and 2,586 foci were incorporated into the meta-analysis. Results: Large-scale spatial ability was associated with activation in the limbic lobe, posterior lobe, occipital lobe, parietal lobe, right anterior lobe, frontal lobe, and right sub-lobar area. Small-scale spatial ability was associated with activation in the parietal lobe, occipital lobe, frontal lobe, right posterior lobe, and left sub-lobar area. Furthermore, conjunction analysis revealed overlapping regions in the sub-gyrus, right superior frontal gyrus, right superior parietal lobule, right middle occipital gyrus, right superior occipital gyrus, left inferior occipital gyrus, and precuneus. The contrast analysis demonstrated that the parahippocampal gyrus, left lingual gyrus, culmen, right middle temporal gyrus, left declive, left superior occipital gyrus, and right lentiform nucleus were more strongly activated during large-scale spatial tasks. In contrast, the precuneus, right inferior frontal gyrus, right precentral gyrus, left inferior parietal lobule, left supramarginal gyrus, left superior parietal lobule, right inferior occipital gyrus, and left middle frontal gyrus were more strongly activated during small-scale spatial tasks. Our results further indicated that there is no absolute difference in the cognitive strategies associated with the two forms of spatial ability (egocentric/allocentric). Conclusion: The results of the present study verify and expand upon the theoretical model of spatial ability proposed by Hegarty et al. Our analysis revealed a shared neural basis between large- and small-scale spatial abilities, as well as specific yet independent neural bases underlying each. Based on these findings, we proposed a more comprehensive version of the behavioral model.
Collapse
Affiliation(s)
- Yuan Li
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Ming Ji
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Yangmei Luo
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Jijun Lan
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| |
Collapse
|
29
|
Attout L, Ordonez Magro L, Szmalec A, Majerus S. The developmental neural substrates of item and serial order components of verbal working memory. Hum Brain Mapp 2018; 40:1541-1553. [PMID: 30430689 DOI: 10.1002/hbm.24466] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022] Open
Abstract
Behavioral and developmental studies have made a critical distinction between item and serial order processing components of verbal working memory (WM). This functional magnetic resonance imaging (fMRI) study determined the extent to which item and serial order WM components are characterized by specialized neural networks already in young children or whether this specialization emerges at a later developmental stage. Total of 59 children aged 7-12 years performed item and serial order short-term probe recognition tasks in an fMRI experiment. While a left frontoparietal network was recruited in both item and serial order WM conditions, the right intraparietal sulcus was selectively involved in the serial order WM condition. This neural segregation was modulated by age, with both networks becoming increasingly separated in older children. Our results indicate a progressive specialization of networks involved in item and order WM processes during cognitive development.
Collapse
Affiliation(s)
- Lucie Attout
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium
| | - Laura Ordonez Magro
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Arnaud Szmalec
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège, Belgium.,Fund for Scientific Research FNRS, Brussels, Belgium
| |
Collapse
|
30
|
Paulraj SR, Schendel K, Curran B, Dronkers NF, Baldo JV. Role of the left hemisphere in visuospatial working memory. JOURNAL OF NEUROLINGUISTICS 2018; 48:133-141. [PMID: 31341351 PMCID: PMC6656388 DOI: 10.1016/j.jneuroling.2018.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Visuospatial processing deficits are typically associated with damage to the right hemisphere. However, deficits on spatial working memory have been reported among some individuals with focal left hemisphere damage (LHD). It has been suggested that the left hemisphere may play a role in such non-verbal working memory tasks due to the use of subvocal, verbally-mediated strategies. The current study investigated the role of the left hemisphere in spatial working memory by testing spatial span performance, both forward and backward, in a large group of individuals with a history of left hemisphere stroke. Our first aim was to establish whether individuals with LHD are indeed impaired on spatial span tasks using standardized span tasks with published normative data. Our second aim was to identify the role that language plays in supporting spatial working memory by comparing LHD individuals with and without aphasia, and by relating spatial span performance to performance on a series of language measures. Our third aim was to identify left hemisphere brain regions that contribute to spatial working memory using voxel-based lesion symptom mapping (VLSM), a whole-brain statistical approach that identifies regions critical to a particular behavior on a voxel-by-voxel basis. We found that 28% of individuals with LHD performed in the clinically-impaired range on forward spatial span and 16% performed in the clinically-impaired range on backward spatial span. There were no significant differences in performance between individuals with and without aphasia, and there were no correlations between spatial span performance and language functions such as repetition and comprehension. The VLSM analysis showed that backward spatial span was associated with a left fronto-parietal network consisting of somatosensory cortex, the supramarginal gyrus, lateral prefrontal cortex, and the frontal eye fields. Regions identified in the VLSM analysis of forward spatial span did not reach the conservative statistical threshold for significance. Overall, these results suggest that spatial working memory, as measured by spatial span, can be significantly disrupted in a subset of individuals with LHD whose lesions infringe on a network of regions in the left hemisphere that have been implicated in domain-general working memory and attentional control mechanisms.
Collapse
Affiliation(s)
- Selvi R. Paulraj
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA, 94553, USA
- Palo Alto University, 1791 Arastradero Road, Palo Alto, CA 94304, USA
| | - Krista Schendel
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA, 94553, USA
| | - Brian Curran
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA, 94553, USA
| | - Nina F. Dronkers
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA, 94553, USA
- University of California, Davis, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Juliana V. Baldo
- VA Northern California Health Care System, 150 Muir Road, Martinez, CA, 94553, USA
| |
Collapse
|
31
|
Sekiguchi T. Task-unrelated thought depends on the phonological short-term memory system more than the visual short-term memory system. Acta Psychol (Amst) 2018; 190:228-238. [PMID: 30149237 DOI: 10.1016/j.actpsy.2018.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/02/2018] [Accepted: 08/17/2018] [Indexed: 11/28/2022] Open
Abstract
This study examined which type of short-term memory (STM), phonological or visual, is involved in and more important for representing contents of task-unrelated thoughts (TUTs). Three experiments consistently showed that TUTs were less likely to be reported during phonological STM tasks than either visual STM or control tasks. In contrast, the number of TUT responses did not considerably differ between visual STM tasks and control tasks even for TUTs with many visual images. This difference cannot be explained by the differential involvement of executive control processes because task difficulty was controlled for in the multi-level logistic regression analysis. These results, together with the finding that most TUT responses contained verbal images, suggest that phonological STM plays an important role in representing verbal images in TUTs, while visual STM is less or not involved in representing TUTs, even for those with many visual images.
Collapse
Affiliation(s)
- Takahiro Sekiguchi
- Department of Educational Psychology, Tokyo Gakugei University, 4-1-1 Nukui-Kitamchi, Koganei, Tokyo 184-8501, Japan.
| |
Collapse
|
32
|
Rajsic J, Burton JA, Woodman GF. Contralateral delay activity tracks the storage of visually presented letters and words. Psychophysiology 2018; 56:e13282. [PMID: 30246442 DOI: 10.1111/psyp.13282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/06/2018] [Accepted: 07/26/2018] [Indexed: 12/01/2022]
Abstract
Electrophysiological studies have demonstrated that the maintenance of items in visual working memory (VWM) is indexed by the contralateral delay activity (CDA), which increases in amplitude as the number of objects to remember increases, plateauing at VWM capacity. Previous work has primarily utilized simple visual items, such as colored squares or picture stimuli. Despite the frequent use of verbal stimuli in seminal investigations of visual attention and memory, it is unknown whether temporary storage of letters and words also elicit a typical load-sensitive CDA. Given their close associations with language and phonological codes, it is possible that participants store these stimuli phonologically, and not visually. Participants completed a standard visual change-detection task while their ERPs were recorded. Experiment 1 compared the CDA elicited by colored squares compared to uppercase consonants, and Experiment 2 compared the CDA elicited by words compared to colored bars. Behavioral accuracy of change detection decreased with increasing set size for colored squares, letters, and words. We found that a capacity-limited CDA was present for colored squares, letters, and word arrays, suggesting that the visual codes for letters and words were maintained in VWM, despite the potential for transfer to verbal working memory. These results suggest that, despite their verbal associations, letters and words elicit the electrophysiological marker of VWM encoding and storage.
Collapse
Affiliation(s)
- Jason Rajsic
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Jane A Burton
- Neuroscience Program, Vanderbilt University, Nashville, Tennessee
| | - Geoffrey F Woodman
- Department of Psychological Sciences, Vanderbilt University, Nashville, Tennessee.,Neuroscience Program, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
33
|
Zhao X, Rangaprakash D, Yuan B, Denney TS, Katz JS, Dretsch MN, Deshpande G. Investigating the Correspondence of Clinical Diagnostic Grouping With Underlying Neurobiological and Phenotypic Clusters Using Unsupervised Machine Learning. FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS 2018; 4:25. [PMID: 30393630 PMCID: PMC6214192 DOI: 10.3389/fams.2018.00025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Many brain-based disorders are traditionally diagnosed based on clinical interviews and behavioral assessments, which are recognized to be largely imperfect. Therefore, it is necessary to establish neuroimaging-based biomarkers to improve diagnostic precision. Resting-state functional magnetic resonance imaging (rs-fMRI) is a promising technique for the characterization and classification of varying disorders. However, most of these classification methods are supervised, i.e., they require a priori clinical labels to guide classification. In this study, we adopted various unsupervised clustering methods using static and dynamic rs-fMRI connectivity measures to investigate whether the clinical diagnostic grouping of different disorders is grounded in underlying neurobiological and phenotypic clusters. In order to do so, we derived a general analysis pipeline for identifying different brain-based disorders using genetic algorithm-based feature selection, and unsupervised clustering methods on four different datasets; three of them-ADNI, ADHD-200, and ABIDE-which are publicly available, and a fourth one-PTSD and PCS-which was acquired in-house. Using these datasets, the effectiveness of the proposed pipeline was verified on different disorders: Attention Deficit Hyperactivity Disorder (ADHD), Alzheimer's Disease (AD), Autism Spectrum Disorder (ASD), Post-Traumatic Stress Disorder (PTSD), and Post-Concussion Syndrome (PCS). For ADHD and AD, highest similarity was achieved between connectivity and phenotypic clusters, whereas for ASD and PTSD/PCS, highest similarity was achieved between connectivity and clinical diagnostic clusters. For multi-site data (ABIDE and ADHD-200), we report site-specific results. We also reported the effect of elimination of outlier subjects for all four datasets. Overall, our results suggest that neurobiological and phenotypic biomarkers could potentially be used as an aid by the clinician, in additional to currently available clinical diagnostic standards, to improve diagnostic precision. Data and source code used in this work is publicly available at https://github.com/xinyuzhao/identification-of-brain-based-disorders.git.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Quora, Inc., Mountain View, CA, United States
| | - D. Rangaprakash
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bowen Yuan
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
| | - Thomas S. Denney
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychology, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Auburn University, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Jeffrey S. Katz
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychology, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Auburn University, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
| | - Michael N. Dretsch
- Human Dimension Division, HQ TRADOC, Fort Eustis, VA, United States
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychology, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Auburn University, University of Alabama at Birmingham, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, United States
| |
Collapse
|
34
|
Van Calster L, D'Argembeau A, Majerus S. Measuring individual differences in internal versus external attention: The attentional style questionnaire. PERSONALITY AND INDIVIDUAL DIFFERENCES 2018. [DOI: 10.1016/j.paid.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Wills KM, Liu J, Hakun J, Zhu DC, Hazeltine E, Ravizza SM. Neural Mechanisms for the Benefits of Stimulus-Driven Attention. Cereb Cortex 2018; 27:5294-5302. [PMID: 28334189 DOI: 10.1093/cercor/bhw308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 11/14/2022] Open
Abstract
Stimulus-driven attention can improve working memory (WM) when drawn to behaviorally relevant information, but the neural mechanisms underlying this effect are unclear. The present study used functional magnetic resonance imaging (fMRI) to test competing hypotheses regarding the nature of the benefits of stimulus-driven attention to WM: that stimulus-driven attention benefits WM directly via salience detection, that stimulus-driven attention benefits WM incidentally via cognitive control mechanisms recruited to reduce interference from salient features, or that both mechanisms are co-involved in enhancing WM for salient information. To test these hypotheses, we observed activation in brain regions associated with cognitive control and salience detection. We found 2 cognitive control regions that were associated with enhanced memory for salient stimuli: a region in the right superior parietal lobule and a region in the right inferior frontal junction. No regions associated with salience detection were found to show this effect. These fMRI results support the hypothesis that benefits to WM from stimulus-driven attention occur primarily as a result of cognitive control and top-down factors rather than pure bottom-up aspects of stimulus-driven attention.
Collapse
Affiliation(s)
- Katelyn M Wills
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Jingtai Liu
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan Hakun
- Department of Psychology, Pennsylvania State University, State College, PA 16801, USA
| | - David C Zhu
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| | - Eliot Hazeltine
- Department of Psychology, University of Iowa, Iowa City, IA 52242, USA
| | - Susan M Ravizza
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
36
|
Naert L, Bonato M, Fias W. Asymmetric Spatial Processing Under Cognitive Load. Front Psychol 2018; 9:583. [PMID: 29740371 PMCID: PMC5924786 DOI: 10.3389/fpsyg.2018.00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/06/2018] [Indexed: 11/28/2022] Open
Abstract
Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.
Collapse
Affiliation(s)
- Lien Naert
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Mario Bonato
- Department of Experimental Psychology, Ghent University, Ghent, Belgium.,Department of General Psychology, University of Padova, Padua, Italy
| | - Wim Fias
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Yue Q, Martin RC, Hamilton AC, Rose NS. Non-perceptual Regions in the Left Inferior Parietal Lobe Support Phonological Short-term Memory: Evidence for a Buffer Account? Cereb Cortex 2018. [DOI: 10.1093/cercor/bhy037] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Qiuhai Yue
- Department of Psychology, Rice University, MS-25, P.O. Box 1892, Houston, TX, USA
| | - Randi C Martin
- Department of Psychology, Rice University, MS-25, P.O. Box 1892, Houston, TX, USA
| | - A Cris Hamilton
- Department of Psychology, Rice University, MS-25, P.O. Box 1892, Houston, TX, USA
| | - Nathan S Rose
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
38
|
Majerus S, Péters F, Bouffier M, Cowan N, Phillips C. The Dorsal Attention Network Reflects Both Encoding Load and Top–down Control during Working Memory. J Cogn Neurosci 2018; 30:144-159. [DOI: 10.1162/jocn_a_01195] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dorsal attention network is consistently involved in verbal and visual working memory (WM) tasks and has been associated with task-related, top–down control of attention. At the same time, WM capacity has been shown to depend on the amount of information that can be encoded in the focus of attention independently of top–down strategic control. We examined the role of the dorsal attention network in encoding load and top–down memory control during WM by manipulating encoding load and memory control requirements during a short-term probe recognition task for sequences of auditory (digits, letters) or visual (lines, unfamiliar faces) stimuli. Encoding load was manipulated by presenting sequences with small or large sets of memoranda while maintaining the amount of sensory stimuli constant. Top–down control was manipulated by instructing participants to passively maintain all stimuli or to selectively maintain stimuli from a predefined category. By using ROI and searchlight multivariate analysis strategies, we observed that the dorsal attention network encoded information for both load and control conditions in verbal and visuospatial modalities. Decoding of load conditions was in addition observed in modality-specific sensory cortices. These results highlight the complexity of the role of the dorsal attention network in WM by showing that this network supports both quantitative and qualitative aspects of attention during WM encoding, and this is in a partially modality-specific manner.
Collapse
Affiliation(s)
- Steve Majerus
- Université de Liège
- Fund for Scientific Research FNRS, Brussels, Belgium
| | | | - Marion Bouffier
- Université de Liège
- Fund for Scientific Research FNRS, Brussels, Belgium
| | | | | |
Collapse
|
39
|
Spontaneous brain oscillations as neural fingerprints of working memory capacities: A resting-state MEG study. Cortex 2017; 97:109-124. [PMID: 29102813 DOI: 10.1016/j.cortex.2017.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/31/2017] [Accepted: 09/22/2017] [Indexed: 01/03/2023]
Abstract
Short-term storage and mental information manipulation capacities in the human brain are key to healthy cognition. These brain processes collectively known as working memory (WM) are associated with modulations of rhythmic brain activity across multiple brain areas and frequencies. Yet, it is not clear whether - and, if so, how-intrinsic resting-state neuronal oscillations are related to individual WM capacities, as measured by standard neuropsychological tests. We addressed this question by probing the correlation between resting-state brain activity, recorded with magnetoencephalography (MEG), and verbal and visuo-spatial WM indices obtained from the standardized Wechsler Adult Intelligence Scale (WAIS-IV) and the Wechsler Memory Scale (WMS-IV). To this end, 5-min eyes-open resting-state MEG data were acquired in 28 healthy participants. Source-reconstructed spectral power estimates were then computed in standard frequency bands and their correlation with neuropsychological indices across individuals was assessed using Pearson correlation and cluster-level statistics. We found statistically significant positive correlations between spectral amplitudes measured at rest and standardized scores on both verbal and visuo-spatial WM performance. The correlation clusters primarily involved key medial and dorsolateral components within the parietal and prefrontal regions. In addition, while the correlation in some clusters was frequency selective (e.g., alpha-band oscillations), other areas showed correlations with WM across a wide range of frequencies reflecting a broadband effect. These results provide the first evidence for a positive correlation between neuromagnetic signals measured at rest and WM performance separately assessed by standardized neuropsychological tests. Our results advance our understanding of the link between WM capacities and intrinsic oscillatory dynamics networks. They also suggest that individual differences in baseline spectral power might need to be taken into account when probing differences in brain responses during the execution of WM tasks.
Collapse
|
40
|
Van Calster L, D'Argembeau A, Salmon E, Peters F, Majerus S. Fluctuations of Attentional Networks and Default Mode Network during the Resting State Reflect Variations in Cognitive States: Evidence from a Novel Resting-state Experience Sampling Method. J Cogn Neurosci 2017; 29:95-113. [DOI: 10.1162/jocn_a_01025] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Neuroimaging studies have revealed the recruitment of a range of neural networks during the resting state, which might reflect a variety of cognitive experiences and processes occurring in an individual's mind. In this study, we focused on the default mode network (DMN) and attentional networks and investigated their association with distinct mental states when participants are not performing an explicit task. To investigate the range of possible cognitive experiences more directly, this study proposes a novel method of resting-state fMRI experience sampling, informed by a phenomenological investigation of the fluctuation of mental states during the resting state. We hypothesized that DMN activity would increase as a function of internal mentation and that the activity of dorsal and ventral networks would indicate states of top–down versus bottom–up attention at rest. Results showed that dorsal attention network activity fluctuated as a function of subjective reports of attentional control, providing evidence that activity of this network reflects the perceived recruitment of controlled attentional processes during spontaneous cognition. Activity of the DMN increased when participants reported to be in a subjective state of internal mentation, but not when they reported to be in a state of perception. This study provides direct evidence for a link between fluctuations of resting-state neural activity and fluctuations in specific cognitive processes.
Collapse
Affiliation(s)
| | | | | | | | - Steve Majerus
- 1University of Liège
- 2Fund for Scientific Research (FNRS), Belgium
| |
Collapse
|
41
|
Godwin D, Ji A, Kandala S, Mamah D. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task. Front Psychiatry 2017; 8:294. [PMID: 29312020 PMCID: PMC5743938 DOI: 10.3389/fpsyt.2017.00294] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/11/2017] [Indexed: 11/21/2022] Open
Abstract
Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n-back condition and group (p = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect (p = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task.
Collapse
Affiliation(s)
- Douglass Godwin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew Ji
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Sridhar Kandala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Daniel Mamah
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
42
|
Kurth S, Majerus S, Bastin C, Collette F, Jaspar M, Bahri MA, Salmon E. Effects of aging on task- and stimulus-related cerebral attention networks. Neurobiol Aging 2016; 44:85-95. [DOI: 10.1016/j.neurobiolaging.2016.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022]
|
43
|
Martinez Perez T, Poncelet M, Salmon E, Majerus S. Functional Alterations in Order Short-Term Memory Networks in Adults With Dyslexia. Dev Neuropsychol 2016; 40:407-29. [DOI: 10.1080/87565641.2016.1153098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Attout L, Salmon E, Majerus S. Working Memory for Serial Order Is Dysfunctional in Adults With a History of Developmental Dyscalculia: Evidence From Behavioral and Neuroimaging Data. Dev Neuropsychol 2015; 40:230-47. [DOI: 10.1080/87565641.2015.1036993] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Abrahamse E, van Dijck JP, Majerus S, Fias W. Finding the answer in space: the mental whiteboard hypothesis on serial order in working memory. Front Hum Neurosci 2014; 8:932. [PMID: 25505394 PMCID: PMC4243569 DOI: 10.3389/fnhum.2014.00932] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/01/2014] [Indexed: 11/13/2022] Open
Abstract
Various prominent models on serial order coding in working memory (WM) build on the notion that serial order is achieved by binding the various items to-be-maintained to fixed position markers. Despite being relatively successful in accounting for empirical observations and some recent neuro-imaging support, these models were largely formulated on theoretical grounds and few specifications have been provided with respect to the cognitive and/or neural nature of these position markers. Here we outline a hypothesis on a novel candidate mechanism to substantiate the notion of serial position markers. Specifically, we propose that serial order WM is grounded in the spatial attention system: (I) The position markers that provide multi-item WM with a serial context should be understood as coordinates within an internal, spatially defined system; (II) internal spatial attention is involved in searching through the resulting serial order representation; and (III) retrieval corresponds to selection by spatial attention. We sketch the available empirical support and discuss how the hypothesis may provide a parsimonious framework from which to understand a broad range of observations across behavioral, neural and neuropsychological domains. Finally, we pinpoint what we believe are major questions for future research inspired by the hypothesis.
Collapse
Affiliation(s)
- Elger Abrahamse
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent UniversityGhent, Belgium
| | - Jean-Philippe van Dijck
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent UniversityGhent, Belgium
| | - Steve Majerus
- Department of Psychology, Cognition and Behavior, University of LiègeGhent, Belgium
- Fund for Scientific Research FNRSBelgium
| | - Wim Fias
- Department of Experimental Psychology, Faculty of Psychology and Educational Sciences, Ghent UniversityGhent, Belgium
| |
Collapse
|
46
|
Cowan N, Saults JS, Blume CL. Central and peripheral components of working memory storage. J Exp Psychol Gen 2014; 143:1806-1836. [PMID: 24867488 PMCID: PMC4172497 DOI: 10.1037/a0036814] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study reexamines the issue of how much of working memory storage is central, or shared across sensory modalities and verbal and nonverbal codes, and how much is peripheral, or specific to a modality or code. In addition to the exploration of many parameters in 9 new dual-task experiments and reanalysis of some prior evidence, the innovations of the present work compared to previous studies of memory for 2 stimulus sets include (a) use of a principled set of formulas to estimate the number of items in working memory and (b) a model to dissociate central components, which are allocated to very different stimulus sets depending on the instructions, from peripheral components, which are used for only 1 kind of material. We consistently find that the central contribution is smaller than was suggested by Saults and Cowan (2007) and that the peripheral contribution is often much larger when the task does not require the binding of features within an object. Previous capacity estimates are consistent with the sum of central plus peripheral components observed here. We consider the implications of the data as constraints on theories of working memory storage and maintenance.
Collapse
Affiliation(s)
- Nelson Cowan
- Department of Psychological Sciences, University of Missouri
| | - J Scott Saults
- Department of Psychological Sciences, University of Missouri
| | | |
Collapse
|
47
|
Majerus S, Cowan N, Péters F, Van Calster L, Phillips C, Schrouff J. Cross-Modal Decoding of Neural Patterns Associated with Working Memory: Evidence for Attention-Based Accounts of Working Memory. Cereb Cortex 2014; 26:166-79. [PMID: 25146374 DOI: 10.1093/cercor/bhu189] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM.
Collapse
Affiliation(s)
- Steve Majerus
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium Cyclotron Research Centre, Université de Liège, 4000 Liège, Belgium Fund for Scientific Research FNRS, 1000 Brussels, Belgium
| | - Nelson Cowan
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211-2500, USA
| | - Frédéric Péters
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium
| | - Laurens Van Calster
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium
| | - Christophe Phillips
- Department of Psychology - Cognition and Behavior, Université de Liège, 4000 Liège, Belgium Fund for Scientific Research FNRS, 1000 Brussels, Belgium
| | - Jessica Schrouff
- Cyclotron Research Centre, Université de Liège, 4000 Liège, Belgium Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
48
|
Langel J, Hakun J, Zhu DC, Ravizza SM. Functional specialization of the left ventral parietal cortex in working memory. Front Hum Neurosci 2014; 8:440. [PMID: 24994977 PMCID: PMC4061583 DOI: 10.3389/fnhum.2014.00440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/31/2014] [Indexed: 11/21/2022] Open
Abstract
The function of the ventral parietal cortex (VPC) is subject to much debate. Many studies suggest a lateralization of function in the VPC, with the left hemisphere facilitating verbal working memory and the right subserving stimulus-driven attention. However, many attentional tasks elicit activity in the VPC bilaterally. To elucidate the potential divides across the VPC in function, we assessed the pattern of activity in the VPC bilaterally across two tasks that require different demands, an oddball attentional task with low working memory demands and a working memory task. An anterior region of the VPC was bilaterally active during novel targets in the oddball task and during retrieval in WM, while more posterior regions of the VPC displayed dissociable functions in the left and right hemisphere, with the left being active during the encoding and retrieval of WM, but not during the oddball task and the right showing the reverse pattern. These results suggest that bilateral regions of the anterior VPC subserve non-mnemonic processes, such as stimulus-driven attention during WM retrieval and oddball detection. The left posterior VPC may be important for speech-related processing important for both working memory and perception, while the right hemisphere is more lateralized for attention.
Collapse
Affiliation(s)
- Jennifer Langel
- Neuroscience Program, Michigan State University East Lansing, MI, USA
| | - Jonathan Hakun
- Department of Psychology, Michigan State University East Lansing, MI, USA
| | - David C Zhu
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA ; Department of Radiology, Michigan State University East Lansing, MI, USA
| | - Susan M Ravizza
- Neuroscience Program, Michigan State University East Lansing, MI, USA ; Department of Psychology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
49
|
Foerster RM, Carbone E, Schneider WX. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference. Front Psychol 2014; 5:408. [PMID: 24847304 PMCID: PMC4023044 DOI: 10.3389/fpsyg.2014.00408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/18/2014] [Indexed: 11/13/2022] Open
Abstract
Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM.
Collapse
Affiliation(s)
- Rebecca M Foerster
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University Bielefeld, Germany ; Cluster of Excellence 'Cognitive Interaction Technology,' Bielefeld University Bielefeld, Germany
| | - Elena Carbone
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University Bielefeld, Germany ; Cluster of Excellence 'Cognitive Interaction Technology,' Bielefeld University Bielefeld, Germany
| | - Werner X Schneider
- Neuro-Cognitive Psychology, Department of Psychology, Bielefeld University Bielefeld, Germany ; Cluster of Excellence 'Cognitive Interaction Technology,' Bielefeld University Bielefeld, Germany
| |
Collapse
|
50
|
Louapre C, Perlbarg V, García-Lorenzo D, Urbanski M, Benali H, Assouad R, Galanaud D, Freeman L, Bodini B, Papeix C, Tourbah A, Lubetzki C, Lehéricy S, Stankoff B. Brain networks disconnection in early multiple sclerosis cognitive deficits: an anatomofunctional study. Hum Brain Mapp 2014; 35:4706-17. [PMID: 24687771 DOI: 10.1002/hbm.22505] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 11/11/2022] Open
Abstract
Severe cognitive impairment involving multiple cognitive domains can occur early during the course of multiple sclerosis (MS). We investigated resting state functional connectivity changes in large-scale brain networks and related structural damage underlying cognitive dysfunction in patients with early MS. Patients with relapsing MS (3-5 years disease duration) were prospectively assigned to two groups based on a standardized neuropsychological evaluation: (1) cognitively impaired group (CI group, n = 15), with abnormal performances in at least 3 tests; (2) cognitively preserved group (CP group, n = 20) with normal performances in all tests. Patients and age-matched healthy controls underwent a multimodal 3T magnetic resonance imaging (MRI) including anatomical T1 and T2 images, diffusion imaging and resting state functional MRI. Structural MRI analysis revealed that CI patients had a higher white matter lesion load compared to CP and a more severe atrophy in gray matter regions highly connected to networks involved in cognition. Functional connectivity measured by integration was increased in CP patients versus controls in attentional networks (ATT), while integration was decreased in CI patients compared to CP both in the default mode network (DMN) and ATT. An anatomofunctional study within the DMN revealed that functional connectivity was mostly altered between the medial prefrontal cortex (MPFC) and the posterior cingulate cortex (PCC) in CI patients compared to CP and controls. In a multilinear regression model, functional correlation between MPFC and PCC was best predicted by PCC atrophy. Disconnection in the DMN and ATT networks may deprive the brain of compensatory mechanisms required to face widespread structural damage.
Collapse
Affiliation(s)
- Céline Louapre
- Université Pierre et Marie Curie-Paris 6, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, UMR-S975, Paris, F-75013, France; Inserm, U975, Paris, F-75013, France; CNRS, UMR 7225, Paris, France; AP-HP, Hôpital de la Salpêtrière, Hôpital Tenon, F-75020, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|