1
|
He CH, Zhang L, Song NN, Mei WY, Chen JY, Hu L, Zhang Q, Wang YB, Ding YQ. Satb2 Regulates EphA7 to Control Soma Spacing and Self-Avoidance of Cortical Pyramidal Neurons. Cereb Cortex 2021; 32:2321-2331. [PMID: 34546353 DOI: 10.1093/cercor/bhab321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soma spacing and dendritic arborization during brain development are key events for the establishment of proper neural circuitry and function. Transcription factor Satb2 is a molecular node in regulating the development of the cerebral cortex, as shown by the facts that Satb2 is required for the regionalization of retrosplenial cortex, the determination of callosal neuron fate, and the regulation of soma spacing and dendritic self-avoidance of cortical pyramidal neurons. In this study, we explored downstream effectors that mediate the Satb2-implicated soma spacing and dendritic self-avoidance. First, RNA-seq analysis of the cortex revealed differentially expressed genes between control and Satb2 CKO mice. Among them, EphA7 transcription was dramatically increased in layers II/III of Satb2 CKO cortex. Overexpression of EphA7 in the late-born cortical neurons of wild-type mice via in utero electroporation resulted in soma clumping and impaired self-avoidance of affected pyramidal neurons, which resembles the phenotypes caused by knockdown of Satb2 expression. Importantly, the phenotypes by Satb2 knockdown was rescued by reducing EphA7 expression in the cortex. Finally, ChIP and luciferase reporter assays indicated a direct suppression of EphA7 expression by Satb2. These findings provide new insights into the complexity of transcriptional regulation of the morphogenesis of cerebral cortex.
Collapse
Affiliation(s)
- Chun-Hui He
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wan-Ying Mei
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Jia-Yin Chen
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ling Hu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.,Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China.,Department of Laboratory Animal Science, Fudan University, Shanghai 200032, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| |
Collapse
|
2
|
Yamagishi S, Bando Y, Sato K. Involvement of Netrins and Their Receptors in Neuronal Migration in the Cerebral Cortex. Front Cell Dev Biol 2021; 8:590009. [PMID: 33520982 PMCID: PMC7843923 DOI: 10.3389/fcell.2020.590009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
In mammals, excitatory cortical neurons develop from the proliferative epithelium and progenitor cells in the ventricular zone and subventricular zone, and migrate radially to the cortical plate, whereas inhibitory GABAergic interneurons are born in the ganglionic eminence and migrate tangentially. The migration of newly born cortical neurons is tightly regulated by both extracellular and intracellular signaling to ensure proper positioning and projections. Non-cell-autonomous extracellular molecules, such as growth factors, axon guidance molecules, extracellular matrix, and other ligands, play a role in cortical migration, either by acting as attractants or repellents. In this article, we review the guidance molecules that act as cell-cell recognition molecules for the regulation of neuronal migration, with a focus on netrin family proteins, their receptors, and related molecules, including neogenin, repulsive guidance molecules (RGMs), Down syndrome cell adhesion molecule (DSCAM), fibronectin leucine-rich repeat transmembrane proteins (FLRTs), and draxin. Netrin proteins induce attractive and repulsive signals depending on their receptors. For example, binding of netrin-1 to deleted in colorectal cancer (DCC), possibly together with Unc5, repels migrating GABAergic neurons from the ventricular zone of the ganglionic eminence, whereas binding to α3β1 integrin promotes cortical interneuron migration. Human genetic disorders associated with these and related guidance molecules, such as congenital mirror movements, schizophrenia, and bipolar disorder, are also discussed.
Collapse
Affiliation(s)
- Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuki Bando
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
3
|
Villa R, Fergnani VGC, Silipigni R, Guerneri S, Cinnante C, Guala A, Danesino C, Scola E, Conte G, Fumagalli M, Gangi S, Colombo L, Picciolini O, Ajmone PF, Accogli A, Madia F, Tassano E, Scala M, Capra V, Srour M, Spaccini L, Righini A, Greco D, Castiglia L, Romano C, Bedeschi MF. Structural brain anomalies in Cri-du-Chat syndrome: MRI findings in 14 patients and possible genotype-phenotype correlations. Eur J Paediatr Neurol 2020; 28:110-119. [PMID: 32800423 DOI: 10.1016/j.ejpn.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/02/2020] [Accepted: 07/03/2020] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Cri-du-Chat Syndrome (CdCS) is a genetic condition due to deletions showing different breakpoints encompassing a critical region on the short arm of chromosome 5, located between p15.2 and p15.3, first defined by Niebuhr in 1978. The classic phenotype includes a characteristic cry, peculiar facies, microcephaly, growth retardation, hypotonia, speech and psychomotor delay and intellectual disability. A wide spectrum of clinical manifestations can be attributed to differences in size and localization of the 5p deletion. Several critical regions related to some of the main features (such as cry, peculiar facies, developmental delay) have been identified. The aim of this study is to further define the genotype-phenotype correlations in CdCS with particular regards to the specific neuroradiological findings. PATIENTS AND METHODS Fourteen patients with 5p deletions have been included in the present study. Neuroimaging studies were conducted using brain Magnetic Resonance Imaging (MRI). Genetic testing was performed by means of comparative genomic hybridization (CGH) array at 130 kb resolution. RESULTS MRI analyses showed that isolated pontine hypoplasia is the most common finding, followed by vermian hypoplasia, ventricular anomalies, abnormal basal angle, widening of cavum sellae, increased signal of white matter, corpus callosum anomalies, and anomalies of cortical development. Chromosomal microarray analysis identified deletions ranging in size from 11,6 to 33,8 Mb on the short arm of chromosome 5. Then, we took into consideration the overlapping and non-overlapping deleted regions. The goal was to establish a correlation between the deleted segments and the neuroradiological features of our patients. CONCLUSIONS Performing MRI on all the patients in our cohort, allowed us to expand the neuroradiological phenotype in CdCS. Moreover, possible critical regions associated to characteristic MRI findings have been identified.
Collapse
Affiliation(s)
- R Villa
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - V G C Fergnani
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| | - R Silipigni
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - S Guerneri
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - C Cinnante
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - A Guala
- Department of Pediatrics, Castelli Hospital, Verbania, Italy.
| | - C Danesino
- Molecular Medicine Department, General Biology and Medical Genetics Unit, University of Pavia, Pavia, Italy.
| | - E Scola
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - G Conte
- Neuroradiology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - M Fumagalli
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - S Gangi
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - L Colombo
- NICU, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - O Picciolini
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - P F Ajmone
- Child and Adolescent Neuropsychiatric Service (UONPIA), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| | - A Accogli
- DINOGMI, Università degli Studi di Genova, Italy; IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - F Madia
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - E Tassano
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - M Scala
- DINOGMI, Università degli Studi di Genova, Italy; IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - V Capra
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| | - M Srour
- Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, Canada; McGill University Health Center (MUHC) Research Institute, Montreal, Canada.
| | - L Spaccini
- Clinical Genetics Unit, Department of Obstetrics and Gynecology, V. Buzzi Children's Hospital, University of Milan, Italy.
| | - A Righini
- Department of Pediatric Radiology and Neuroradiology, V. Buzzi Children's Hospital, University of Milan, Italy.
| | - D Greco
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - L Castiglia
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - C Romano
- Oasi Research Institute, IRCCS, Troina, Italy.
| | - M F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
4
|
Clark SL, Hattab MW, Chan RF, Shabalin AA, Han LKM, Zhao M, Smit JH, Jansen R, Milaneschi Y, Xie LY, van Grootheest G, Penninx BWJH, Aberg KA, van den Oord EJCG. A methylation study of long-term depression risk. Mol Psychiatry 2020; 25:1334-1343. [PMID: 31501512 PMCID: PMC7061076 DOI: 10.1038/s41380-019-0516-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022]
Abstract
Recurrent and chronic major depressive disorder (MDD) accounts for a substantial part of the disease burden because this course is most prevalent and typically requires long-term treatment. We associated blood DNA methylation profiles from 581 MDD patients at baseline with MDD status 6 years later. A resampling approach showed a highly significant association between methylation profiles in blood at baseline and future disease status (P = 2.0 × 10-16). Top MWAS results were enriched specific pathways, overlapped with genes found in GWAS of MDD disease status, autoimmune disease and inflammation, and co-localized with eQTLS and (genic enhancers of) of transcription sites in brain and blood. Many of these findings remained significant after correction for multiple testing. The major themes emerging were cellular responses to stress and signaling mechanisms linked to immune cell migration and inflammation. This suggests that an immune signature of treatment-resistant depression is already present at baseline. We also created a methylation risk score (MRS) to predict MDD status 6 years later. The AUC of our MRS was 0.724 and higher than risk scores created using a set of five putative MDD biomarkers, genome-wide SNP data, and 27 clinical, demographic and lifestyle variables. Although further studies are needed to examine the generalizability to different patient populations, these results suggest that methylation profiles in blood may present a promising avenue to support clinical decision making by providing empirical information about the likelihood MDD is chronic or will recur in the future.
Collapse
Affiliation(s)
- Shaunna L Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohammad W Hattab
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Robin F Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey A Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura KM Han
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, the Netherlands 1081 HV
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Johannes H Smit
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, the Netherlands 1081 HV
| | - Rick Jansen
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, the Netherlands 1081 HV
| | - Yuri Milaneschi
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, the Netherlands 1081 HV
| | - Lin Ying Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gerard van Grootheest
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, the Netherlands 1081 HV
| | - Brenda WJH Penninx
- Department of Psychiatry, VU University Medical Center / GGZ inGeest, Amsterdam, the Netherlands 1081 HV
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Edwin JCG van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
5
|
Zhao YF, He XX, Song ZF, Guo Y, Zhang YN, Yu HL, He ZX, Xiong WC, Guo W, Zhu XJ. Human antigen R-regulated mRNA metabolism promotes the cell motility of migrating mouse neurons. Development 2020; 147:dev.183509. [PMID: 32098764 PMCID: PMC7097226 DOI: 10.1242/dev.183509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Neocortex development during embryonic stages requires the precise control of mRNA metabolism. Human antigen R (HuR) is a well-studied mRNA-binding protein that regulates mRNA metabolism, and it is highly expressed in the neocortex during developmental stages. Deletion of HuR does not impair neural progenitor cell proliferation or differentiation, but it disturbs the laminar structure of the neocortex. We report that HuR is expressed in postmitotic projection neurons during mouse brain development. Specifically, depletion of HuR in these neurons led to a mislocalization of CDP+ neurons in deeper layers of the cortex. Time-lapse microscopy showed that HuR was required for the promotion of cell motility in migrating neurons. PCR array identified profilin 1 (Pfn1) mRNA as a major binding partner of HuR in neurons. HuR positively mediated the stability of Pfn1 mRNA and influenced actin polymerization. Overexpression of Pfn1 successfully rescued the migration defects of HuR-deleted neurons. Our data reveal a post-transcriptional mechanism that maintains actin dynamics during neuronal migration. Summary: Maintaining actin dynamics is crucial for cell motility. Post-transcriptional regulation plays a pivotal role in supporting actin dynamics during neuronal migration.
Collapse
Affiliation(s)
- Yi-Fei Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zi-Fei Song
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Ye Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan-Ning Zhang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Wen-Cheng Xiong
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China .,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
6
|
Zhang JH, Zhao YF, He XX, Zhao Y, He ZX, Zhang L, Huang Y, Wang YB, Hu L, Liu L, Yu HL, Xu JH, Lai MM, Zhao DD, Cui L, Guo WX, Xiong WC, Ding YQ, Zhu XJ. DCC-Mediated Dab1 Phosphorylation Participates in the Multipolar-to-Bipolar Transition of Migrating Neurons. Cell Rep 2019; 22:3598-3611. [PMID: 29590626 DOI: 10.1016/j.celrep.2018.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 02/10/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Newborn neurons undergo inside-out migration to their final destinations during neocortical development. Reelin-induced tyrosine phosphorylation of disabled 1 (Dab1) is a critical mechanism controlling cortical neuron migration. However, the roles of Reelin-independent phosphorylation of Dab1 remain unclear. Here, we report that deleted in colorectal carcinoma (DCC) interacts with Dab1 via its P3 domain. Netrin 1, a DCC ligand, induces Dab1 phosphorylation at Y220 and Y232. Interestingly, knockdown of DCC or truncation of its P3 domain dramatically delays neuronal migration and impairs the multipolar-to-bipolar transition of migrating neurons. Notably, the migration delay and morphological transition defects are rescued by the expression of a phospho-mimetic Dab1 or a constitutively active form of Fyn proto-oncogene (Fyn), a member of the Src-family tyrosine kinases that effectively induces Dab1 phosphorylation. Collectively, these findings illustrate a DCC-Dab1 interaction that ensures proper neuronal migration during neocortical development.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Yi-Fei Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Yang Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Zi-Xuan He
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Yu-Bing Wang
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Ling Hu
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China
| | - Lin Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Jia-Hui Xu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Ming-Ming Lai
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Dong-Dong Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Lei Cui
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Cheng Xiong
- Department of Neurology, Georgia Regents University, Augusta, GA, USA; Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH 44120, USA
| | - Yu-Qiang Ding
- Key Laboratory of Arrhythmias, Ministry of Education, East Hospital, and Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai 200092, China; Institute of Brain Sciences, Fudan University, Shanghai 200031, China.
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130021, China.
| |
Collapse
|
7
|
Jiang YJ, Cao SQ, Gao LB, Wang YY, Zhou B, Hu X, Pu Y, Li ZL, Wang Q, Xiao X, Zhao L, Wang S, Liang WB, Zhang L. Circular Ribonucleic Acid Expression Profile in Mouse Cortex after Traumatic Brain Injury. J Neurotrauma 2019; 36:1018-1028. [PMID: 30261810 DOI: 10.1089/neu.2018.5647] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- You-jing Jiang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shu-qiang Cao
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin-bo Gao
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Yan-yun Wang
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| | - Xin Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, China; West China Brain Research Centre, West China Hospital, Sichuan University, China
| | - Yan Pu
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-long Li
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Qian Wang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Xiao
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhao
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Shuan Wang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Wei-bo Liang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Department of Forensic Genetics, West China School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Translational Medicine, West China Institute of Women and Children's Health, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
8
|
Guo Y, He X, Zhao L, Liu L, Song H, Wang X, Xu J, Ju X, Guo W, Zhu X. Gβ2 Regulates the Multipolar-Bipolar Transition of Newborn Neurons in the Developing Neocortex. Cereb Cortex 2018; 27:3414-3426. [PMID: 28334111 DOI: 10.1093/cercor/bhx042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Indexed: 01/14/2023] Open
Abstract
Proper neuronal migration is critical for the formation of the six-layered neocortex in the mammalian brain. However, the precise control of neuronal migration is not well understood. Heterotrimeric guanine nucleotide binding proteins (G proteins), composed of Gα and Gβγ, transduce signals from G protein-coupled receptors to downstream effectors and play crucial roles in brain development. However, the functions of individual subunits of G proteins in prenatal brain development remain unclear. Here, we report that Gβ2 is expressed in the embryonic neocortex, with abundant expression in the intermediate zone, and is significantly upregulated in differentiated neurons. Perturbation of Gβ2 expression impairs the morphogenetic transformation of migrating neurons from multipolar to bipolar and subsequently delays neuronal migration. Moreover, Gβ2 acts as a scaffold protein to organize the MP1-MEK1-ERK1/2 complex and mediates the phosphorylation of ERK1/2. Importantly, expression of a constitutively active variant of MEK1 rescues the migration defects that are caused by the loss of Gβ2. In conclusion, our findings reveal that Gβ2 regulates proper neuronal migration during neocortex development by activating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Ye Guo
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xiaoxiao He
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lu Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Lin Liu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Huifang Song
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xudong Wang
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Jiahui Xu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Xingda Ju
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Sun D, Zhou X, Yu HL, He XX, Guo WX, Xiong WC, Zhu XJ. Regulation of neural stem cell proliferation and differentiation by Kinesin family member 2a. PLoS One 2017; 12:e0179047. [PMID: 28591194 PMCID: PMC5462413 DOI: 10.1371/journal.pone.0179047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 05/23/2017] [Indexed: 12/03/2022] Open
Abstract
In the developing neocortex, cells in the ventricular/subventricular zone are largely multipotent neural stem cells and neural progenitor cells. These cells undergo self-renewal at the early stage of embryonic development to amplify the progenitor pool and subsequently differentiate into neurons. It is thus of considerable interest to investigate mechanisms controlling the switch from neural stem cells or neural progenitor cells to neurons. Here, we present evidence that Kif2a, a member of the Kinesin-13 family, plays a role in regulating the proliferation and differentiation of neural stem cells or neural progenitor cells at embryonic day 13.5. Silencing Kif2a by use of in utero electroporation of Kif2a shRNA reduced neural stem cells proliferation or self-renewal but increased neuronal differentiation. We further found that knockdown of Kif2a decreased the protein level of β-catenin, which is a critical molecule for neocortical neurogenesis. Together, these results reveal an important function of Kif2a in embryonic neocortical neurogenesis.
Collapse
Affiliation(s)
- Dong Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Xue Zhou
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Hua-Li Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
| | - Xiao-Xiao He
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Wei-Xiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Cheng Xiong
- Department of Neuroscience & Regenerative Medicine and Department of Neurology, Augusta University, Augusta, Georgia, United States of America
- * E-mail: (X-JZ); (W-CX)
| | - Xiao-Juan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
- * E-mail: (X-JZ); (W-CX)
| |
Collapse
|
10
|
Benítez-Burraco A, Uriagereka J. The Immune Syntax Revisited: Opening New Windows on Language Evolution. Front Mol Neurosci 2016; 8:84. [PMID: 26793054 PMCID: PMC4707268 DOI: 10.3389/fnmol.2015.00084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/14/2015] [Indexed: 01/29/2023] Open
Abstract
Recent research has added new dimensions to our understanding of classical evolution, according to which evolutionary novelties result from gene mutations inherited from parents to offspring. Language is surely one such novelty. Together with specific changes in our genome and epigenome, we suggest that two other (related) mechanisms may have contributed to the brain rewiring underlying human cognitive evolution and, specifically, the changes in brain connectivity that prompted the emergence of our species-specific linguistic abilities: the horizontal transfer of genetic material by viral and non-viral vectors and the brain/immune system crosstalk (more generally, the dialogue between the microbiota, the immune system, and the brain).
Collapse
Affiliation(s)
| | - Juan Uriagereka
- Department of Linguistics, University of Maryland College Park, MD, USA
| |
Collapse
|
11
|
Lai M, Guo Y, Ma J, Yu H, Zhao D, Fan W, Ju X, Sheikh MA, Malik YS, Xiong W, Guo W, Zhu X. Myosin X regulates neuronal radial migration through interacting with N-cadherin. Front Cell Neurosci 2015; 9:326. [PMID: 26347613 PMCID: PMC4539528 DOI: 10.3389/fncel.2015.00326] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/06/2015] [Indexed: 11/23/2022] Open
Abstract
Proper brain function depends on correct neuronal migration during development, which is known to be regulated by cytoskeletal dynamics and cell-cell adhesion. Myosin X (Myo10), an uncharacteristic member of the myosin family, is an important regulator of cytoskeleton that modulates cell motilities in many different cellular contexts. We previously reported that Myo10 was required for neuronal migration in the developing cerebral cortex, but the underlying mechanism was still largely unknown. Here, we found that knockdown of Myo10 expression disturbed the adherence of migrating neurons to radial glial fibers through abolishing surface Neuronal cadherin (N-cadherin) expression, thereby impaired neuronal migration in the developmental cortex. Next, we found Myo10 interacted with N-cadherin cellular domain through its FERM domain. Furthermore, we found knockdown of Myo10 disrupted N-cadherin subcellular distribution and led to localization of N-cadherin into Golgi apparatus and endosomal sorting vesicle. Taking together, these results reveal a novel mechanism of Myo10 interacting with N-cadherin and regulating its cell-surface expression, which is required for neuronal adhesion and migration.
Collapse
Affiliation(s)
- Mingming Lai
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China ; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Dali University Dali, China
| | - Ye Guo
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Jun Ma
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Huali Yu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Dongdong Zhao
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Wenqiang Fan
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Xingda Ju
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Muhammad A Sheikh
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Yousra S Malik
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China
| | - Wencheng Xiong
- Department of Neurology, Georgia Regents University, Augusta GA, USA
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University Changchun, China ; State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
12
|
Yu H, Sun D, Wang N, Wang M, Lan Y, Fan W, Zhao Y, Guo W, Zhu X. Headless Myo10 is a regulator of microtubule stability during neuronal development. J Neurochem 2015; 135:261-73. [PMID: 26178610 DOI: 10.1111/jnc.13238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 01/19/2023]
Abstract
Stabilized microtubules are required for neuronal morphogenesis and migration. However, the underlying mechanism is not fully understood. In this study, we demonstrate that myosin X (Myo10), which is composed of full-length myosin X (fMyo10) and headless myosin X (hMyo10), is important for axon development. fMyo10 is involved in axon elongation, whereas hMyo10 is critical for Tau-1 positive axon formation through stabilizing microtubules. Furthermore, in vivo studies reveal that hMyo10-mediated microtubule stability has a profound effect on both neuronal migration and dendritic arborization in the mammalian cerebral cortex. Taken together, our findings suggest that hMyo10 is involved in neuronal development both in vitro and in vivo by regulating microtubule stability.
Collapse
Affiliation(s)
- Huali Yu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Dong Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Nannan Wang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongsheng Lan
- School of Physical Education, Changchun Normal University, Changchun, Jilin, China
| | - Wenqiang Fan
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Yang Zhao
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
13
|
Maccani JZJ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, Marsit CJ. Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:723-9. [PMID: 25748564 PMCID: PMC4492267 DOI: 10.1289/ehp.1408561] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 03/04/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Prenatal mercury (Hg) exposure is associated with adverse child neurobehavioral outcomes. Because Hg can interfere with placental functioning and cross the placenta to target the fetal brain, prenatal Hg exposure can inhibit fetal growth and development directly and indirectly. OBJECTIVES We examined potential associations between prenatal Hg exposure assessed through infant toenail Hg, placental DNA methylation changes, and newborn neurobehavioral outcomes. METHODS The methylation status of > 485,000 CpG loci was interrogated in 192 placental samples using Illumina's Infinium HumanMethylation450 BeadArray. Hg concentrations were analyzed in toenail clippings from a subset of 41 infants; neurobehavior was assessed using the NICU Network Neurobehavioral Scales (NNNS) in an independent subset of 151 infants. RESULTS We identified 339 loci with an average methylation difference > 0.125 between any two toenail Hg tertiles. Variation among these loci was subsequently found to be associated with a high-risk neurodevelopmental profile (omnibus p-value = 0.007) characterized by the NNNS. Ten loci had p < 0.01 for the association between methylation and the high-risk NNNS profile. Six of 10 loci reside in the EMID2 gene and were hypomethylated in the 16 high-risk profile infants' placentas. Methylation at these loci was moderately correlated (correlation coefficients range, -0.33 to -0.45) with EMID2 expression. CONCLUSIONS EMID2 hypomethylation may represent a novel mechanism linking in utero Hg exposure and adverse infant neurobehavioral outcomes.
Collapse
Affiliation(s)
- Jennifer Z J Maccani
- Penn State Tobacco Center of Regulatory Science, Department of Public Health Sciences, College of Medicine, Penn State University, Hershey, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Dopamine transporter is enriched in filopodia and induces filopodia formation. Mol Cell Neurosci 2015; 68:120-30. [PMID: 25936602 DOI: 10.1016/j.mcn.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022] Open
Abstract
Dopamine transporter (DAT, SLC6A3) controls dopamine (DA) neurotransmission by mediating re-uptake of extracellular DA into DA neurons. DA uptake depends on the amount of DAT at the cell surface, and is therefore regulated by DAT subcellular distribution. Hence we used spinning disk confocal microscopy to demonstrate DAT localization in membrane protrusions that contained filamentous actin and myosin X (MyoX), a molecular motor located in filopodia tips, thus confirming that these protrusions are filopodia. DAT was enriched in filopodia. In contrast, R60A and W63A DAT mutants with disrupted outward-facing conformation were not accumulated in filopodia, suggesting that this conformation is necessary for DAT filopodia targeting. Three independent approaches of filopodia counting showed that DAT expression leads to an increase in the number of filopodia per cell, indicating that DAT can induce filopodia formation. Depletion of MyoX by RNA interference resulted in a significant loss of filopodia but did not completely eliminate filopodia, implying that DAT-enriched filopodia can be formed without MyoX. In cultured postnatal DA neurons MyoX was mainly localized to growth cones that displayed highly dynamic DAT-containing filopodia. We hypothesize that the concave shape of the DAT molecule functions as the targeting determinant for DAT accumulation in outward-curved membrane domains, and may also allow high local concentrations of DAT to induce an outward membrane bending. Such targeting and membrane remodeling capacities may be part of the mechanism responsible for DAT enrichment in the filopodia and its targeting to the axonal processes of DA neurons.
Collapse
|
15
|
El Fatimy R, Miozzo F, Le Mouël A, Abane R, Schwendimann L, Sabéran-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 2015; 6:1043-61. [PMID: 25027850 PMCID: PMC4154132 DOI: 10.15252/emmm.201303311] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is a frequent cause of mental retardation. However, the molecular mechanisms underlying brain development defects induced by maternal alcohol consumption during pregnancy are unclear. We used normal and Hsf2-deficient mice and cell systems to uncover a pivotal role for heat shock factor 2 (HSF2) in radial neuronal migration defects in the cortex, a hallmark of fetal alcohol exposure. Upon fetal alcohol exposure, HSF2 is essential for the triggering of HSF1 activation, which is accompanied by distinctive post-translational modifications, and HSF2 steers the formation of atypical alcohol-specific HSF1-HSF2 heterocomplexes. This perturbs the in vivo binding of HSF2 to heat shock elements (HSEs) in genes that control neuronal migration in normal conditions, such as p35 or the MAPs (microtubule-associated proteins, such as Dclk1 and Dcx), and alters their expression. In the absence of HSF2, migration defects as well as alterations in gene expression are reduced. Thus, HSF2, as a sensor for alcohol stress in the fetal brain, acts as a mediator of the neuronal migration defects associated with FASD.
Collapse
Affiliation(s)
- Rachid El Fatimy
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Federico Miozzo
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Anne Le Mouël
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Ryma Abane
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France ED 387 iViv UPMC Univ Paris 06, Paris, France Univ Paris Diderot, Paris Cedex 13, France
| | - Leslie Schwendimann
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Aurélie de Thonel
- INSERM UMR 866, Dijon, France Faculty of Medicine and Pharmacy, Univ Burgundy, Dijon, France
| | - Illiasse Massaoudi
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| | - Liliana Paslaru
- Carol Davila University of Medicine and Pharmacy Fundeni Hospital, Bucharest, Romania
| | - Kazue Hashimoto-Torii
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Elisabeth Christians
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Observatoire Océanologique, CNRS, Villefranche-sur-mer, France Sorbonne Universités UPMC Univ Paris 06, Villefranche-sur-mer, France
| | - Pasko Rakic
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Pierre Gressens
- INSERM U1141, Hôpital Robert Debré, Paris, France Faculté de Médecine Denis Diderot, Univ Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Valérie Mezger
- CNRS UMR7216 Épigénétique et Destin Cellulaire, Paris Cedex 13, France Univ Paris Diderot Sorbonne Paris Cité, Paris Cedex 13, France
| |
Collapse
|
16
|
Yu H, Lai M, Guo Y, Yuan L, Lan Y, Wang X, Zhu X. Myo10 is required for neurogenic cell adhesion and migration. In Vitro Cell Dev Biol Anim 2014; 51:400-7. [PMID: 25491426 DOI: 10.1007/s11626-014-9845-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/02/2014] [Indexed: 12/27/2022]
Abstract
Myosin X (Myo10), an untraditional member of myosin superfamily, is characterized as an actin-based molecular motor, which plays a critical role in diverse cellular motile events. Previous research by our group has found that Myo10 influenced neuronal radial migration in developing neocortex, but the underlying mechanism is still largely unknown. In this study, we found that knockdown of endogenous Myo10 in a normal gonadotropin-releasing hormone (GnRH) neuronal cell line transfected with the large T antigen (NLT) induced the impairment of cell motility and orientation. In the wound healing assay, with the Golgi complex staining to display cell polarity, Myo10 knockdown cells were randomly oriented compared to the control. Furthermore, suppressing the expression of Myo10 decreased the ability of cell-matrix adhesion. N-cadherin, a calcium-dependent classical cell adhesion molecule, rescued the migration deficiency caused by Myo10 knockdown in cell aggregates and collagen gel assay. These results suggest that Myo10 is required for neurogenic cell migration through N-cadherin mediated cell adhesion.
Collapse
Affiliation(s)
- Huali Yu
- Key laboratory of Molecular Epigenetics of Ministry of Education, Institute of Cytology and Genetics, Northeast Normal University, No. 5268, Renmin Street, Changchun, Jilin, 130024, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Liu PF, Wang YH, Cao YW, Jiang HP, Yang XC, Wang XS, Niu HT. Far from resolved: stromal cell-based iTRAQ research of muscle-invasive bladder cancer regarding heterogeneity. Oncol Rep 2014; 32:1489-96. [PMID: 25050759 DOI: 10.3892/or.2014.3340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to globally characterize the cancer stroma expression profile of muscle-invasive bladder cancer in different metastatic risk groups and to discuss the decisive role of biological pathway change in cancer heterogeneity. Laser capture microdissection was employed to harvest purified muscle-invasive bladder cancer stromal cells derived from 30 clinical samples deriving from 3 different metastatic risk groups. Isobaric tags for relative and absolute quantitation (iTRAQ) and two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) were used to identify the differentially expressed proteins. Subsequently, the differentially expressed proteins were further analyzed by bioinformatics tools. After completing the above tasks, the proteins of interest were further compared with the published litterature. We identified 1,049 differentially expressed proteins by paired comparison (high risk vs. median, low risk and normal groups; median risk vs. low risk and normal groups, low risk vs. normal group; a total of 6 comparisons). A total of 510,549,548 proteins as significantly altered (ratio fold-change≥1.5 or ≤0.667 between the metastatic potential risk group and the normal group) were presented in the low/median/high metastatic risk group, respectively. Pathway analysis revealed that the differentially expressed proteins were mainly located in the Kyoto Encyclopedia of Genes and Genomes pathways, including focal adhesion pathway, systemic lupus erythematosus pathway and ECM-receptor interaction pathway. In addition, several proteins such as EXOC4, MYH10 and MMP-9 may serve as candidate biomarkers of muscle-invasive bladder cancer. Our study confirmed that stromal cells, an important part of the cancer tissue, are pivotal for regulating the heterogeneity of cancer. Common changes in biological pathways determined the malignant phenotype of muscle-invasive bladder cancer, and biomarker discovery should take into account both neoplastic cells and their corresponding stromata.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| | - Yong-Hua Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| | - Yan-Wei Cao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| | - Hai-Ping Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| | - Xue-Cheng Yang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| | - Xin-Sheng Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| | - Hai-Tao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P.R. China
| |
Collapse
|
18
|
Lin WH, Hurley JT, Raines AN, Cheney RE, Webb DJ. Myosin X and its motorless isoform differentially modulate dendritic spine development by regulating trafficking and retention of vasodilator-stimulated phosphoprotein. J Cell Sci 2013; 126:4756-68. [PMID: 23943878 DOI: 10.1242/jcs.132969] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Myosin X (Myo10) is an unconventional myosin with two known isoforms: full-length (FL)-Myo10 that has motor activity, and a recently identified brain-expressed isoform, headless (Hdl)-Myo10, which lacks most of the motor domain. FL-Myo10 is involved in the regulation of filopodia formation in non-neuronal cells; however, the biological function of Hdl-Myo10 remains largely unknown. Here, we show that FL- and Hdl-Myo10 have important, but distinct, roles in the development of dendritic spines and synapses in hippocampal neurons. FL-Myo10 induces formation of dendritic filopodia and modulates filopodia dynamics by trafficking the actin-binding protein vasodilator-stimulated phosphoprotein (VASP) to the tips of filopodia. By contrast, Hdl-Myo10 acts on dendritic spines to enhance spine and synaptic density as well as spine head expansion by increasing the retention of VASP in spines. Thus, this study demonstrates a novel biological function for Hdl-Myo10 and an important new role for both Myo10 isoforms in the development of dendritic spines and synapses.
Collapse
Affiliation(s)
- Wan-Hsin Lin
- Department of Biological Sciences and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | |
Collapse
|
19
|
Evsyukova I, Plestant C, Anton ES. Integrative mechanisms of oriented neuronal migration in the developing brain. Annu Rev Cell Dev Biol 2013; 29:299-353. [PMID: 23937349 DOI: 10.1146/annurev-cellbio-101512-122400] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization.
Collapse
Affiliation(s)
- Irina Evsyukova
- Neuroscience Center and the Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599;
| | | | | |
Collapse
|