1
|
Alberquilla S, Nanclares C, Expósito S, Gall G, Kofuji P, Araque A, Martín ED, Moratalla R. Astrocytes Mediate Psychostimulant-Induced Alterations of Spike-Timing Dependent Synaptic Plasticity. Glia 2025; 73:1051-1067. [PMID: 39801264 PMCID: PMC11920680 DOI: 10.1002/glia.24672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 03/20/2025]
Abstract
At cellular and circuit levels, drug addiction is considered a dysregulation of synaptic plasticity. In addition, dysfunction of the glutamate transporter 1 (GLT-1) in the nucleus accumbens (NAc) has also been proposed as a mechanism underlying drug addiction. However, the cellular and synaptic impact of GLT-1 alterations in the NAc remain unclear. Here we show in the NAc that 10 days withdraw after 5 days treatment with cocaine or amphetamine decreases GLT-1 expression in astrocytes, which results in the prolongation of the excitatory postsynaptic potential (EPSP) decay kinetics in D1 receptor-containing medium spiny neurons (D1R-MSNs). Using the spike timing dependent plasticity (STDP) paradigm, we found that enlargement of EPSP duration results in switching the LTP elicited in control animals to LTD in psychostimulant-treated mice. In contrast to D1-MSNs, D2-MSNs did not display changes in EPSP kinetics and synaptic plasticity. Notably, the psychostimulant-induced synaptic transmission and synaptic plasticity effects were absent in IP3R2-/- mice, which lack astrocyte calcium signal, but were mimicked by the selective astrocytes stimulation with DREADDs. Finally, ceftriaxone, which upregulates GLT-1, restored normal GLT-1 function, EPSP kinetics, and synaptic plasticity in psychostimulant-treated mice. Therefore, we propose that cocaine and amphetamine increase dopaminergic levels in the NAc, which stimulates astrocytes and downregulates the GLT-1. The decreased GLT-1 function prolonged the EPSP kinetics, leading to the modulation of the STDP, transforming the LTP observed in control animals into LTD in psychostimulant-treated mice. Present work reveals a novel mechanism underlying the synaptic plasticity changes induced by these drugs of abuse.
Collapse
Affiliation(s)
- Samuel Alberquilla
- Cajal Institute, CSIC, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Grace Gall
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Rosario Moratalla
- Cajal Institute, CSIC, Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Guillaume C, Sáez M, Parnet P, Reig R, Paillé V. Cholecystokinin Modulates Corticostriatal Transmission and Plasticity in Rodents. eNeuro 2025; 12:ENEURO.0251-24.2025. [PMID: 39952675 PMCID: PMC11897783 DOI: 10.1523/eneuro.0251-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Recent findings have shifted the view of cholecystokinin (CCK) from being a cellular neuronal marker to being recognized as a crucial neuropeptide pivotal in synaptic plasticity and memory processes. Despite its now appreciated importance in various brain regions and abundance in the basal ganglia, its role in the striatum, which is vital for motor control, remains unclear. This study sought to fill this gap by performing a comprehensive investigation of the role of CCK in modulating striatal medium spiny neuron (MSN) membrane properties, as well as the secondary somatosensory cortex S2 to MSN synaptic transmission and plasticity in rodents. Using in vivo optopatch-clamp recording in mice on identified MSNs, we showed that the application of CCK receptor Type 2 (CCK2R) antagonists decreases corticostriatal transmission in both direct and indirect pathway MSNs. Moving to an ex vivo rat preparation to maximize experimental access, we showed that CCK2R inhibition impacts MSN membrane properties by reducing spike threshold and rheobase, suggesting an excitability increase. Moreover, CCK modulates corticostriatal transmission mainly via CCK2R, and CCK2R blockage shifted spike-timing-dependent plasticity from long-term potentiation to long-term depression. Our study advances the understanding of CCK's importance in modulating corticostriatal transmission. By showing how CCK2R blockade influences synaptic function and plasticity, we provide new insights into the mechanisms underlying striatal functions, opening new paths for exploring its potential relevance to neurological disorders involving basal ganglia-related behaviors.
Collapse
Affiliation(s)
- Chloé Guillaume
- Nantes Université, INRAe, UMR 1280 PhAN, IMAD, Nantes F-44000, France
| | - María Sáez
- Instituto de Neurociencias UMH-CSIC, San Juan de Alicante 03550, Spain
| | - Patricia Parnet
- Nantes Université, INRAe, UMR 1280 PhAN, IMAD, Nantes F-44000, France
| | - Ramón Reig
- Instituto de Neurociencias UMH-CSIC, San Juan de Alicante 03550, Spain
| | - Vincent Paillé
- Nantes Université, INRAe, UMR 1280 PhAN, IMAD, Nantes F-44000, France
| |
Collapse
|
3
|
Boyzo Montes de Oca A, Tendilla-Beltrán H, Bringas ME, Flores G, Aceves J. Chronic pramipexole and rasagiline treatment enhances dendritic spine structural neuroplasticity in striatal and prefrontal cortex neurons of rats with bilateral intrastriatal 6-hydroxydopamine lesions. J Chem Neuroanat 2024; 141:102468. [PMID: 39383978 DOI: 10.1016/j.jchemneu.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Parkinson's disease manifests as neurological alterations within dendritic spines in the striatal and neocortical brain regions, where their functionality closely correlates with morphology. However, the impact of current pharmacotherapy on dendritic spine neuroplasticity, crucial for novel drug development in neurological and psychiatric disorders, remains unclear. This study investigated the effects of 6-OHDA intrastriatal bilateral lesions in male adult rats on behavior and dendritic spine neuroplasticity in striatal and cortical neurons. Furthermore, it evaluated the influence of chronic co-administration of pramipexole (PPX), a D3 receptor agonist, and rasagiline (Ras), a selective MAO-B inhibitor, on these alterations. Lesioned animals exhibited impaired balance behavior, with no improvement following PPX-Ras treatment. The 6-OHDA lesion decreased dendritic spine density in caudate putamen (CPU) spiny projection neurons (SPNs), a change unaffected by treatment, though PPX-Ras increased mushroom spines and reduced stubby spines in these neurons. In nucleus accumbens (NAcc) SPNs and prefrontal cortex layer 3 (PFC-3) pyramidal cells, dendritic spine density remained unaltered, but PPX-Ras decreased mushroom spines and increased bifurcated spines in the NAcc, while increasing mushroom spines and decreasing stubby spines in PFC-3 in lesioned rats. These findings emphasize the importance of dendritic spines as promising targets for innovative pharmacotherapies for Parkinson's disease.
Collapse
Affiliation(s)
- Alfonso Boyzo Montes de Oca
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico
| | - Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - María E Bringas
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| | - Jorge Aceves
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Mexico City, Mexico.
| |
Collapse
|
4
|
Ryan MB, Girasole AE, Flores AJ, Twedell EL, McGregor MM, Brakaj R, Paletzki RF, Hnasko TS, Gerfen CR, Nelson AB. Excessive firing of dyskinesia-associated striatal direct pathway neurons is gated by dopamine and excitatory synaptic input. Cell Rep 2024; 43:114483. [PMID: 39024096 DOI: 10.1016/j.celrep.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/19/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions. However, the precise mechanisms underlying this process remain unclear. One way to study action selection is to understand how it breaks down in pathological states. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson's disease therapy characterized by involuntary movements. We used an activity-dependent tool (FosTRAP) in conjunction with a mouse model of LID to investigate functionally distinct subsets of striatal direct pathway medium spiny neurons (dMSNs). In vivo, levodopa differentially activates dyskinesia-associated (TRAPed) dMSNs compared to other dMSNs. We found this differential activation of TRAPed dMSNs is likely to be driven by higher dopamine receptor expression, dopamine-dependent excitability, and excitatory input from the motor cortex and thalamus. Together, these findings suggest how the intrinsic and synaptic properties of heterogeneous dMSN subpopulations integrate to support action selection.
Collapse
Affiliation(s)
- Michael B Ryan
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA
| | - Andrew J Flores
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Emily L Twedell
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Rea Brakaj
- Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Ronald F Paletzki
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Thomas S Hnasko
- Department of Neurosciences, UCSD, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
5
|
Zhang B, Hu YB, Li G, Yu HX, Cui C, Han YY, Li HX, Li G. Itga5-PTEN signaling regulates striatal synaptic strength and motor coordination in Parkinson's disease. Int J Biol Sci 2024; 20:3302-3316. [PMID: 38993558 PMCID: PMC11234218 DOI: 10.7150/ijbs.96116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/06/2024] [Indexed: 07/13/2024] Open
Abstract
Background: Parkinson's disease (PD) is marked by the loss of dopaminergic neurons in the substantia nigra pars compacta, leading to motor and cognitive dysfunctions. The molecular mechanisms underlying synaptic alterations in PD remain elusive, with a focus on the role of Itga5 in synaptic integrity and motor coordination and TAT-Itga5 was designed to suppress PTEN activity in this investigation. Methods: This study utilized MPTP-induced PD animal models to investigate the expression and role of Itga5 in the striatum. Techniques included quantitative PCR, Western blotting, immunostaining, CRISPR-CasRx-mediated knockdown, electrophysiological assays, behavioral tests, and mass spectrometry. Results: Itga5 expression was significantly reduced in MPTP-induced PD models. In these models, a marked decrease in dendritic spine density and a shift towards thinner spines in striatal GABA neurons were observed, suggesting impaired synaptic integration. Knockdown of Itga5 resulted in reduced dendritic branching, decreased mushroom spines, and increased thin spines, altering synaptic architecture. Electrophysiological analyses revealed changes in action potential and spontaneous excitatory postsynaptic currents, indicating altered synaptic transmission. Motor behavior assessments showed that Itga5 deficiency led to impairments in fine motor control and coordination. Furthermore, Itga5 was found to interact with PTEN, affecting AKT signaling crucial for synaptic development and motor coordination. Conclusion: The study demonstrates that Itga5 plays a critical role in maintaining synaptic integrity and motor coordination in PD. The Itga5-PTEN-AKT pathway represents a potential therapeutic target for addressing synaptic and motor dysfunctions in PD.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yong-Bo Hu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gen Li
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 20040, China
| | - Hong-Xiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ying-Ying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hong-Xia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
7
|
Pan K, Jinnah HA, Hess EJ, Smith Y, Villalba RM. Ultrastructural analysis of nigrostriatal dopaminergic terminals in a knockin mouse model of DYT1 dystonia. Eur J Neurosci 2024; 59:1407-1427. [PMID: 38123503 DOI: 10.1111/ejn.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023]
Abstract
DYT1 dystonia is associated with decreased striatal dopamine release. In this study, we examined the possibility that ultrastructural changes of nigrostriatal dopamine terminals could contribute to this neurochemical imbalance using a serial block face/scanning electron microscope (SBF/SEM) and three-dimensional reconstruction to analyse striatal tyrosine hydroxylase-immunoreactive (TH-IR) terminals and their synapses in a DYT1(ΔE) knockin (DYT1-KI) mouse model of DYT1 dystonia. Furthermore, to study possible changes in vesicle packaging capacity of dopamine, we used transmission electron microscopy to assess the synaptic vesicle size in striatal dopamine terminals. Quantitative comparative analysis of 80 fully reconstructed TH-IR terminals in the WT and DYT1-KI mice indicate (1) no significant difference in the volume of TH-IR terminals; (2) no major change in the proportion of axo-spinous versus axo-dendritic synapses; (3) no significant change in the post-synaptic density (PSD) area of axo-dendritic synapses, while the PSDs of axo-spinous synapses were significantly smaller in DYT1-KI mice; (4) no significant change in the contact area between TH-IR terminals and dendritic shafts or spines, while the ratio of PSD area/contact area decreased significantly for both axo-dendritic and axo-spinous synapses in DYT1-KI mice; (5) no significant difference in the mitochondria volume; and (6) no significant difference in the synaptic vesicle area between the two groups. Altogether, these findings suggest that abnormal morphometric changes of nigrostriatal dopamine terminals and their post-synaptic targets are unlikely to be a major source of reduced striatal dopamine release in DYT1 dystonia.
Collapse
Affiliation(s)
- Ke Pan
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Physical Therapy & Human Movement Sciences, Northwestern University, Chicago, Illinois, USA
| | - Hyder A Jinnah
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Human Genetics and Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ellen J Hess
- Department of Neurology, Emory University, Atlanta, Georgia, USA
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA
| | - Yoland Smith
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University, Atlanta, Georgia, USA
| | - Rosa M Villalba
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Ribeiro DL, Guimarães RP, Bariotto-Dos-Santos K, Del Bel E, Padovan-Neto FE. Sodium nitroprusside enhances stepping test performance and increases medium spiny neurons responsiveness to cortical inputs in a rat model of Levodopa-induced dyskinesias. Eur J Neurosci 2024; 59:1604-1620. [PMID: 38359910 DOI: 10.1111/ejn.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
Levodopa (L-DOPA) is the classical gold standard treatment for Parkinson's disease. However, its chronic administration can lead to the development of L-DOPA-induced dyskinesias (LIDs). Dysregulation of the nitric oxide-cyclic guanosine monophosphate pathway in striatal networks has been linked to deficits in corticostriatal transmission in LIDs. This study investigated the effects of the nitric oxide (NO) donor sodium nitroprusside (SNP) on behavioural and electrophysiological outcomes in sham-operated and 6-hydroxydopamine-lesioned rats chronically treated with vehicle or L-DOPA, respectively. In sham-operated animals, systemic administration of SNP increased the spike probability of putative striatal medium spiny neurons (MSNs) in response to electrical stimulation of the primary motor cortex. In 6-hydroxydopamine-lesioned animals, SNP improved the stepping test performance without exacerbating abnormal involuntary movements. Additionally, SNP significantly increased the responsiveness of putative striatal MSNs in the dyskinetic striatum. These findings highlight the critical role of the NO signalling pathway in facilitating the responsiveness of striatal MSNs in both the intact and dyskinetic striata. The study suggests that SNP has the potential to enhance L-DOPA's effects in the stepping test without exacerbating abnormal involuntary movements, thereby offering new possibilities for optimizing Parkinson's disease therapy. In conclusion, this study highlights the involvement of the NO signalling pathway in the pathophysiology of LIDs.
Collapse
Affiliation(s)
- Danilo Leandro Ribeiro
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rayanne Poletti Guimarães
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Keila Bariotto-Dos-Santos
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando E Padovan-Neto
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
9
|
Kamo H, Iwamuro H, Nakamura R, Nojiri S, Okuzumi A, Ogawa T, Nakajima A, Hattori N, Shimo Y. Antagonism of metabotropic glutamate receptor type 5 prevents levodopa-induced dyskinesia development in a male rat model of Parkinson's disease: Electrophysiological evidence. J Neurosci Res 2024; 102:e25302. [PMID: 38515319 DOI: 10.1002/jnr.25302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/23/2024]
Abstract
Levodopa-induced dyskinesia (LID) is a common complication in patients with advanced Parkinson's disease (PD) undergoing treatment with levodopa. Glutamate receptor antagonists can suppress LID; however, the underlying mechanisms remain unclear. Here, we aimed to evaluate the effect of 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine (MTEP), a metabotropic glutamate receptor 5 (mGluR5) antagonist, on dyskinesia. We recorded the neuronal activity of the entopeduncular nucleus and examined responses to cortical electric stimulation in the control group (n = 6) and three groups of rats (male PD model). Saline was intraperitoneally administered to dopamine lesioned (DL) rats (n = 6), levodopa/benserazide (L/B) was administered to LID rats (n = 8), and L/B combined with MTEP was administered to MTEP rats (n = 6) twice daily for 14 days. We administered L/B to LID and MTEP rats 48 h after the final administration of MTEP to examine the chronic effect of MTEP. The control and DL groups did not have LID. The MTEP group had less LID than the LID group (p < .01) on day 1 and day 18. The control group had a typical triphasic pattern consisting of early excitation (early-Ex), inhibition, and late excitation (late-Ex). However, the inhibition phase disappeared, was partially observed, and was fully suppressed in the DL, LID, and MTEP groups, respectively. The cortico-striato-entopeduncular pathway is important in the pathophysiology of LID. mGluR5 antagonism suppresses LID progression by preventing physiological changes in the cortico-striato-entopeduncular pathway. Future studies are required to validate these results.
Collapse
Affiliation(s)
- Hikaru Kamo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirokazu Iwamuro
- Department of Neurosurgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryota Nakamura
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Shuko Nojiri
- Medical Technology Innovation Center, Juntendo University, Tokyo, Japan
| | - Ayami Okuzumi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takashi Ogawa
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Asuka Nakajima
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University Nerima Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Li C, Elabi OF, Fieblinger T, Cenci MA. Structural-functional properties of direct-pathway striatal neurons at early and chronic stages of dopamine denervation. Eur J Neurosci 2024; 59:1227-1241. [PMID: 37876330 DOI: 10.1111/ejn.16166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
The dendritic arbour of striatal projection neurons (SPNs) is the primary anatomical site where dopamine and glutamate inputs to the basal ganglia functionally interact to control movement. These dendritic arbourisations undergo atrophic changes in Parkinson's disease. A reduction in the dendritic complexity of SPNs is found also in animal models with severe striatal dopamine denervation. Using 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle as a model, we set out to compare morphological and electrophysiological properties of SPNs at an early versus a chronic stage of dopaminergic degeneration. Ex vivo recordings were performed in transgenic mice where SPNs forming the direct pathway (dSPNs) express a fluorescent reporter protein. At both the time points studied (5 and 28 days following 6-OHDA lesion), there was a complete loss of dopaminergic fibres through the dorsolateral striatum. A reduction in dSPN dendritic complexity and spine density was manifest at 28, but not 5 days post-lesion. At the late time point, dSPN also exhibited a marked increase in intrinsic excitability (reduced rheobase current, increased input resistance, more evoked action potentials in response to depolarising currents), which was not present at 5 days. The increase in neuronal excitability was accompanied by a marked reduction in inward-rectifying potassium (Kir) currents (which dampen the SPN response to depolarising stimuli). Our results show that dSPNs undergo delayed coordinate changes in dendritic morphology, intrinsic excitability and Kir conductance following dopamine denervation. These changes are predicted to interfere with the dSPN capacity to produce a normal movement-related output.
Collapse
Affiliation(s)
- Chang Li
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Osama F Elabi
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Evotec SE, Hamburg, Germany
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Benítez-Castañeda A, Anaya-Martínez V, Espadas-Alvarez ADJ, Gutierrez-Váldez AL, Razgado-Hernández LF, Reyna-Velazquez PE, Quintero-Macias L, Martínez-Fong D, Florán-Garduño B, Aceves J. Transfection of the BDNF Gene in the Surviving Dopamine Neurons in Conjunction with Continuous Administration of Pramipexole Restores Normal Motor Behavior in a Bilateral Rat Model of Parkinson's Disease. PARKINSON'S DISEASE 2024; 2024:3885451. [PMID: 38419644 PMCID: PMC10901579 DOI: 10.1155/2024/3885451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/02/2024]
Abstract
In Parkinson's disease (PD), progressive degeneration of nigrostriatal innervation leads to atrophy and loss of dendritic spines of striatal medium spiny neurons (MSNs). The loss disrupts corticostriatal transmission, impairs motor behavior, and produces nonmotor symptoms. Nigral neurons express brain-derived neurotropic factor (BDNF) and dopamine D3 receptors, both protecting the dopamine neurons and the spines of MSNs. To restore motor and nonmotor symptoms to normality, we assessed a combined therapy in a bilateral rat Parkinson's model, with only 30% of surviving neurons. The preferential D3 agonist pramipexole (PPX) was infused for four ½ months via mini-osmotic pumps and one month after PPX initiation; the BDNF-gene was transfected into the surviving nigral cells using the nonviral transfection NTS-polyplex vector. Overexpression of the BDNF-gene associated with continuous PPX infusion restored motor coordination, balance, normal gait, and working memory. Recovery was also related to the restoration of the average number of dendritic spines of the striatal projection neurons and the number of TH-positive neurons of the substantia nigra and ventral tegmental area. These positive results could pave the way for further clinical research into this promising therapy.
Collapse
Affiliation(s)
- Alina Benítez-Castañeda
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | | | | | | | | | | | - Liz Quintero-Macias
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Daniel Martínez-Fong
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Benjamín Florán-Garduño
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - Jorge Aceves
- Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
12
|
Cenci MA, Kumar A. Cells, pathways, and models in dyskinesia research. Curr Opin Neurobiol 2024; 84:102833. [PMID: 38184982 DOI: 10.1016/j.conb.2023.102833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
L-DOPA-induced dyskinesia (LID) is the most common form of hyperkinetic movement disorder resulting from altered information processing in the cortico-basal ganglia network. We here review recent advances clarifying the altered interplay between striatal output pathways in this movement disorder. We also review studies revealing structural and synaptic changes to the striatal microcircuitry and altered cortico-striatal activity dynamics in LID. We furthermore highlight the recent progress made in understanding the involvement of cerebellar and brain stem nuclei. These recent developments illustrate that dyskinesia research continues to provide key insights into cellular and circuit-level plasticity within the cortico-basal ganglia network and its interconnected brain regions.
Collapse
Affiliation(s)
- M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department Experimental Medical Science, Lund University, Lund, Sweden.
| | - Arvind Kumar
- School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden. https://twitter.com/arvin_neuro
| |
Collapse
|
13
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
14
|
Zhai S, Cui Q, Simmons DV, Surmeier DJ. Distributed dopaminergic signaling in the basal ganglia and its relationship to motor disability in Parkinson's disease. Curr Opin Neurobiol 2023; 83:102798. [PMID: 37866012 PMCID: PMC10842063 DOI: 10.1016/j.conb.2023.102798] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The degeneration of mesencephalic dopaminergic neurons that innervate the basal ganglia is responsible for the cardinal motor symptoms of Parkinson's disease (PD). It has been thought that loss of dopaminergic signaling in one basal ganglia region - the striatum - was solely responsible for the network pathophysiology causing PD motor symptoms. While our understanding of dopamine (DA)'s role in modulating striatal circuitry has deepened in recent years, it also has become clear that it acts in other regions of the basal ganglia to influence movement. Underscoring this point, examination of a new progressive mouse model of PD shows that striatal dopamine DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. This review summarizes recent advances in the effort to understand basal ganglia circuitry, its modulation by DA, and how its dysfunction drives PD motor symptoms.
Collapse
Affiliation(s)
- Shenyu Zhai
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Qiaoling Cui
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - DeNard V Simmons
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
15
|
Collier TJ, Begg L, Stancati JA, Mercado NM, Sellnow RC, Sandoval IM, Sortwell CE, Steece-Collier K. Quinpirole inhibits levodopa-induced dyskinesias at structural and behavioral levels: Efficacy negated by co-administration of isradipine. Exp Neurol 2023; 369:114522. [PMID: 37640098 PMCID: PMC10591902 DOI: 10.1016/j.expneurol.2023.114522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Dopamine depletion associated with parkinsonism induces plastic changes in striatal medium spiny neurons (MSN) that are maladaptive and associated with the emergence of the negative side-effect of standard treatment: the abnormal involuntary movements termed levodopa-induced dyskinesia (LID). Prevention of MSN dendritic spine loss is hypothesized to diminish liability for LID in Parkinson's disease. Blockade of striatal CaV1.3 calcium channels can prevent spine loss and significantly diminish LID in parkinsonian rats. While pharmacological antagonism with FDA approved CaV1 L-type channel antagonist dihydropyridine (DHP) drugs (e.g, isradipine) are potentially antidyskinetic, pharmacologic limitations of current drugs may result in suboptimal efficacy. To provide optimal CaV1.3 antagonism, we investigated the ability of a dual pharmacological approach to more potently antagonize these channels. Specifically, quinpirole, a D2/D3-type dopamine receptor (D2/3R) agonist, has been demonstrated to significantly reduce calcium current activity at CaV1.3 channels in MSNs of rats by a mechanism distinct from DHPs. We hypothesized that dual inhibition of striatal CaV1.3 channels using the DHP drug isradipine combined with the D2/D3 dopamine receptor agonist quinpirole prior to, and in conjunction with, levodopa would be more effective at preventing structural modifications of dendritic spines and providing more stable LID prevention. For these proof-of-principle studies, rats with unilateral nigrostriatal lesions received daily administration of vehicle, isradipine, quinpirole, or isradipine + quinpirole prior to, and concurrent with, levodopa. Development of LID and morphological analysis of dendritic spines were assessed. Contrary to our hypothesis, quinpirole monotherapy was the most effective at reducing dyskinesia severity and preventing abnormal mushroom spine formation on MSNs, a structural phenomenon previously associated with LID. Notably, the antidyskinetic efficacy of quinpirole monotherapy was lost in the presence of isradipine co-treatment. These findings suggest that D2/D3 dopamine receptor agonists when given in combination with levodopa and initiated in early-stage Parkinson's disease may provide long-term protection against LID. The negative interaction of isradipine with quinpirole suggests a potential cautionary note for co-administration of these drugs in a clinical setting.
Collapse
Affiliation(s)
- Timothy J Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA.
| | - Lauren Begg
- Department of Biomedical Sciences, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA
| | - Jennifer A Stancati
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA
| | - Natosha M Mercado
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA
| | - Rhyomi C Sellnow
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Ivette M Sandoval
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA.
| | - Caryl E Sortwell
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA
| | - Kathy Steece-Collier
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave. N.W., Grand Rapids, MI 49503, USA; Hauenstein Neuroscience Center, Mercy Health Saint Mary's, 220 Cherry St. S.E., Grand Rapids, MI 49503, USA
| |
Collapse
|
16
|
Ayon-Olivas M, Wolf D, Andreska T, Granado N, Lüningschrör P, Ip CW, Moratalla R, Sendtner M. Dopaminergic Input Regulates the Sensitivity of Indirect Pathway Striatal Spiny Neurons to Brain-Derived Neurotrophic Factor. BIOLOGY 2023; 12:1360. [PMID: 37887070 PMCID: PMC10604681 DOI: 10.3390/biology12101360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
Motor dysfunction in Parkinson's disease (PD) is closely linked to the dopaminergic depletion of striatal neurons and altered synaptic plasticity at corticostriatal synapses. Dopamine receptor D1 (DRD1) stimulation is a crucial step in the formation of long-term potentiation (LTP), whereas dopamine receptor D2 (DRD2) stimulation is needed for the formation of long-term depression (LTD) in striatal spiny projection neurons (SPNs). Tropomyosin receptor kinase B (TrkB) and its ligand brain-derived neurotrophic factor (BDNF) are centrally involved in plasticity regulation at the corticostriatal synapses. DRD1 activation enhances TrkB's sensitivity for BDNF in direct pathway spiny projection neurons (dSPNs). In this study, we showed that the activation of DRD2 in cultured striatal indirect pathway spiny projection neurons (iSPNs) and cholinergic interneurons causes the retraction of TrkB from the plasma membrane. This provides an explanation for the opposing synaptic plasticity changes observed upon DRD1 or DRD2 stimulation. In addition, TrkB was found within intracellular structures in dSPNs and iSPNs from Pitx3-/- mice, a genetic model of PD with early onset dopaminergic depletion in the dorsolateral striatum (DLS). This dysregulated BDNF/TrkB signaling might contribute to the pathophysiology of direct and indirect pathway striatal projection neurons in PD.
Collapse
Affiliation(s)
- Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| |
Collapse
|
17
|
Wang J, Joseph S, Vingill S, Dere E, Tatenhorst L, Ronnenberg A, Lingor P, Preisinger C, Ehrenreich H, Schulz JB, Stegmüller J. Loss of the parkinsonism-associated protein FBXO7 in glutamatergic forebrain neurons in mice leads to abnormal motor behavior and synaptic defects. J Neurochem 2023; 167:296-317. [PMID: 37753846 DOI: 10.1111/jnc.15962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Mutations in PARK15, which encodes for the F-box protein FBXO7 have been associated with Parkinsonian Pyramidal syndrome, a rare and complex movement disorder with Parkinsonian symptoms, pyramidal tract signs and juvenile onset. Our previous study showed that systemic loss of Fbxo7 in mice causes motor defects and premature death. We have also demonstrated that FBXO7 has a crucial role in neurons as the specific deletion in tyrosine hydroxylase-positive or glutamatergic forebrain neurons leads to late-onset or early-onset motor dysfunction, respectively. In this study, we examined NEX-Cre;Fbxo7fl/fl mice, in which Fbxo7 was specifically deleted in glutamatergic projection neurons. The effects of FBXO7 deficiency on striatal integrity were investigated with HPLC and histological analyses. NEX-Cre;Fbxo7fl/fl mice revealed an increase in striatal dopamine concentrations, changes in the glutamatergic, GABAergic and dopaminergic pathways, astrogliosis and microgliosis and little or no neuronal loss in the striatum. To determine the effects on the integrity of the synapse, we purified synaptic membranes, subjected them to quantitative mass spectrometry analysis and found alterations in the complement system, endocytosis and exocytosis pathways. These neuropathological changes coincide with alterations in spontaneous home cage behavior. Taken together, our findings suggest that FBXO7 is crucial for corticostriatal projections and the synaptic integrity of the striatum, and consequently for proper motor control.
Collapse
Affiliation(s)
- Jingbo Wang
- Department of Neurology, RWTH University Hospital, Aachen, Germany
| | - Sabitha Joseph
- Department of Neurology, RWTH University Hospital, Aachen, Germany
| | - Siv Vingill
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ekrem Dere
- Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Paris Cedex, France
- Clinical Neuroscience, Hermann Rein Strasse 3, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Hermann Rein Strasse 3, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Hannelore Ehrenreich
- Clinical Neuroscience, Hermann Rein Strasse 3, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jörg B Schulz
- Department of Neurology, RWTH University Hospital, Aachen, Germany
- Jülich Aachen Research Alliance (JARA)-BRAIN Institute of Molecular Neuroscience and Neuroimaging, Research Center Jülich and RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Judith Stegmüller
- Department of Neurology, RWTH University Hospital, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
18
|
Surmeier DJ, Zhai S, Cui Q, Simmons DV. Rethinking the network determinants of motor disability in Parkinson's disease. Front Synaptic Neurosci 2023; 15:1186484. [PMID: 37448451 PMCID: PMC10336242 DOI: 10.3389/fnsyn.2023.1186484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
For roughly the last 30 years, the notion that striatal dopamine (DA) depletion was the critical determinant of network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) has dominated the field. While the basal ganglia circuit model underpinning this hypothesis has been of great heuristic value, the hypothesis itself has never been directly tested. Moreover, studies in the last couple of decades have made it clear that the network model underlying this hypothesis fails to incorporate key features of the basal ganglia, including the fact that DA acts throughout the basal ganglia, not just in the striatum. Underscoring this point, recent work using a progressive mouse model of PD has shown that striatal DA depletion alone is not sufficient to induce parkinsonism and that restoration of extra-striatal DA signaling attenuates parkinsonian motor deficits once they appear. Given the broad array of discoveries in the field, it is time for a new model of the network determinants of motor disability in PD.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | | | | |
Collapse
|
19
|
Andreska T, Lüningschrör P, Wolf D, McFleder RL, Ayon-Olivas M, Rattka M, Drechsler C, Perschin V, Blum R, Aufmkolk S, Granado N, Moratalla R, Sauer M, Monoranu C, Volkmann J, Ip CW, Stigloher C, Sendtner M. DRD1 signaling modulates TrkB turnover and BDNF sensitivity in direct pathway striatal medium spiny neurons. Cell Rep 2023; 42:112575. [PMID: 37252844 DOI: 10.1016/j.celrep.2023.112575] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 03/09/2023] [Accepted: 05/14/2023] [Indexed: 06/01/2023] Open
Abstract
Disturbed motor control is a hallmark of Parkinson's disease (PD). Cortico-striatal synapses play a central role in motor learning and adaption, and brain-derived neurotrophic factor (BDNF) from cortico-striatal afferents modulates their plasticity via TrkB in striatal medium spiny projection neurons (SPNs). We studied the role of dopamine in modulating the sensitivity of direct pathway SPNs (dSPNs) to BDNF in cultures of fluorescence-activated cell sorting (FACS)-enriched D1-expressing SPNs and 6-hydroxydopamine (6-OHDA)-treated rats. DRD1 activation causes enhanced TrkB translocation to the cell surface and increased sensitivity for BDNF. In contrast, dopamine depletion in cultured dSPN neurons, 6-OHDA-treated rats, and postmortem brain of patients with PD reduces BDNF responsiveness and causes formation of intracellular TrkB clusters. These clusters associate with sortilin related VPS10 domain containing receptor 2 (SORCS-2) in multivesicular-like structures, which apparently protects them from lysosomal degradation. Thus, impaired TrkB processing might contribute to disturbed motor function in PD.
Collapse
Affiliation(s)
- Thomas Andreska
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Daniel Wolf
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Rhonda L McFleder
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Maurilyn Ayon-Olivas
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany
| | - Marta Rattka
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christine Drechsler
- Department of Microbiology, Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Veronika Perschin
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Noelia Granado
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Camelia Monoranu
- Department for Neuropathology, Julius-Maximilians-University Wuerzburg, 97080 Wuerzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital Wuerzburg, 97080 Wuerzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility of the Biocenter, Julius-Maximilians-University Wuerzburg, 97074 Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078 Wuerzburg, Germany.
| |
Collapse
|
20
|
Zhong M, Wang Y, Lin G, Liao FF, Zhou FM. Dopamine-independent development and maintenance of mouse striatal medium spiny neuron dendritic spines. Neurobiol Dis 2023; 181:106096. [PMID: 37001611 PMCID: PMC10864017 DOI: 10.1016/j.nbd.2023.106096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Striatal medium spiny neurons (MSNs) and striatal dopamine (DA) innervation are profoundly important for brain function such as motor control and cognition. A widely accepted theory posits that striatal DA loss causes (or leads to) MSN dendritic atrophy. However, examination of the literature indicates that the data from Parkinson's disease (PD) patients and animal PD models were contradictory among studies and hard to interpret. Here we have re-examined the potential effects of DA activity on MSN morphology or lack thereof. We found that in 15-day, 4- and 12-month old Pitx3 null mutant mice that have severe DA denervation in the dorsal striatum while having substantial residual DA innervation in the ventral striatum, MSN dendrites and spine numbers were similar in dorsal and ventral striatum, and also similar to those in normal mice. In 15-day, 4- and 12-month old tyrosine hydroxylase knockout mice that cannot synthesize L-dopa and thus have no endogenous DA in the entire brain, MSN dendrites and spine numbers were also indistinguishable from age-matched wild-type (WT) mice. Furthermore, in adult WT mice, unilateral 6-OHDA lesion at 12 months of age caused an almost complete striatal DA denervation in the lesioned side, but MSN dendrites and spine numbers were similar in the lesioned and control sides. Taken together, our data indicate that in mice, the development and maintenance of MSN dendrites and spines are DA-independent such that DA depletion does not trigger MSN dendritic atrophy; our data also suggest that the reported MSN dendritic atrophy in PD may be a component of neurodegeneration in PD rather than a consequence of DA denervation.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| | - Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Geng Lin
- Teaching Center for Basic Medical Experiments, China Medical University, Shenyang 110122, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
21
|
Gergin S, Kirazlı Ö, Boracı H, Yıldız SD, Yananlı HR, Şehirli ÜS. The effects of regular swimming exercise and melatonin on the neurons localized in the striatum of hemiparkinsonian rats. Anat Sci Int 2023; 98:204-219. [PMID: 36223003 DOI: 10.1007/s12565-022-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative movement disorder. We aimed to investigate the effects of regular swimming exercise and melatonin applied in the 6-Hydroxydopamine-induced Parkinson's disease rats by analysing dendritic spine of striatal neurons. Twenty-four male Wistar albino rats were used. 6-Hydroxydopamine unilaterally injected four (control, exercise, melatonin and exercise + melatonin) groups were included in the study. Tyrosine hydroxylase expression was detected by immunohistochemistry. Neurons and structures were identified from three-dimensional images by Neurolucida software. There was not any apparent difference for tyrosine hydroxylase positive neurons in the substantia nigra pars compacta and fibres in the striatum between the lesion sides of hemiparkinsonian groups. The treatment groups blocked the apomorphine-induced increase in rotations compared to the control group. In stepping test, the treatment groups prevented the loss of stepping in the contralateral side of hemiparkinsonian groups. The melatonin mostly had a positive effect on motor activity tests. In morphological analyses, the 6-Hydroxydopamine-induced lesion led to the reduction of the total dendritic length and number of branches. In the treatment groups, the reduction of the dendritic parameters was not observed. 6-Hydroxydopamine lesion led to a decrease in the total spine density, spine densities of thin and mushroom types. The exercise and melatonin treatments prevented the loss of spine density. The exercise treatment prevented the loss of spine density of mushroom type spines. The melatonin treatment blocked the loss of spine density of stubby type. In conclusion, these results provide evidence for effective additional protective therapeutic strategies for Parkinson's disease. In conclusion, results from the current study provide evidence for swimming exercise and melatonin as a promising candidate for effective additional protective strategies for PD.
Collapse
Affiliation(s)
- Sinem Gergin
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Özlem Kirazlı
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Hatice Boracı
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Sercan Doğukan Yıldız
- Department of Anatomy, Marmara University School of Medicine, Istanbul, Turkey.,Marmara University Institute of Health Sciences, Istanbul, Turkey.,Faculty of Dentistry, Department of Anatomy, Istanbul Kent University, Istanbul, Turkey
| | - Hasan Raci Yananlı
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | | |
Collapse
|
22
|
Vegas-Suárez S, Morera-Herreras T, Requejo C, Lafuente JV, Moratalla R, Miguélez C, Ugedo L. Motor cortico-nigral and cortico-entopeduncular information transmission and its modulation by buspirone in control and after dopaminergic denervation. Front Pharmacol 2022; 13:953652. [PMID: 36133803 PMCID: PMC9483552 DOI: 10.3389/fphar.2022.953652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical information is transferred to the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), the output structures of the basal ganglia (BG), through three different pathways: the hyperdirect trans-subthalamic and the direct and indirect trans-striatal pathways. The nigrostriatal dopamine (DA) and the activation of 5-HT1A receptors, distributed all along the BG, may modulate cortical information transmission. We aimed to investigate the effect of buspirone (5-HT1A receptor partial agonist) and WAY-100635 (5-HT1A receptor antagonist) on cortico-nigral and cortico-entopeduncular transmission in normal and DA loss conditions. Herein, simultaneous electrical stimulation of the motor cortex and single-unit extracellular recordings of SNr or EP neurons were conducted in urethane-anesthetized sham and 6-hydroxydopamine (6-OHDA)-lesioned rats before and after drug administrations. Motor cortex stimulation evoked monophasic, biphasic, or triphasic responses, combination of an early excitation, an inhibition, and a late excitation in both the SNr and EP, while an altered pattern of evoked response was observed in the SNr after 6-OHDA lesion. Systemic buspirone potentiated the direct cortico-SNr and cortico-EP transmission in sham animals since increased duration of the inhibitory response was observed. In DA denervated animals, buspirone administration enhanced early excitation amplitude in the cortico-SNr transmission. In both cases, the observed effects were mediated via a 5-HT1A-dependent mechanism as WAY-100635 administration blocked buspirone's effect. These findings suggest that in control condition, buspirone potentiates direct pathway transmission and DA loss modulates responses related to the hyperdirect pathway. Overall, the results may contribute to understanding the role of 5-HT1A receptors and DA in motor cortico-BG circuitry functionality.
Collapse
Affiliation(s)
- Sergio Vegas-Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Catalina Requejo
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Moratalla
- Cajal Institute, Spanish National Research Council (CSIC), Madrid, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Carlos III Institute of Health (ISCIII), Madrid, Spain
| | - Cristina Miguélez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
- Autonomic and Movement Disorders Unit, Neurodegenerative Diseases, Biocruces Health Research Institute, Barakaldo, Spain
| |
Collapse
|
23
|
Li JM, Yang FH, Chao MW, Tseng CY. Swimming exercise prevents hippocampal dendritic spine changes and memory loss caused by aging: An application of a new semi-automated spine analysis software. Mol Cell Neurosci 2022; 121:103755. [PMID: 35850447 DOI: 10.1016/j.mcn.2022.103755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic spines are small, ratchet-like protrusions on neuronal dendrites that form synapses for receiving neuronal messages. Dendritic spine morphology is associated with synapse function. If neurons degrade or are damaged, the spine morphology of neurons changes. Given that most commercially available spine analysis software is expensive and complex, this study investigated a semi-automated spine analysis software, CTSpine, and used previously published data to verify the accuracy of the analysis results of this software. We also applied CTSpine to understand whether aging causes alterations in the hippocampal spine morphology and whether physical exercise can impede dendritic spine changes in 20 male Sprague Dawley rats. The spines of pyramidal cells in the hippocampal Cornu Ammonis 1 (CA1) region in the aging group were more enriched in filopodium type pattern than those in the control group, whereas the spines of the exercised aging group showed a similar pattern to that of the control. No significant changes were observed in neuronal dendritic spines in other hippocampal regions. However, long-term hippocampal memory was considerably decreased in the aging group, which was reversed to some extent in the exercised aging group. CTSpine, a self-developed semi-automatic spine analysis software, showed results similar to those noted in published data and can be effectively applied to the study of dendritic patterns, including neurodevelopment and disease.
Collapse
Affiliation(s)
- Jun-Ming Li
- Psychiatry Department, Taoyuan Armed Forces General Hospital, No. 168, Zhongxing Rd., Longtan Dist, Taoyuan City 32551, Taiwan.
| | - Fu-Hua Yang
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli District, Taoyuan 320, Taiwan.
| | - Ming-Wei Chao
- Department of Bioscience Technology, Chung Yuan Christian University, Zhongli District, Taoyuan 320, Taiwan.
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, Chung Yuan Christian University, Zhongli District, Taoyuan 320, Taiwan.
| |
Collapse
|
24
|
Tanimura A, Shen W, Wokosin D, Surmeier DJ. Pathway-Specific Remodeling of Thalamostriatal Synapses in a Mouse Model of Parkinson's Disease. Mov Disord 2022; 37:1164-1174. [PMID: 35485341 PMCID: PMC9232945 DOI: 10.1002/mds.29030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The network pathophysiology underlying the motor symptoms of Parkinson's disease (PD) is poorly understood. In models of late-stage PD, there is significant cell-specific remodeling of corticostriatal, axospinous glutamatergic synapses on principal spiny projection neurons (SPNs). Neurons in the centrolateral nucleus (CLN) of the thalamus that relay cerebellar activity to the striatum also make axospinous synapses on SPNs, but the extent to which they are affected in PD has not been definitively characterized. OBJECTIVE To fill this gap, transgenic mice in which CLN neurons express Cre recombinase were used in conjunction with optogenetic and circuit mapping approaches to determine changes in the CLN projection to SPNs in a unilateral 6-hydroxydopamine (6-OHDA) model of late-stage PD. METHODS Adeno-associated virus vectors carrying Cre-dependent opsin expression constructs were stereotaxically injected into the CLN of Grp-KH288 mice in which CLN, but not parafascicular nucleus neurons, expressed Cre recombinase. The properties of this projection to identify direct pathway spiny projection neurons (dSPNs) and indirect pathway spiny projection neurons (iSPNs) were then studied in ex vivo brain slices of the dorsolateral striatum from control and 6-OHDA lesioned mice using anatomic, optogenetic, and electrophysiological approaches. RESULTS Optogenetically evoked excitatory synaptic currents in both iSPNs and dSPNs were reduced in lesioned mice; however, the reduction was significantly greater in dSPNs. In iSPNs, the reduction in evoked responses was attributable to synaptic pruning, because synaptic channelrhodopsin assisted circuit mapping (sCRACm) revealed fewer synapses per cell after lesioning. In contrast, sCRACm mapping of CLN inputs to dSPNs failed to detect any change in synapse abundance in lesioned mice. However, the ratio of currents through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors to those through N-methyl-D-aspartate receptors was significantly reduced in dSPNs. Moreover, the distribution of currents evoked by optical stimulation of individual synapses shifted toward smaller amplitudes by lesioning, suggesting that they had undergone long-term depression. CONCLUSIONS Taken together, our results demonstrate that the CLN projection to the striatum undergoes a pathway-specific remodeling that could contribute to the circuit imbalance thought to drive the hypokinetic features of PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Asami Tanimura
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Department of BiomedicineAarhus UniversityAarhusDenmark
| | - Weixing Shen
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - David Wokosin
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| | - D. James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
25
|
Fieblinger T, Li C, Espa E, Cenci MA. Non-Apoptotic Caspase-3 Activation Mediates Early Synaptic Dysfunction of Indirect Pathway Neurons in the Parkinsonian Striatum. Int J Mol Sci 2022; 23:ijms23105470. [PMID: 35628278 PMCID: PMC9141690 DOI: 10.3390/ijms23105470] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Non-apoptotic caspase-3 activation is critically involved in dendritic spine loss and synaptic dysfunction in Alzheimer’s disease. It is, however, not known whether caspase-3 plays similar roles in other pathologies. Using a mouse model of clinically manifest Parkinson’s disease, we provide the first evidence that caspase-3 is transiently activated in the striatum shortly after the degeneration of nigrostriatal dopaminergic projections. This caspase-3 activation concurs with a rapid loss of dendritic spines and deficits in synaptic long-term depression (LTD) in striatal projection neurons forming the indirect pathway. Interestingly, systemic treatment with a caspase inhibitor prevents both the spine pruning and the deficit of indirect pathway LTD without interfering with the ongoing dopaminergic degeneration. Taken together, our data identify transient and non-apoptotic caspase activation as a critical event in the early plastic changes of indirect pathway neurons following dopamine denervation.
Collapse
Affiliation(s)
- Tim Fieblinger
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
- University Medical Center Hamburg-Eppendorf, Institute for Synaptic Physiology, 20251 Hamburg, Germany
- Correspondence: (T.F.); (M.A.C.)
| | - Chang Li
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
| | - M. Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, 223 62 Lund, Sweden; (C.L.); (E.E.)
- Correspondence: (T.F.); (M.A.C.)
| |
Collapse
|
26
|
Adaptive changes in striatal projection neurons explain the long duration response and the emergence of dyskinesias in patients with Parkinson's disease. J Neural Transm (Vienna) 2022; 129:497-503. [PMID: 35538324 PMCID: PMC9188504 DOI: 10.1007/s00702-022-02510-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022]
Abstract
Neuronal activity in the brain is tightly regulated. During operation in real time, for instance, feedback and feedforward loops limit excessive excitation. In addition, cell autonomous processes ensure that neurons’ average activity is restored to a setpoint in response to chronic perturbations. These processes are summarized as homeostatic plasticity (Turrigiano in Cold Spring Harb Perspect Biol 4:a005736–a005736, 2012). In the basal ganglia, information is mainly transmitted through disinhibition, which already constraints the possible range of neuronal activity. When this tightly adjusted system is challenged by the chronic decline in dopaminergic neurotransmission in Parkinson’s disease (PD), homeostatic plasticity aims to compensate for this perturbation. We here summarize recent experimental work from animals demonstrating that striatal projection neurons adapt excitability and morphology in response to chronic dopamine depletion and substitution. We relate these cellular processes to clinical observations in patients with PD that cannot be explained by the classical model of basal ganglia function. These include the long duration response to dopaminergic medication that takes weeks to develop and days to wear off. Moreover, dyskinesias are considered signs of excessive dopaminergic neurotransmission in Parkinson’s disease, but they are typically more severe on the body side that is more strongly affected by dopamine depletion. We hypothesize that these clinical observations can be explained by homeostatic plasticity in the basal ganglia, suggesting that plastic changes in response to chronic dopamine depletion and substitution need to be incorporated into models of basal ganglia function. In addition, better understanding the molecular mechanism of homeostatic plasticity might offer new treatment options to avoid motor complications in patients with PD.
Collapse
|
27
|
Paz RM, Stahl AM, Rela L, Murer MG, Tubert C. D1/D5 Inverse Agonists Restore Striatal Cholinergic Interneuron Physiology in Dyskinetic Mice. Mov Disord 2022; 37:1693-1706. [PMID: 35535012 DOI: 10.1002/mds.29055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND In advanced stages of Parkinson's disease (PD), dyskinesia and motor fluctuations become seriously debilitating and therapeutic options become scarce. Aberrant activity of striatal cholinergic interneurons (SCIN) has been shown to be critical to PD and dyskinesia, but the systemic administration of cholinergic medications can exacerbate extrastriatal-related symptoms. Thus, targeting the mechanisms causing pathological SCIN activity in severe PD with motor fluctuations and dyskinesia is a promising therapeutic alternative. METHODS We used ex vivo electrophysiological recordings combined with pharmacology to study the alterations in intracellular signaling that contribute to the altered SCIN physiology observed in the 6-hydroxydopamine mouse model of PD treated with levodopa. RESULTS The altered phenotypes of SCIN of parkinsonian mice during the "off levodopa" state resulting from aberrant Kir/leak and Kv1.3 currents can be rapidly reverted by acute inhibition of cAMP-ERK1/2 signaling. Inverse agonists that inhibit the ligand-independent activity of D5 receptors, like clozapine, restore Kv1.3 and Kir/leak currents and SCIN normal physiology in dyskinetic mice. CONCLUSION Our work unravels a signaling pathway involved in the dysregulation of membrane currents causing SCIN hyperexcitability and burst-pause activity in parkinsonian mice treated with levodopa (l-dopa). These changes persist during off-medication periods due to tonic mechanisms that can be acutely reversed by pharmacological interventions. Thus, targeting the D5-cAMP-ERK1/2 signaling pathway selectively in SCIN may have therapeutic effects in PD and dyskinesia by restoring the normal SCIN function. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rodrigo Manuel Paz
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Agostina Mónica Stahl
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Lorena Rela
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Mario Gustavo Murer
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| | - Cecilia Tubert
- Universidad de Buenos Aires, CONICET, Instituto de Fisiología y Biofísica (IFIBIO) Bernardo Houssay, Grupo de Neurociencia de Sistemas, Buenos Aires, Argentina
| |
Collapse
|
28
|
Ying L, Zhao J, Ye Y, Liu Y, Xiao B, Xue T, Zhu H, Wu Y, He J, Qin S, Jiang Y, Guo F, Zhang L, Liu N, Zhang L. Regulation of Cdc42 signaling by the dopamine D2 receptor in a mouse model of Parkinson's disease. Aging Cell 2022; 21:e13588. [PMID: 35415964 PMCID: PMC9124300 DOI: 10.1111/acel.13588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/29/2022] [Accepted: 02/26/2022] [Indexed: 12/02/2022] Open
Abstract
Substantial spine loss in striatal medium spiny neurons (MSNs) and abnormal behaviors are common features of Parkinson's disease (PD). The caudate putamen (CPu) mainly contains MSNs expressing dopamine D1 receptor (dMSNs) and dopamine D2 receptor (iMSNs) exerting critical effects on motor and cognition behavior. However, the molecular mechanisms contributing to spine loss and abnormal behaviors in dMSNs and iMSNs under parkinsonian state remain unknown. In the present study, we revealed that Cell division control protein 42 (Cdc42) signaling was significantly decreased in the caudate putamen (CPu) in parkinsonian mice. In addition, overexpression of constitutively active Cdc42 in the CPu reversed spine abnormalities and improved the behavior deficits in parkinsonian mice. Utilizing conditional dopamine D1 receptor (D1R) or D2 receptor (D2R) knockout mice, we found that such a decrease under parkinsonian state was further reduced by conditional knockout of the D2R but not D1R. Moreover, the thin spine loss in iMSNs and deficits in motor coordination and cognition induced by conditional knockout of D2R were reversed by overexpression of constitutively active Cdc42 in the CPu. Additionally, conditional knockout of Cdc42 from D2R‐positive neurons in the CPu was sufficient to induce spine and behavior deficits similar to those observed in parkinsonian mice. Overall, our results indicate that impaired Cdc42 signaling regulated by D2R plays an important role in spine loss and behavioral deficits in PD.
Collapse
Affiliation(s)
- Li Ying
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Jinlan Zhao
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yingshan Ye
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yutong Liu
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Bin Xiao
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Tao Xue
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Hangfei Zhu
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yue Wu
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Jing He
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Sifei Qin
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Yong Jiang
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology Children's Hospital Research Foundation Cincinnati Ohio USA
| | - Lin Zhang
- Department of Histology and Embryology NMPA Key Laboratory for Safety Evaluation of Cosmetics Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province School of Basic Medical Sciences Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| | - Nuyun Liu
- Laboratory Animal Center Elderly Health Services Research Center Southern Medical University Guangzhou China
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province Key Laboratory of Mental Health of the Ministry of Education School of Basic Medical Sciences Pediatric Center of Zhujiang Hospital Center for Orthopaedic Surgery of the Third Affiliated Hospital Southern Medical University Guangzhou China
| |
Collapse
|
29
|
González-Granillo AE, Gnecco D, Díaz A, Garcés-Ramírez L, de la Cruz F, Juarez I, Morales-Medina JC, Flores G. Curcumin induces cortico-hippocampal neuronal reshaping and memory improvements in aged mice. J Chem Neuroanat 2022; 121:102091. [PMID: 35334275 DOI: 10.1016/j.jchemneu.2022.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Aging induces cognitive decline, reduces of synaptic plasticity and increases oxidative reactive species (ROS) in the central nervous system. Traditional medicine has long benefitted from naturally occurring molecules such as curcumin (diferuloymethane). Curcumin is extracted from the plant Curcuma longa and is known for its synaptic and antioxidant-related benefits. In this study, we tested the hypothesis that chronic curcumin treatment reduces cognitive and cellular effects of aging. Curcumin-treated mice showed improved learning and memory using the Morris Water Maze and novel object recognition task. In addition, using the Golgi-Cox stain, curcumin treatment increased spine density in all evaluated regions and increased dendritic arborization in the prefrontal cortex (PFC) layer 3 and CA3 subregion of the hippocampus. Moreover, chronic curcumin exposure increased synaptophysin and actin expression and reduced glial fibrillary acidic protein expression, a marker of astrocytes, in the hippocampus (CA1 and CA3 subregions), while simultaneously reducing the ROS-related molecule, metallothionein 3 expression in the PFC and hippocampus. Collectively, these novel findings suggest that curcumin reduces cognitive, neuronal and astrocytic signs of aging in mice.
Collapse
Affiliation(s)
- Aldo Efrain González-Granillo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel, 72570 Puebla, Mexico; Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Dino Gnecco
- Centro de Química, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Linda Garcés-Ramírez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Fidel de la Cruz
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ismael Juarez
- Laboratorio de Fisiología, Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV, Universidad Autónoma de Tlaxcala, AP 62, CP 90000 Tlaxcala, Mexico
| | - Gonzalo Flores
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel, 72570 Puebla, Mexico.
| |
Collapse
|
30
|
The Origin of Abnormal Beta Oscillations in the Parkinsonian Corticobasal Ganglia Circuits. PARKINSON'S DISEASE 2022; 2022:7524066. [PMID: 35251590 PMCID: PMC8896962 DOI: 10.1155/2022/7524066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/26/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with motor and nonmotor symptoms. Exaggerated beta band (15–30 Hz) neuronal oscillations are widely observed in corticobasal ganglia (BG) circuits during parkinsonism. Abnormal beta oscillations have been linked to motor symptoms of PD, but their exact relationship is poorly understood. Nevertheless, reduction of beta oscillations can induce therapeutic effects in PD patients. While it is widely believed that the external globus pallidus (GPe) and subthalamic nucleus (STN) are jointly responsible for abnormal rhythmogenesis in the parkinsonian BG, the role of other cortico-BG circuits cannot be ignored. To shed light on the origin of abnormal beta oscillations in PD, here we review changes of neuronal activity observed in experimental PD models and discuss how the cortex and different BG nuclei cooperate to generate and stabilize abnormal beta oscillations during parkinsonism. This may provide further insights into the complex relationship between abnormal beta oscillations and motor dysfunction in PD, which is crucial for potential target-specific therapeutic interventions in PD patients.
Collapse
|
31
|
Striatal synaptic adaptations in Parkinson's disease. Neurobiol Dis 2022; 167:105686. [PMID: 35272023 DOI: 10.1016/j.nbd.2022.105686] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
The striatum is densely innervated by mesencephalic dopaminergic neurons that modulate acquisition and vigor of goal-directed actions and habits. This innervation is progressively lost in Parkinson's disease (PD), contributing to the defining movement deficits of the disease. Although boosting dopaminergic signaling with levodopa early in the course of the disease alleviates these deficits, later this strategy leads to the emergence of debilitating dyskinesia. Here, recent advances in our understanding of how striatal cells and circuits adapt to this progressive de-innervation and to levodopa therapy are discussed. First, we discuss how dopamine (DA) depletion triggers cell type-specific, homeostatic changes in spiny projection neurons (SPNs) that tend to normalize striatal activity but also lead to disruption of the synaptic architecture sculpted by experience. Second, we discuss the roles played by cholinergic and nitric oxide-releasing interneurons in these adaptations. Third, we examine recent work in freely moving mice suggesting that alterations in the spatiotemporal dynamics of striatal ensembles contributes to PD movement deficits. Lastly, we discuss recently published evidence from a progressive model of PD suggesting that contrary to the classical model, striatal pathway imbalance is necessary but not sufficient to produce frank parkinsonism.
Collapse
|
32
|
Merino-Galan L, Jimenez-Urbieta H, Zamarbide M, Rodríguez-Chinchilla T, Belloso-Iguerategui A, Santamaria E, Fernández-Irigoyen J, Aiastui A, Doudnikoff E, Bézard E, Ouro A, Knafo S, Gago B, Quiroga-Varela A, Rodríguez-Oroz MC. Striatal synaptic bioenergetic and autophagic decline in premotor experimental parkinsonism. Brain 2022; 145:2092-2107. [PMID: 35245368 PMCID: PMC9460676 DOI: 10.1093/brain/awac087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/20/2022] [Indexed: 12/02/2022] Open
Abstract
Synaptic impairment might precede neuronal degeneration in Parkinson’s disease. However, the intimate mechanisms altering synaptic function by the accumulation of presynaptic α-synuclein in striatal dopaminergic terminals before dopaminergic death occurs, have not been elucidated. Our aim is to unravel the sequence of synaptic functional and structural changes preceding symptomatic dopaminergic cell death. As such, we evaluated the temporal sequence of functional and structural changes at striatal synapses before parkinsonian motor features appear in a rat model of progressive dopaminergic death induced by overexpression of the human mutated A53T α-synuclein in the substantia nigra pars compacta, a protein transported to these synapses. Sequential window acquisition of all theoretical mass spectra proteomics identified deregulated proteins involved first in energy metabolism and later, in vesicle cycling and autophagy. After protein deregulation and when α-synuclein accumulated at striatal synapses, alterations to mitochondrial bioenergetics were observed using a Seahorse XF96 analyser. Sustained dysfunctional mitochondrial bioenergetics was followed by a decrease in the number of dopaminergic terminals, morphological and ultrastructural alterations, and an abnormal accumulation of autophagic/endocytic vesicles inside the remaining dopaminergic fibres was evident by electron microscopy. The total mitochondrial population remained unchanged whereas the number of ultrastructurally damaged mitochondria increases as the pathological process evolved. We also observed ultrastructural signs of plasticity within glutamatergic synapses before the expression of motor abnormalities, such as a reduction in axospinous synapses and an increase in perforated postsynaptic densities. Overall, we found that a synaptic energetic failure and accumulation of dysfunctional organelles occur sequentially at the dopaminergic terminals as the earliest events preceding structural changes and cell death. We also identify key proteins involved in these earliest functional abnormalities that may be modulated and serve as therapeutic targets to counterbalance the degeneration of dopaminergic cells to delay or prevent the development of Parkinson’s disease.
Collapse
Affiliation(s)
- Leyre Merino-Galan
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Neuroscience Department, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Haritz Jimenez-Urbieta
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Marta Zamarbide
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ana Aiastui
- Cell culture Platform, Biodonostia Health Research Institute, San Sebastian, 20014 Donostia, Spain
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Erwan Bézard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France
| | - Alberto Ouro
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Shira Knafo
- Department of Physiology and Cell Biology, Faculty of Health Sciences, The National Institute for Biotechnology in the Negev, and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 8410501 Beer-Sheva, Israel.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Basque Foundation for Science, IKERBASQUE, 48940 Leioa, Spain
| | - Belén Gago
- Faculty of Medicine, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29016 Málaga, Spain
| | - Ana Quiroga-Varela
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - María Cruz Rodríguez-Oroz
- Neuroscience Program, Center for Applied Medical Research (CIMA), Universidad de Navarra, 31008 Pamplona, Spain.,Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.,Neurology Department, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain
| |
Collapse
|
33
|
Striatal glutamatergic hyperactivity in Parkinson's disease. Neurobiol Dis 2022; 168:105697. [DOI: 10.1016/j.nbd.2022.105697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
|
34
|
Nishijima H, Mori F, Kimura T, Miki Y, Kinoshita I, Nakamura T, Kon T, Suzuki C, Wakabayashi K, Tomiyama M. Cabergoline, a long-acting dopamine agonist, attenuates L-dopa-induced dyskinesia without L-dopa sparing in a rat model of Parkinson's disease. Neurosci Res 2022; 178:93-97. [PMID: 35150767 DOI: 10.1016/j.neures.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/20/2022]
Abstract
Intermittent administration of L-dopa in Parkinson's disease is associated with L-dopa-induced dyskinesia (LID). Long-acting dopamine agonists may reduce the risk of LID by continuous dopaminergic stimulation. We examined the LID-like behavior, preprodynorphin messenger ribonucleic acid (mRNA) expression in the striatum (a neurochemical LID hallmark), and the volume of the entopeduncular nucleus (a pathological LID hallmark) in Parkinson's disease rat models that were treated with L-dopa and cabergoline. Cabergoline co-treatment with L-dopa reduced LID, striatal preprodynorphin mRNA expression, and hypertrophy of the entopeduncular nucleus, indicating that cabergoline has an anti-LID effect independent of the L-dopa-sparing effect.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tamaki Kimura
- Department of Neurology, National Hospital Organization, Aomori Hospital, 155-1 Namioka-Megasawa-Hirano, Aomori 038-1331, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
35
|
Scarduzio M, Hess EJ, Standaert DG, Eskow Jaunarajs KL. Striatal synaptic dysfunction in dystonia and levodopa-induced dyskinesia. Neurobiol Dis 2022; 166:105650. [DOI: 10.1016/j.nbd.2022.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
|
36
|
Bove F, Calabresi P. Plasticity, genetics, and epigenetics in l-dopa-induced dyskinesias. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:167-184. [PMID: 35034732 DOI: 10.1016/b978-0-12-819410-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Dopa-induced dyskinesias (LIDs) are a frequent complication in l-dopa-treated patients affected by Parkinson's disease (PD). In the last years, several progresses in the knowledge of LIDs mechanisms have led to the identification of several molecular and electrophysiologic events. A complex cascade of intracellular events underlies the pathophysiology of LIDs, and, among these, aberrant plasticity in the cortico-basal ganglia system, at striatal and cortical level, plays a key role. Furthermore, several recent studies have investigated genetic susceptibility and epigenetic modifications in LIDs pathophysiology that might have future relevance in clinical practice and pharmacologic research. These progresses might lead to the development of specific strategies not only to treat, but also to prevent or delay the development of LIDs in PD.
Collapse
Affiliation(s)
- Francesco Bove
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Calabresi
- UOC Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
37
|
Allichon MC, Ortiz V, Pousinha P, Andrianarivelo A, Petitbon A, Heck N, Trifilieff P, Barik J, Vanhoutte P. Cell-Type-Specific Adaptions in Striatal Medium-Sized Spiny Neurons and Their Roles in Behavioral Responses to Drugs of Abuse. Front Synaptic Neurosci 2022; 13:799274. [PMID: 34970134 PMCID: PMC8712310 DOI: 10.3389/fnsyn.2021.799274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/26/2021] [Indexed: 12/21/2022] Open
Abstract
Drug addiction is defined as a compulsive pattern of drug-seeking- and taking- behavior, with recurrent episodes of abstinence and relapse, and a loss of control despite negative consequences. Addictive drugs promote reinforcement by increasing dopamine in the mesocorticolimbic system, which alters excitatory glutamate transmission within the reward circuitry, thereby hijacking reward processing. Within the reward circuitry, the striatum is a key target structure of drugs of abuse since it is at the crossroad of converging glutamate inputs from limbic, thalamic and cortical regions, encoding components of drug-associated stimuli and environment, and dopamine that mediates reward prediction error and incentive values. These signals are integrated by medium-sized spiny neurons (MSN), which receive glutamate and dopamine axons converging onto their dendritic spines. MSN primarily form two mostly distinct populations based on the expression of either DA-D1 (D1R) or DA-D2 (D2R) receptors. While a classical view is that the two MSN populations act in parallel, playing antagonistic functional roles, the picture seems much more complex. Herein, we review recent studies, based on the use of cell-type-specific manipulations, demonstrating that dopamine differentially modulates dendritic spine density and synapse formation, as well as glutamate transmission, at specific inputs projecting onto D1R-MSN and D2R-MSN to shape persistent pathological behavioral in response to drugs of abuse. We also discuss the identification of distinct molecular events underlying the detrimental interplay between dopamine and glutamate signaling in D1R-MSN and D2R-MSN and highlight the relevance of such cell-type-specific molecular studies for the development of innovative strategies with potential therapeutic value for addiction. Because drug addiction is highly prevalent in patients with other psychiatric disorders when compared to the general population, we last discuss the hypothesis that shared cellular and molecular adaptations within common circuits could explain the co-occurrence of addiction and depression. We will therefore conclude this review by examining how the nucleus accumbens (NAc) could constitute a key interface between addiction and depression.
Collapse
Affiliation(s)
- Marie-Charlotte Allichon
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Vanesa Ortiz
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Paula Pousinha
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Andry Andrianarivelo
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Anna Petitbon
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Nicolas Heck
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| | - Pierre Trifilieff
- Université Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux, France
| | - Jacques Barik
- Université Côte d'Azur, Nice, France.,Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Valbonne, France
| | - Peter Vanhoutte
- CNRS, UMR 8246, Neuroscience Paris Seine, Paris, France.,INSERM, UMR-S 1130, Neuroscience Paris Seine, Institute of Biology Paris Seine, Paris, France.,Sorbonne Université, UPMC Université Paris 06, UM CR18, Neuroscience Paris Seine, Paris, France
| |
Collapse
|
38
|
Madadi Asl M, Vahabie AH, Valizadeh A, Tass PA. Spike-Timing-Dependent Plasticity Mediated by Dopamine and its Role in Parkinson's Disease Pathophysiology. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:817524. [PMID: 36926058 PMCID: PMC10013044 DOI: 10.3389/fnetp.2022.817524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD) is a multi-systemic neurodegenerative brain disorder. Motor symptoms of PD are linked to the significant dopamine (DA) loss in substantia nigra pars compacta (SNc) followed by basal ganglia (BG) circuit dysfunction. Increasing experimental and computational evidence indicates that (synaptic) plasticity plays a key role in the emergence of PD-related pathological changes following DA loss. Spike-timing-dependent plasticity (STDP) mediated by DA provides a mechanistic model for synaptic plasticity to modify synaptic connections within the BG according to the neuronal activity. To shed light on how DA-mediated STDP can shape neuronal activity and synaptic connectivity in the PD condition, we reviewed experimental and computational findings addressing the modulatory effect of DA on STDP as well as other plasticity mechanisms and discussed their potential role in PD pathophysiology and related network dynamics and connectivity. In particular, reshaping of STDP profiles together with other plasticity-mediated processes following DA loss may abnormally modify synaptic connections in competing pathways of the BG. The cascade of plasticity-induced maladaptive or compensatory changes can impair the excitation-inhibition balance towards the BG output nuclei, leading to the emergence of pathological activity-connectivity patterns in PD. Pre-clinical, clinical as well as computational studies reviewed here provide an understanding of the impact of synaptic plasticity and other plasticity mechanisms on PD pathophysiology, especially PD-related network activity and connectivity, after DA loss. This review may provide further insights into the abnormal structure-function relationship within the BG contributing to the emergence of pathological states in PD. Specifically, this review is intended to provide detailed information for the development of computational network models for PD, serving as testbeds for the development and optimization of invasive and non-invasive brain stimulation techniques. Computationally derived hypotheses may accelerate the development of therapeutic stimulation techniques and potentially reduce the number of related animal experiments.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Abdol-Hossein Vahabie
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Department of Psychology, Faculty of Psychology and Education, University of Tehran, Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
39
|
Taylor HBC, Jeans AF. Friend or Foe? The Varied Faces of Homeostatic Synaptic Plasticity in Neurodegenerative Disease. Front Cell Neurosci 2021; 15:782768. [PMID: 34955753 PMCID: PMC8702499 DOI: 10.3389/fncel.2021.782768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Homeostatic synaptic plasticity (HSP) regulates synaptic strength both pre- and postsynaptically to ensure stability and efficient information transfer in neural networks. A number of neurological diseases have been associated with deficits in HSP, particularly diseases characterised by episodic network instability such as migraine and epilepsy. Recently, it has become apparent that HSP also plays a role in many neurodegenerative diseases. In this mini review, we present an overview of the evidence linking HSP to each of the major neurodegenerative diseases, finding that HSP changes in each disease appear to belong to one of three broad functional categories: (1) deficits in HSP at degenerating synapses that contribute to pathogenesis or progression; (2) HSP induced in a heterosynaptic or cell non-autonomous manner to support the function of networks of which the degenerating synapses or cells are part; and (3) induction of HSP within the degenerating population of synapses to preserve function and to resist the impact of synapse loss. Understanding the varied manifestations of HSP in neurodegeneration will not only aid understanding mechanisms of disease but could also inspire much-needed novel approaches to therapy.
Collapse
Affiliation(s)
| | - Alexander F. Jeans
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Zhang X, Chen W, Wu Y, Zeng W, Yuan Y, Cheng C, Yang X, Wang J, Yang X, Xu Y, Lei H, Cao X, Xu Y. Histological Correlates of Neuroanatomical Changes in a Rat Model of Levodopa-Induced Dyskinesia Based on Voxel-Based Morphometry. Front Aging Neurosci 2021; 13:759934. [PMID: 34776935 PMCID: PMC8581620 DOI: 10.3389/fnagi.2021.759934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Long-term therapy with levodopa (L-DOPA) in patients with Parkinson’s disease (PD) often triggers motor complications termed as L-DOPA-induced dyskinesia (LID). However, few studies have explored the pathogenesis of LID from the perspective of neuroanatomy. This study aimed to investigate macroscopic structural changes in a rat model of LID and the underlying histological mechanisms. First, we established the hemiparkinsonism rat model through stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle, followed by administration of saline (PD) or L-DOPA to induce LID. Magnetic resonance imaging (MRI) and behavioral evaluations were performed at different time points. Histological analysis was conducted to assess the correlations between MRI signal changes and cellular contributors. Voxel-based morphometry (VBM) analysis revealed progressive bilateral volume reduction in the cortical and subcortical areas in PD rats compared with the sham rats. These changes were partially reversed by chronic L-DOPA administration; moreover, there was a significant volume increase mainly in the dorsolateral striatum, substantia nigra, and piriform cortex of the lesioned side compared with that of PD rats. At the striatal cellular level, glial fibrillary acidic protein-positive (GFAP+) astrocytes were significantly increased in the lesioned dorsolateral striatum of PD rats compared with the intact side and the sham group. Prolonged L-DOPA treatment further increased GFAP levels. Neither 6-OHDA damage nor L-DOPA treatment influenced the striatal expression of vascular endothelial growth factor (VEGF). Additionally, there was a considerable increase in synapse-associated proteins (SYP, PSD95, and SAP97) in the lesioned striatum of LID rats relative to the PD rats. Golgi-Cox staining analysis of the dendritic spine morphology revealed an increased density of dendritic spines after chronic L-DOPA treatment. Taken together, our findings suggest that striatal volume changes in LID rats involve astrocyte activation, enrichment of synaptic ultrastructure and signaling proteins in the ipsilateral striatum. Meanwhile, the data highlight the enormous potential of structural MRI, especially VBM analysis, in determining the morphological phenotype of rodent models of LID.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
The effects of melatonin on the striatum. MARMARA MEDICAL JOURNAL 2021. [DOI: 10.5472/marumj.1012077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Chiken S, Takada M, Nambu A. Altered Dynamic Information Flow through the Cortico-Basal Ganglia Pathways Mediates Parkinson's Disease Symptoms. Cereb Cortex 2021; 31:5363-5380. [PMID: 34268560 PMCID: PMC8568006 DOI: 10.1093/cercor/bhab164] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder caused by dopamine deficiency. To elucidate network-level changes through the cortico-basal ganglia pathways in PD, we recorded neuronal activity in PD monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. We applied electrical stimulation to the motor cortices and examined responses in the internal (GPi) and external (GPe) segments of the globus pallidus, the output and relay nuclei of the basal ganglia, respectively. In the normal state, cortical stimulation induced a triphasic response composed of early excitation, inhibition, and late excitation in the GPi and GPe. In the PD state, cortically evoked inhibition in the GPi mediated by the cortico-striato-GPi “direct” pathway was largely diminished, whereas late excitation in the GPe mediated by the cortico-striato-GPe-subthalamo (STN)-GPe pathway was elongated. l-DOPA treatment ameliorated PD signs, particularly akinesia/bradykinesia, and normalized cortically evoked responses in both the GPi and GPe. STN blockade by muscimol injection ameliorated the motor deficit and unmasked cortically evoked inhibition in the GPi. These results suggest that information flow through the direct pathway responsible for the initiation of movements is largely reduced in PD and fails to release movements, resulting in akinesia/bradykinesia. Restoration of the information flow through the direct pathway recovers execution of voluntary movements.
Collapse
Affiliation(s)
- Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama 484-8506, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
43
|
He Y, Li Y, Pu Z, Chen M, Gao Y, Chen L, Ruan Y, Pan X, Zhou Y, Ge Y, Zhou J, Zheng W, Huang Z, Li Z, Chen JF. Striatopallidal Pathway Distinctly Modulates Goal-Directed Valuation and Acquisition of Instrumental Behavior via Striatopallidal Output Projections. Cereb Cortex 2021; 30:1366-1381. [PMID: 31690946 DOI: 10.1093/cercor/bhz172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
The striatopallidal pathway is specialized for control of motor and motivational behaviors, but its causal role in striatal control of instrumental learning remains undefined (partly due to the confounding motor effects). Here, we leveraged the transient and "time-locked" optogenetic manipulations with the reward delivery to minimize motor confounding effect, to better define the striatopallidal control of instrumental behaviors. Optogenetic (Arch) silencing of the striatopallidal pathway in the dorsomedial striatum (DMS) and dorsolateral striatum (DLS) promoted goal-directed and habitual behaviors, respectively, without affecting acquisition of instrumental behaviors, indicating striatopallidal pathway suppression of instrumental behaviors under physiological condition. Conversely, striatopallidal pathway activation mainly affected the acquisition of instrumental behaviors with the acquisition suppression achieved by either optogenetic (ChR2) or chemicogenetic (hM3q) activation, by strong (10 mW, but not weak 1 mW) optogenetic activation, by the time-locked (but not random) optogenetic activation with the reward and by the DMS (but not DLS) striatopallidal pathway. Lastly, striatopallidal pathway modulated instrumental behaviors through striatopallidal output projections into the external globus pallidus (GPe) since optogenetic activation of the striatopallidal pathway in the DMS and of the striatopallidal output projections in the GPe similarly suppressed goal-directed behavior. Thus, the striatopallidal pathway confers distinctive and inhibitory controls of animal's sensitivity to goal-directed valuation and acquisition of instrumental behaviors under normal and over-activation conditions, through the output projections into GPe.
Collapse
Affiliation(s)
- Yan He
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhilan Pu
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mozi Chen
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ying Gao
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Li Chen
- Department of Pharmacology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yang Ruan
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinran Pan
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuling Zhou
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuanyuan Ge
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianhong Zhou
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wu Zheng
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Zhili Huang
- Department of Pharmacology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Zhihui Li
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jiang-Fan Chen
- School of Optometry and Ophthalmology and Eye Hospital, The Institute of Molecular Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
44
|
Nishijima H, Kimura T, Mori F, Wakabayashi K, Kinoshita I, Nakamura T, Kon T, Suzuki C, Tomiyama M. Effects of Aging on Levo-Dihydroxyphenylalanine- Induced Dyskinesia in a Rat Model of Parkinson's Disease. Front Aging Neurosci 2021; 13:650350. [PMID: 34054505 PMCID: PMC8155371 DOI: 10.3389/fnagi.2021.650350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/20/2021] [Indexed: 01/04/2023] Open
Abstract
Background It remains unclear why patients with young-onset Parkinson's disease more often develop levo-dihydroxyphenylalanine (L-dopa)-induced dyskinesia (LID) and have a more severe form than patients with old-onset Parkinson's disease. Previous studies using animal models have failed to show young-onset Parkinson's disease enhances LID. Objectives To evaluate the association of age at dopaminergic denervation (onset age) and initiation of L-dopa treatment (treatment age) with LID development in model rats. Methods We established rat models of young- and old-lesioned Parkinson's disease (6-hydroxydopamine lesions at 10 and 88 weeks of age, respectively). Dopaminergic denervation was confirmed by the rotational behavior test using apomorphine. Rats in the young-lesioned group were allocated to either L-dopa treatment at a young or old age, or saline treatment. Rats in the old-lesioned group were allocated to either L-dopa treatment or saline group. We evaluated L-dopa-induced abnormal involuntary movements during the 14-day treatment period. We also examined preprodynorphin mRNA expression in the striatum (a neurochemical hallmark of LID) and the volume of the medial globus pallidus (a pathological hallmark of LID). Results LID-like behavior was enhanced in L-dopa-treated young-lesioned rats compared with L-dopa-treated old-lesioned rats. Preprodynorphin mRNA expression was higher in L-dopa-treated young-lesioned rats than in in L-dopa-treated old-lesioned rats. The volume of the medial globus pallidus was greater in L-dopa-treated young-lesioned rats than in L-dopa-treated old-lesioned rats. Treatment age did not affect LID-like behavior or the degree of medial globus pallidus hypertrophy in the young-lesioned model. Conclusion Both dopaminergic denervation and L-dopa initiation at a young age contributed to the development of LID; however, the former may be a more important factor.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tamaki Kimura
- Department of Neurology, National Hospital Organization, Aomori Hospital, Aomori, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Iku Kinoshita
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takashi Nakamura
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chieko Suzuki
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
45
|
Liu Z, Yan A, Zhao J, Yang S, Song L, Liu Z. The p75 neurotrophin receptor as a novel intermediate in L-dopa-induced dyskinesia in experimental Parkinson's disease. Exp Neurol 2021; 342:113740. [PMID: 33971218 DOI: 10.1016/j.expneurol.2021.113740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
In Parkinson's disease (PD), long-term administration of L-dopa often leads to L-dopa-induced dyskinesia (LID), a debilitating motor complication. The p75 neurotrophin receptor (p75NTR) is likely to play a critical role in the regulation of dendritic spine density and morphology and appears to be associated with neuroinflammation, which previously has been identified as a crucial mechanism in LID. While aberrant modifications of p75NTR in neurological diseases have been extensively documented, only a few studies report p75NTR dysfunction in PD, and no data are available in LID. Here, we explored the functional role of p75NTR in LID. In LID rats, we identified that p75NTR was significantly increased in the lesioned striatum. In 6-hydroxydopamine (6-OHDA)-hemilesioned rats, specific knockdown of striatal p75NTR levels achieved by viral vector injection into the striatum prevented the development of LID and increased striatal structural plasticity. By contrast, we found that in 6-OHDA-hemilesioned rats, striatal p75NTR overexpression exacerbated LID and facilitated striatal dendritic spine losses. Moreover, we observed that the immunomodulatory drug fingolimod attenuated LID without lessening the therapeutic efficacy of L-dopa and normalized p75NTR levels. Together, these data demonstrate for the first time that p75NTR plays a pivotal role in the development of LID and that p75NTR may act as a potential novel target for the management of LID.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Aijuan Yan
- Department of Neurology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Jiahao Zhao
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Shuyuan Yang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200082, China.
| |
Collapse
|
46
|
Guo M, Xiang T, Li M, Sun Y, Sun S, Chen D, Jia Q, Li Y, Yao X, Wang X, Zhang X, He F, Wang M. Effects of intrastriatal injection of the dopamine receptor agonist SKF38393 and quinpirole on locomotor behavior in hemiparkinsonism rats. Behav Brain Res 2021; 411:113339. [PMID: 33945831 DOI: 10.1016/j.bbr.2021.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022]
Abstract
Dopamine (DA) in the striatum is essential to influence motor behavior and may lead to movement impairment in Parkinson's disease (PD). The present study examined the different functions of the DA D1 receptor (D1R) and DA D2 receptor (D2R) by intrastriatal injection of the D1R agonist SKF38393 and the D2R agonist quinpirole in 6-hydroxydopamine (6-OHDA)-lesioned and control rats. All rats separately underwent dose-response behavior testing for SKF38393 (0, 0.5, 1.0, and 1.5 μg/site) or quinpirole (0, 1.0, 2.0, and 3.0 μg/site) to determine the effects of the optimal modulating threshold dose. Two behavior assessment indices, the time of latency to fall and the number of steps on a rotating treadmill, were used as reliable readouts of motor stimulation variables for quantifying the motor effects of the drugs. The findings indicate that at threshold doses, SKF38393 (1.0 μg/site) and quinpirole (1.0 μg/site) produce a dose-dependent increase in locomotor activity compared to vehicle injection. The ameliorated behavioral responses to either SKF38393 or quinpirole in lesioned rats were greater than those in unlesioned control rats. Moreover, the dose-dependent increase in locomotor capacity for quinpirole was greater than that for SKF38393 in lesioned rats. These results can clarify several key issues related to DA receptors directly and may provide a basis for exploring the potential of future selective dopamine therapies for PD in humans.
Collapse
Affiliation(s)
- Mengnan Guo
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Tianyu Xiang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Dadian Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Qingmei Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Yuchuan Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Xiaomeng Yao
- School of Nursing Qilu Institute of Technology, Jinan, 250200, People's Republic of China
| | - Xiaojun Wang
- The First Hospital Affiliated With Shandong First Medicine University, Jinan, People's Republic of China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250200, People's Republic of China
| | - Feng He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China.
| |
Collapse
|
47
|
Fabbrini A, Guerra A. Pathophysiological Mechanisms and Experimental Pharmacotherapy for L-Dopa-Induced Dyskinesia. J Exp Pharmacol 2021; 13:469-485. [PMID: 33953618 PMCID: PMC8092630 DOI: 10.2147/jep.s265282] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022] Open
Abstract
L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the understanding of the pathophysiological mechanisms underlying LID suggest that abnormalities in multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID development. Increased knowledge of neurobiological LID substrates has led to the development of several drug candidates to alleviate this motor complication. However, with the exception of amantadine, none of the pharmacological therapies tested in humans have demonstrated clinically relevant beneficial effects. Therefore, LID management is still one of the most challenging problems in the treatment of PD patients. In this review, we first describe the known pathophysiological mechanisms of LID. We then provide an updated report of experimental pharmacotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate LID. Finally, we discuss available pharmacological LID treatment approaches and offer our opinion of possible issues to be clarified and future therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
48
|
Abnormal Cortico-Basal Ganglia Neurotransmission in a Mouse Model of l-DOPA-Induced Dyskinesia. J Neurosci 2021; 41:2668-2683. [PMID: 33563724 DOI: 10.1523/jneurosci.0267-20.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/16/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
l-3,4-dihydroxyphenylalanine (l-DOPA) is an effective treatment for Parkinson's disease (PD); however, long-term treatment induces l-DOPA-induced dyskinesia (LID). To elucidate its pathophysiology, we developed a mouse model of LID by daily administration of l-DOPA to PD male ICR mice treated with 6-hydroxydopamine (6-OHDA), and recorded the spontaneous and cortically evoked neuronal activity in the external segment of the globus pallidus (GPe) and substantia nigra pars reticulata (SNr), the connecting and output nuclei of the basal ganglia, respectively, in awake conditions. Spontaneous firing rates of GPe neurons were decreased in the dyskinesia-off state (≥24 h after l-DOPA injection) and increased in the dyskinesia-on state (20-100 min after l-DOPA injection while showing dyskinesia), while those of SNr neurons showed no significant changes. GPe and SNr neurons showed bursting activity and low-frequency oscillation in the PD, dyskinesia-off, and dyskinesia-on states. In the GPe, cortically evoked late excitation was increased in the PD and dyskinesia-off states but decreased in the dyskinesia-on state. In the SNr, cortically evoked inhibition was largely suppressed, and monophasic excitation became dominant in the PD state. Chronic l-DOPA treatment partially recovered inhibition and suppressed late excitation in the dyskinesia-off state. In the dyskinesia-on state, inhibition was further enhanced, and late excitation was largely suppressed. Cortically evoked inhibition and late excitation in the SNr are mediated by the cortico-striato-SNr direct and cortico-striato-GPe-subthalamo-SNr indirect pathways, respectively. Thus, in the dyskinesia-on state, signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed, underlying LID.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is caused by progressive loss of midbrain dopaminergic neurons, characterized by tremor, rigidity, and akinesia, and estimated to affect around six million people world-wide. Dopamine replacement therapy is the gold standard for PD treatment; however, control of symptoms using l-3,4-dihydroxyphenylalanine (l-DOPA) becomes difficult over time because of abnormal involuntary movements (AIMs) known as l-DOPA-induced dyskinesia (LID), one of the major issues for advanced PD. Our electrophysiological data suggest that dynamic changes in the basal ganglia circuitry underlie LID; signals through the direct pathway that release movements are enhanced, while signals through the indirect pathway that stop movements are suppressed. These results will provide the rationale for the development of more effective treatments for LID.
Collapse
|
49
|
Feyder M, Plewnia C, Lieberman OJ, Spigolon G, Piccin A, Urbina L, Dehay B, Li Q, Nilsson P, Altun M, Santini E, Sulzer D, Bezard E, Borgkvist A, Fisone G. Involvement of Autophagy in Levodopa-Induced Dyskinesia. Mov Disord 2021; 36:1137-1146. [PMID: 33460487 PMCID: PMC8248404 DOI: 10.1002/mds.28480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Background Autophagy is intensively studied in cancer, metabolic and neurodegenerative diseases, but little is known about its role in pathological conditions linked to altered neurotransmission. We examined the involvement of autophagy in levodopa (l‐dopa)‐induced dyskinesia, a frequent motor complication developed in response to standard dopamine replacement therapy in parkinsonian patients. Methods We used mouse and non‐human primate models of Parkinson's disease to examine changes in autophagy associated with chronic l‐dopa administration and to establish a causative link between impaired autophagy and dyskinesia. Results We found that l‐dopa‐induced dyskinesia is associated with accumulation of the autophagy‐specific substrate p62, a marker of autophagy deficiency. Increased p62 was observed in a subset of projection neurons located in the striatum and depended on l‐dopa‐mediated activation of dopamine D1 receptors, and mammalian target of rapamycin. Inhibition of mammalian target of rapamycin complex 1 with rapamycin counteracted the impairment of autophagy produced by l‐dopa, and reduced dyskinesia. The anti‐dyskinetic effect of rapamycin was lost when autophagy was constitutively suppressed in D1 receptor‐expressing striatal neurons, through inactivation of the autophagy‐related gene protein 7. Conclusions These findings indicate that augmented responsiveness at D1 receptors leads to dysregulated autophagy, and results in the emergence of l‐dopa‐induced dyskinesia. They further suggest the enhancement of autophagy as a therapeutic strategy against dyskinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carina Plewnia
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ori J Lieberman
- Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Giada Spigolon
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Piccin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Urbina
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Dehay
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, F-33000, France
| | - Qin Li
- Motac Neuroscience Ltd, Manchester, United Kingdom.,Institute of Laboratory Animal Sciences & China Academy of Medical Sciences, Beijing, China
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Altun
- Science for Life Laboratory, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - David Sulzer
- Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Erwan Bezard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, F-33000, France.,Motac Neuroscience Ltd, Manchester, United Kingdom
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Departments of Neurology, Pharmacology and Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, New York, USA
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
50
|
Antonazzo M, Gomez-Urquijo SM, Ugedo L, Morera-Herreras T. Dopaminergic denervation impairs cortical motor and associative/limbic information processing through the basal ganglia and its modulation by the CB1 receptor. Neurobiol Dis 2020; 148:105214. [PMID: 33278598 DOI: 10.1016/j.nbd.2020.105214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
The basal ganglia (BG) are involved in cognitive/motivational functions in addition to movement control. Thus, BG segregated circuits, the sensorimotor (SM) and medial prefrontal (mPF) circuits, process different functional domains, such as motor and cognitive/motivational behaviours, respectively. With a high presence in the BG, the CB1 cannabinoid receptor modulates BG circuits. Furthermore, dopamine (DA), one of the principal neurotransmitters in the BG, also plays a key role in circuit functionality. Taking into account the interaction between DA and the endocannabinoid system at the BG level, we investigated the functioning of BG circuits and their modulation by the CB1 receptor under DA-depleted conditions. We performed single-unit extracellular recordings of substantia nigra pars reticulata (SNr) neurons with simultaneous cortical stimulation in sham and 6-hydroxydopamine (6-OHDA)-lesioned rats, together with immunohistochemical assays. We showed that DA loss alters cortico-nigral information processing in both circuits, with a predominant transmission through the hyperdirect pathway in the SM circuit and an increased transmission through the direct pathway in the mPF circuit. Moreover, although DA denervation does not change CB1 receptor density, it impairs its functionality, leading to a lack of modulation. These data highlight an abnormal transfer of information through the associative/limbic domains after DA denervation that may be related to the non-motor symptoms manifested by Parkinson's disease patients.
Collapse
Affiliation(s)
- Mario Antonazzo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Sonia María Gomez-Urquijo
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Achucarro Basque Center for Neuroscience, Science Park of the University of the Basque Country (UPV/EHU), Leioa 48940, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa 48940, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|