1
|
Jain N, Qi HX, Raman A, Lyon D, Kaas JH. Cortical reorganization following dorsal spinal injuries in newborn monkeys reveals a critical period in the development of the somatosensory cortex. Proc Natl Acad Sci U S A 2025; 122:e2417417122. [PMID: 39835892 PMCID: PMC11789031 DOI: 10.1073/pnas.2417417122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex. Dorsal columns were transected between the 3rd and 12th postnatal day (PND), and the somatosensory cortex was mapped when the macaques were over 3 y old. There were two distinct outcomes depending on the age at the time of the lesion. In monkeys lesioned between the 3rd and 5th PND, neurons in the entire hand region of area 3b and the adjacent somatosensory cortex responded to touch on the hand. An alternate spinal pathway must have replaced the lost pathway. In monkeys lesioned between the 9th and 12th PND, neurons in the deafferented hand region did not respond to touch on the hand. There was medialward expansion of the face representation into the deafferented cortex and a lateral expansion of the arm representation as in lesioned adults. Thus, different mechanisms underlie the reorganization of area 3b and the adjacent somatosensory cortex following identical spinal cord injuries sustained as early or late newborns. The results suggest that alternate spinal cord pathways can develop within a critical period before the 9th PND, but not later.
Collapse
Affiliation(s)
- Neeraj Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur342030, India
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| | - Arun Raman
- National Brain Research Centre, Manesar122 051, India
| | - David Lyon
- Department of Psychology, Vanderbilt University, Nashville, TN37240
- Department of Anatomy and Neurobiology, University of California, Irvine, CA92697
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN37240
| |
Collapse
|
2
|
Pellicer-Morata V, Wang L, Curry ADJ, Tsao JW, Waters RS. Lower jaw-to-forepaw rapid and delayed reorganization in the rat forepaw barrel subfield in primary somatosensory cortex. J Comp Neurol 2023; 531:1651-1668. [PMID: 37496376 PMCID: PMC10530121 DOI: 10.1002/cne.25523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
We used the forepaw barrel subfield (FBS), that normally receives input from the forepaw skin surface, in rat primary somatosensory cortex as a model system to study rapid and delayed lower jaw-to-forepaw cortical reorganization. Single and multi-unit recording from FBS neurons was used to examine the FBS for the presence of "new" lower jaw input following deafferentations that include forelimb amputation, brachial plexus nerve cut, and brachial plexus anesthesia. The major findings are as follows: (1) immediately following forelimb deafferentations, new input from the lower jaw becomes expressed in the anterior FBS; (2) 7-27 weeks after forelimb amputation, new input from the lower jaw is expressed in both anterior and posterior FBS; (3) evoked response latencies recorded in the deafferented FBS following electrical stimulation of the lower jaw skin surface are significantly longer in both rapid and delayed deafferents compared to control latencies for input from the forepaw to reach the FBS or for input from lower jaw to reach the LJBSF; (4) the longer latencies suggest that an additional relay site is imposed along the somatosensory pathway for lower jaw input to access the deafferented FBS. We conclude that different sources of input and different mechanisms underlie rapid and delayed reorganization in the FBS and suggest that these findings are relevant, as an initial step, for developing a rodent animal model to investigate phantom limb phenomena.
Collapse
Affiliation(s)
- Violeta Pellicer-Morata
- Department of Physiology, University of Tennessee Health
Science Center, College of Medicine, 956 Court Avenue, Memphis, TN 38163, USA
| | - Lie Wang
- Department of Anatomy and Neurobiology, University of
Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite,
Memphis, TN 38163, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of
Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152,
USA
| | - Jack W. Tsao
- Department of Neurology, New York University, Langone
School of Medicine, 550 1 Avenue, New York, NY 10016, USA
| | - Robert S. Waters
- Department of Anatomy and Neurobiology, University of
Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite,
Memphis, TN 38163, USA
- Department of Biomedical Engineering, University of
Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152,
USA
| |
Collapse
|
3
|
Datta A. The effect of dorsal column lesions in the primary somatosensory cortex and medulla of adult rats. IBRO Neurosci Rep 2023; 14:466-482. [PMID: 37273897 PMCID: PMC10238474 DOI: 10.1016/j.ibneur.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
Spinal cord injury is a devastating condition that haunts human lives. Typically, patients experience referred phantom sensations on the hand when they are touched on the face. In adult monkeys, massive deafferentations such as chronic dorsal column lesions at higher cervical levels result in the large-scale expansion of face inputs into the deafferented hand cortex of area 3b. However, adult rats with thoracic dorsal column lesions do not demonstrate such large-scale reorganization. The large-scale face expansion in area 3b of monkeys is driven by the reorganization of the cuneate nucleus in the medulla. The sprouting of afferents from the trigeminal nucleus to the adjacent deafferented cuneate nucleus is facilitated by close proximity and compactness of the medulla in primates. Previously, in adult rats with thoracic lesions, the cuneate nucleus was not deafferented and its functional organization was not explored. The extent of the deafferentation and the duration of the recovery period are two major factors that determine the extent of reorganization. Hence, higher cervical (C3-C4) dorsal column lesions were performed, which cause massive deafferentations, and physiological maps were obtained after prolonged recovery periods (3 weeks -18 months). In spite of the above, the expansion of the intact face inputs was not observed in the deafferented zones of the primary somatosensory cortex (SI) and medulla of adult rats. The deafferented forelimb and hindlimb representations in SI were unresponsive to cutaneous stimulation of any part of the body. The cuneate and gracile nuclei in rats with complete dorsal column lesions remained mostly inactive except for a few sites which responded to stimulation of the spared upper arm. Hence, dorsal column lesions have different effects on the adult primate and rodent somatosensory systems. Appreciating this inter-species difference can aid in identifying the underlying neural substrates and restrict maladaptive reorganizations to cure phantom sensations.
Collapse
|
4
|
Philip BA, Valyear KF, Cirstea CM, Baune NA, Kaufman C, Frey SH. Changes in Primary Somatosensory Cortex Following Allogeneic Hand Transplantation or Autogenic Hand Replantation. FRONTIERS IN NEUROIMAGING 2022; 1:919694. [PMID: 36590253 PMCID: PMC9802660 DOI: 10.3389/fnimg.2022.919694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/09/2022] [Indexed: 01/03/2023]
Abstract
Former amputees who undergo allogeneic hand transplantation or autogenic hand replantation (jointly, "hand restoration") present a unique opportunity to measure the range of post-deafferentation plastic changes in the nervous system, especially primary somatosensory cortex (S1). However, few such patients exist, and previous studies compared single cases to small groups of typical adults. Here, we studied 5 individuals (n = 8 sessions: a transplant with 2 sessions, a transplant with 3 sessions, and three replants with 1 session each). We used functional magnetic resonance imaging (fMRI) to measure S1 responsiveness to controlled pneumatic tactile stimulation delivered to each patient's left and right fingertips and lower face. These data were compared with responses acquired from typical adults (n = 29) and current unilateral amputees (n = 19). During stimulation of the affected hand, patients' affected S1 (contralateral to affected hand) responded to stimulation in a manner similar both to amputees and to typical adults. The presence of contralateral responses indicated grossly typical S1 function, but responses were universally at the low end of the range of typical variability. Patients' affected S1 showed substantial individual variability in responses to stimulation of the intact hand: while all patients fell within the range of typical adults, some patient sessions (4/8) had substantial ipsilateral responses similar to those exhibited by current amputees. Unlike hand restoration patients, current amputees exhibited substantial S1 reorganization compared to typical adults, including bilateral S1 responses to stimulation of the intact hand. In all three participant groups, we assessed tactile localization by measuring individuals' ability to identify the location of touch on the palm and fingers. Curiously, while transplant patients improved their tactile sensory localization over time, this was uncorrelated with changes in S1 responses to tactile stimuli. Overall, our results provide the first description of cortical responses to well-controlled tactile stimulation after hand restoration. Our case studies indicate that hand restoration patients show S1 function within the range of both typical adults and amputees, but with low-amplitude and individual-specific responses that indicate a wide range of potential cortical neurological changes following de-afferentation and re-afferentation.
Collapse
Affiliation(s)
- Benjamin A. Philip
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Kenneth F. Valyear
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Carmen M. Cirstea
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| | - Nathan A. Baune
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Christina Kaufman
- Department of Cardiovascular and Thoracic Surgery, University of Louisville School of Medicine, Louisville, KY, United States
| | - Scott H. Frey
- Department of Psychological Sciences, University of Missouri, Columbia, MO, United States
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Suresh AK, Greenspon CM, He Q, Rosenow JM, Miller LE, Bensmaia SJ. Sensory computations in the cuneate nucleus of macaques. Proc Natl Acad Sci U S A 2021; 118:e2115772118. [PMID: 34853173 PMCID: PMC8670430 DOI: 10.1073/pnas.2115772118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Tactile nerve fibers fall into a few classes that can be readily distinguished based on their spatiotemporal response properties. Because nerve fibers reflect local skin deformations, they individually carry ambiguous signals about object features. In contrast, cortical neurons exhibit heterogeneous response properties that reflect computations applied to convergent input from multiple classes of afferents, which confer to them a selectivity for behaviorally relevant features of objects. The conventional view is that these complex response properties arise within the cortex itself, implying that sensory signals are not processed to any significant extent in the two intervening structures-the cuneate nucleus (CN) and the thalamus. To test this hypothesis, we recorded the responses evoked in the CN to a battery of stimuli that have been extensively used to characterize tactile coding in both the periphery and cortex, including skin indentations, vibrations, random dot patterns, and scanned edges. We found that CN responses are more similar to their cortical counterparts than they are to their inputs: CN neurons receive input from multiple classes of nerve fibers, they have spatially complex receptive fields, and they exhibit selectivity for object features. Contrary to consensus, then, the CN plays a key role in processing tactile information.
Collapse
Affiliation(s)
- Aneesha K Suresh
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | - Charles M Greenspon
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
| | - Qinpu He
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637
| | - Joshua M Rosenow
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lee E Miller
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208
- Shirley Ryan AbilityLab, Chicago, IL 60611
| | - Sliman J Bensmaia
- Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637;
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637
- Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, IL 60637
| |
Collapse
|
6
|
Kikkert S, Pfyffer D, Verling M, Freund P, Wenderoth N. Finger somatotopy is preserved after tetraplegia but deteriorates over time. eLife 2021; 10:e67713. [PMID: 34665133 PMCID: PMC8575460 DOI: 10.7554/elife.67713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Previous studies showed reorganised and/or altered activity in the primary sensorimotor cortex after a spinal cord injury (SCI), suggested to reflect abnormal processing. However, little is known about whether somatotopically specific representations can be activated despite reduced or absent afferent hand inputs. In this observational study, we used functional MRI and a (attempted) finger movement task in tetraplegic patients to characterise the somatotopic hand layout in primary somatosensory cortex. We further used structural MRI to assess spared spinal tissue bridges. We found that somatotopic hand representations can be activated through attempted finger movements in the absence of sensory and motor hand functioning, and no spared spinal tissue bridges. Such preserved hand somatotopy could be exploited by rehabilitation approaches that aim to establish new hand-brain functional connections after SCI (e.g. neuroprosthetics). However, over years since SCI the hand representation somatotopy deteriorated, suggesting that somatotopic hand representations are more easily targeted within the first years after SCI.
Collapse
Affiliation(s)
- Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Dario Pfyffer
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
| | - Michaela Verling
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of ZürichZürichSwitzerland
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College LondonLondonUnited Kingdom
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH ZürichZürichSwitzerland
| |
Collapse
|
7
|
Abstract
Spinal cord injury (SCI) destroys the sensorimotor pathway and blocks the information flow between the peripheral nerve and the brain, resulting in autonomic function loss. Numerous studies have explored the effects of obstructed information flow on brain structure and function and proved the extensive plasticity of the brain after SCI. Great progress has also been achieved in therapeutic strategies for SCI to restore the "re-innervation" of the cerebral cortex to the limbs to some extent. Although no thorough research has been conducted, the changes of brain structure and function caused by "re-domination" have been reported. This article is a review of the recent research progress on local structure, functional changes, and circuit reorganization of the cerebral cortex after SCI. Alterations of structure and electrical activity characteristics of brain neurons, features of brain functional reorganization, and regulation of brain functions by reconfigured information flow were also explored. The integration of brain function is the basis for the human body to exercise complex/fine movements and is intricately and widely regulated by information flow. Hence, its changes after SCI and treatments should be considered.
Collapse
Affiliation(s)
- Can Zhao
- Institute of Rehabilitation Engineering, China Rehabilitation Science Institute, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
| | - Shu-Sheng Bao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Xu
- Department of Orthopedics, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
8
|
Habekost B, Germann M, Baker SN. Plastic changes in primate motor cortex following paired peripheral nerve stimulation. J Neurophysiol 2020; 125:458-475. [PMID: 33427573 PMCID: PMC8476207 DOI: 10.1152/jn.00288.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Repeated paired stimulation of two peripheral nerves can produce lasting changes in motor cortical excitability, but little is known of the underlying neuronal basis. Here, we trained two macaque monkeys to perform selective thumb and index finger abduction movements. Neural activity was recorded from the contralateral primary motor cortex during task performance, and following stimulation of the ulnar and median nerves, and the nerve supplying the extensor digitorum communis (EDC) muscle. Responses were compared before and after 1 h of synchronous or asynchronous paired ulnar/median nerve stimulation. Task performance was significantly enhanced after asynchronous and impaired after synchronous stimulation. The amplitude of short latency neural responses to median and ulnar nerve stimulation was increased after asynchronous stimulation; later components were reduced after synchronous stimulation. Synchronous stimulation increased neural activity during thumb movement and decreased it during index finger movement; asynchronous stimulation decreased activity during both movements. To assess how well neural activity could separate behavioral or sensory conditions, linear discriminant analysis was used to decode which nerve was stimulated, or which digit moved. Decoding accuracy for nerve stimulation was decreased after synchronous and increased after asynchronous paired stimulation. Decoding accuracy for task performance was decreased after synchronous but was unchanged after asynchronous paired stimulation. Paired stimulation produces changes in motor cortical circuits that outlast the stimulation. Some of these changes depend on precise stimulus timing. NEW & NOTEWORTHY Paired stimulation of peripheral nerves for 1 h induced lasting changes in neural responses within the motor cortex to nerve stimulation and to performance of a behavioral task. These changes were sufficient to alter the efficiency with which activity could encode stimulus type. Stimuli that can be easily applied noninvasively in human subjects can alter central motor circuits.
Collapse
Affiliation(s)
- Bonne Habekost
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Maria Germann
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stuart N Baker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Mohammed H, Hollis ER. Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury. Neurotherapeutics 2018; 15:588-603. [PMID: 29882081 PMCID: PMC6095783 DOI: 10.1007/s13311-018-0638-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.
Collapse
Affiliation(s)
- Hisham Mohammed
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| | - Edmund R Hollis
- Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA.
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|