1
|
Guo S, Qiu S, Cai Y, Wang Z, Yang Q, Tang S, Xie Y, Zhang A. Mass spectrometry-based metabolomics for discovering active ingredients and exploring action mechanism of herbal medicine. Front Chem 2023; 11:1142287. [PMID: 37065828 PMCID: PMC10102349 DOI: 10.3389/fchem.2023.1142287] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Natural products derived from herbal medicine are a fruitful source of lead compounds because of their structural diversity and potent bioactivities. However, despite the success of active compounds derived from herbal medicine in drug discovery, some approaches cannot effectively elucidate the overall effect and action mechanism due to their multi-component complexity. Fortunately, mass spectrometry-based metabolomics has been recognized as an effective strategy for revealing the effect and discovering active components, detailed molecular mechanisms, and multiple targets of natural products. Rapid identification of lead compounds and isolation of active components from natural products would facilitate new drug development. In this context, mass spectrometry-based metabolomics has established an integrated pharmacology framework for the discovery of bioactivity-correlated constituents, target identification, and the action mechanism of herbal medicine and natural products. High-throughput functional metabolomics techniques could be used to identify natural product structure, biological activity, efficacy mechanisms, and their mode of action on biological processes, assisting bioactive lead discovery, quality control, and accelerating discovery of novel drugs. These techniques are increasingly being developed in the era of big data and use scientific language to clarify the detailed action mechanism of herbal medicine. In this paper, the analytical characteristics and application fields of several commonly used mass spectrometers are introduced, and the application of mass spectrometry in the metabolomics of traditional Chinese medicines in recent years and its active components as well as mechanism of action are also discussed.
Collapse
Affiliation(s)
- Sifan Guo
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhibo Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center and Hainan General Hospital, College of Chinese Medicine, Hainan Medical University, Haikou, China
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Shi Qiu, ; Songqi Tang, ; Yiqiang Xie, ; Aihua Zhang,
| |
Collapse
|
2
|
Guo L, Zhen Q, Zhen X, Cui Z, Jiang C, Zhang Q, Gao K, Luan D, Zhou X. A network pharmacology approach to explore and validate the potential targets of ginsenoside on osteoporosis. Int J Immunopathol Pharmacol 2022; 36:3946320221107239. [PMID: 35791093 PMCID: PMC9272184 DOI: 10.1177/03946320221107239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Osteoporosis (OP) is determined as a chronic systemic bone disorder to increase the susceptibility to fracture. Ginsenosides have been found the anti-osteoporotic activity of in vivo and in vitro. However, its mechanism remains unknown.Methods: The potential mechanism of ginsenosides in anti-osteoporotic activity was identified by using network phamacology analysis. The active compounds of ginsenosides and their targets associated to OP were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Drug Bank, Pharmmapper, and Cytoscape. The Gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis target genes were performed in String, Phenopedia, DisGeNET database, and Metascape software. The protein to protein interaction were created by String database and Cytoscape software. The molecular docking was used to investigate the interactions between active coumpounds and potential targets by utilizing SwissDock tool, UCSF Chimera, and Pymol software. Results: A total of eight important active ingredients and 17 potential targets related to OP treatment were subjected to analyze. GO analysis showed the anti-osteoporosis targets of ginsenoside mainly play a role in the response to steroid hormone. KEGG enrichment analysis indicated that ginsenoside treats OP by osteoblast differentiation signal pathway. Lastly, the molecular docking outcomes indicated that ginsenoside rh2 had a good binding ability with four target proteins IL1B, TNF, IFNG, and NFKBIA. Conclusion: IL1B, TNF, IFNG, and NFKBIA are the most important targets and osteoblast differentiation is the most valuable signaling pathways in ginsenoside for the treatment of OP, which might be beneficial to elucidate the mechanism concerned to the action of ginsenoside and might supply a better understanding of its anti-OP effects.
Collapse
Affiliation(s)
- Ling Guo
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qingliu Zhen
- Department of Anesthesiology, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoyue Zhen
- Minimally Invasive Urology Center, 34708Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhaoyang Cui
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Chao Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Kun Gao
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Deheng Luan
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Xuanchen Zhou
- Department of Otorhinolaryngology Head and Neck Surgery, 34708Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
3
|
Tang XY, Gao MX, Xiao HH, Dai ZQ, Yao ZH, Dai Y, Yao XS. Effects of Xian-Ling-Gu-Bao capsule on the gut microbiota in ovariectomized rats: Metabolism and modulation. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122771. [PMID: 34058528 DOI: 10.1016/j.jchromb.2021.122771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/27/2020] [Accepted: 05/11/2021] [Indexed: 01/28/2023]
Abstract
Xian-Ling-Gu-Bao capsule (XLGB) has been proven to prevent and treat osteoporosis. However, as a long-term oral formula, XLGB's effects on the metabolic capacity, structure and function of gut microbiota have yet to be elucidated in ovariectomized (OVX) rats. Our objectives were to evaluate the capacity of gut microbiota for metabolizing XLGB ingredients and to assess the effect of this prescription on gut microbiota. Herein, an integrated analysis that combined ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and ultrahigh-performance liquid chromatography tandem triple quadrupole mass spectrometry (UPLC-TQD-MS) was conducted to determine the metabolic capacity of gut microbiota. The effects of XLGB on gut microbiota were explored by metagenomic sequencing in OVX rats. Fecal samples from each group were collected after intragastric administration for three months. In total, 64 biotransformation products were fully characterized with rat gut microbiota from the OVX group and the XLGB group. The deglycosylation reaction was the main biotransformation pathway in core structures in the group that was incubated with XLGB. Compared with the OVX group, different biotransformation products and pathways of the XLGB group after incubation for 2 h and 8 h were described. After three months of feeding with XLGB, the domesticated gut microbiota was conducive to the production of active absorbed components via deglycosylation, such as icaritin, psoralen and isopsoralen. Comparisons of the gut microbiota of the OVX and XLGB groups showed differences in the relative abundances of the two dominant bacterial divisions, namely, Firmicutes and Bacteroidetes. The proportion of Firmicutes was significantly lower and that of Bacteroidetes was significantly higher in the XLGB group. This result demonstrated that XLGB could provide a basis for the treatment of osteoporosis by regulating lipid and bile acid metabolism. In addition, the increase in Lactobacillus, Bacteroides and Prevotella could be an important factor that led to easier production of active absorbed aglycones in the XLGB group. Our observation provided further evidence of the importance of gut microbiota in the metabolism and potential activity of XLGB.
Collapse
Affiliation(s)
- Xi-Yang Tang
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Meng-Xue Gao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Hui-Hui Xiao
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, PR China
| | - Zi-Qin Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Zhi-Hong Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China
| | - Yi Dai
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| | - Xin-Sheng Yao
- College of Pharmacy and International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|