1
|
Queiroz de Souza JC, Penna EA, Chellini PR, Leal de Oliveira MA. Antimalarial analysis of pharmaceutical formulations and biological samples by capillary electrophoresis: the state of the art and applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5751-5776. [PMID: 39143944 DOI: 10.1039/d4ay00860j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Malaria is a serious public health problem, being an endemic disease in 84 countries, mainly in Africa. This review explores the application of capillary electrophoresis (CE) techniques for analyzing antimalarial drugs, highlighting methods from 2000 to 2023 for the analysis of pharmaceutical formulations and human biological samples. The versatility, selectivity, high efficiency, cost-effectiveness, and high analytical frequency of CE techniques have become attractive choices for pharmaceutical analysis, focusing on quality control and impurity analysis applications. The evolution of achiral and chiral electromigration methods has been described based on the features of each mode of separation: capillary zone electrophoresis (CZE), micellar electrokinetic chromatography, microemulsion electrokinetic chromatography, and capillary electrochromatography. As expected, CZE is reported in most articles owing to its compatibility with drug properties and separation mode. However, it is necessary to perform other separation modes for a few drugs that are present in neutral form. After exhaustive research using different databases and statistical analyses, 27 articles using CE techniques for antimalarial drug analysis were found and are mentioned in this review.
Collapse
Affiliation(s)
- Jéssica Cordeiro Queiroz de Souza
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
| | - Eduarda Alves Penna
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
- Faculdade de Farmácia, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil
| | - Paula Rocha Chellini
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
- Faculdade de Farmácia, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil
| | - Marcone Augusto Leal de Oliveira
- Grupo de Química Analítica e Quimiometria - GQAQ, Chemistry Department, Institute of Exact Sciences, Federal University of Juiz de Fora (UFJF), 36026-900, Juiz de Fora, MG, Brazil.
- National Institute of Science and Technology for Bioanalytics - INCTBio, Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
2
|
Luo D, Li S, Guo J, Yue H, Shi L, Liu R, Wang J, Shi X. The role and mechanism of AZD5363 anti-leukemia activity in T-cell acute lymphoblastic leukemia. Eur J Pharmacol 2024; 963:176268. [PMID: 38096965 DOI: 10.1016/j.ejphar.2023.176268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and heterogeneous hematologic malignancy. Chemotherapy resistance and refractory relapses are the most important challenges in T-ALL. PI3K/Akt/mTOR pathway has been implicated in regulating cell survival, T-ALL development and resistance to chemotherapy. We explored the effects of AZD5363 (a potent pan-Akt inhibitor) alone and in combination with autophagy inhibitor hydroxycholoroquine sulfate (HCQ) in cultured CCRF-CEM, Jurkat and PF382 cells and a T-ALL xenograft mouse model. METHODS A xenograft mouse model was used to investigate the effect of AZD5363 on T-ALL progression. MTT assay, flow cytometry, siRNA, transmission electron microscopy and western blotting were performed in cultured CCRF-CEM, Jurkat and PF382 cells. The interaction between AZD5363 and HCQ was explored by molecular docking. RESULTS AZD5363 delayed T-ALL progression and increased the expression of cleaved caspase-3 and LC3B-II in mice. AZD5363 decreased cells viability by arresting cell cycle in the G1 phase and inducing apoptosis, and, significantly increased the number of autophagosomes (p < 0.01). The increased expression of cleaved caspase-3 and LC3B-II, and phosphorylation of Akt and mTOR were significantly, inhibited by AZD5363. HCQ blocked AZD5363-induced autophagy and enhanced AZD5363-induced cell death (p < 0.01). CONCLUSIONS AZD5363 suppressed T-ALL progression and its anti-leukemia activity was enhanced by HCQ in T-ALL cells, which might provide a potential therapeutic strategy for human T-ALL.
Collapse
Affiliation(s)
- Danqing Luo
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shen Li
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Guo
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Huixuan Yue
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lixiao Shi
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Rong Liu
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Xiaodong Shi
- Department of Hematology, The Affiliated of Children's Hospital, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
3
|
Kilgour KM, Turner BL, Daniele M, Menegatti S. One-Step Quantification of anti-Covid-19 Antibodies via Dual Affinity Ratiometric Quenching Assays. Anal Chem 2023. [PMID: 37368953 DOI: 10.1021/acs.analchem.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The global pandemic caused by acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people and paralyzed healthcare systems worldwide. Developing rapid and accurate tests to detect and quantify anti-SARS-CoV-2 antibodies in complex fluids is critical to (i) track and address the spread of SARS-CoV-2 variants with different virulence and (ii) support the industrial manufacturing and clinical administration of anti-SARS-CoV-2 therapeutic antibodies. Conventional immunoassays, such as lateral flow, ELISA, and surface plasmon resonance (SPR), are either qualitative or, when quantitative, are laborious and expensive and suffer from high variability. Responding to these challenges, this study evaluates the performance of the Dual-Affinity Ratiometric Quenching (DARQ) assay for the quantification of anti-SARS-CoV-2 antibodies in bioprocess harvests and intermediate fractions (i.e., a Chinese hamster ovary (CHO) cell culture supernatant and a purified eluate) and human fluids (i.e., saliva and plasma). Monoclonal antibodies targeting the SARS-CoV-2 nucleocapsid as well as the spike protein of the delta and omicron variants are adopted as model analytes. Additionally, conjugate pads loaded with dried protein were studied as an at-line quantification method that can be used in clinical or manufacturing laboratories. Our results indicate that the DARQ assay is a highly reproducible (coefficient of variation ∼0.5-3%) and rapid (<10 min) test, whose sensitivity (∼0.23-2.5 ng/mL), limit of detection (23-250 ng/mL), and dynamic range (70-1300 ng/mL) are independent of sample complexity, thus representing a valuable tool for monitoring anti-SARS-CoV-2 antibodies.
Collapse
Affiliation(s)
- Katie M Kilgour
- Department of Chemical & Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
| | - Brendan L Turner
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Drive, Raleigh, North Carolina 27695, United States
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical & Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), 850 Oval Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Barreto FC, da Silva MKL, Cesarino I. Copper Nanoparticles and Reduced Graphene Oxide as an Electrode Modifier for the Development of an Electrochemical Sensing Platform for Chloroquine Phosphate Determination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091436. [PMID: 37176981 PMCID: PMC10180146 DOI: 10.3390/nano13091436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
This study describes the use of copper nanoparticles (CuNPs) and reduced graphene oxide (rGO) as an electrode modifier for the determination of chloroquine phosphate (CQP). The synthetized rGO-CuNPs composite was morphologically characterized using scanning electron microscopy and electrochemically characterized using cyclic voltammetry. The parameters were optimized and the developed electrochemical sensor was applied in the determination of CQP using square-wave voltammetry (SWV). The analytical range for the determination of CQP was 0.5 to 110 μmol L-1 (one of the highest linear ranges for CQP considering electrochemical sensors), with limits of detection and quantification of 0.23 and 0.78 μmol L-1, respectively. Finally, the glassy carbon (GC) electrode modified with rGO-CuNPs was used for quantification of CQP in tap water; a study was carried out with interferents using SWV and obtained great results. The use of rGO-CuNP material as an electrode modifier was thus shown to be a good alternative for the development of low-cost devices for CQP analysis.
Collapse
Affiliation(s)
- Francisco Contini Barreto
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Martin Kássio Leme da Silva
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| | - Ivana Cesarino
- Department of Bioprocess and Biotechnology, School of Agriculture, São Paulo State University (UNESP), Botucatu 18610-034, SP, Brazil
| |
Collapse
|
5
|
Wang X, Batra K, Clavier G, Maurin G, Ding B, Tissot A, Serre C. Ln-MOF Based Ratiometric Luminescent Sensor for the Detection of Potential COVID-19 Drugs. Chemistry 2023; 29:e202203136. [PMID: 36424358 DOI: 10.1002/chem.202203136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Countless people have been affected by the COVID-19 pandemic on a global scale. Favipiravir, has shown potential as an effective drug for SARS-CoV-2, attracting scientists' attention. However, overuse of Favipiravir easily leads to serious side effects, requiring real-time monitoring in body fluids. Given this, a new lanthanide metal-organic framework (MOF) was prepared under solvothermal conditions from either Eu (Eu-MOF or (1)) or Tb (Tb-MOF or (2)) using the highly delocalized imidazoledicarboxylic acid linker H2 L (H2 L=5-(4-(imidazol-1-yl) phenyl) isophthalic acid) and could be successfully applied to selective optical detection of Favipiravir. In this MOF framework, the organic linker H2 L provides a high excitation energy transfer efficiency that can sensitize luminescence in lanthanides. In addition, through deliberate tuning of Eu/Tb molar ratio and reaction concentration in the lanthanide framework, ratiometric recyclable luminescent Eux Tb1-x -MOF nanoparticles with open metal sites have been constructed, which present a high detection sensitivity (Ksv =1×107 [M-1 ], detection limit is 4.63 nM) for Favipiravir. The detection mechanism is discussed with the help of Density Functional Theory (DFT) calculations that sheds light over the selective sensing of Favipiravir over other related COVID-19 drug candidates. Finally, to explore the practical application of Favipiravir sensing, MOF based thin films have been used for visual detection of Favipiravir and recycled 5 times.
Collapse
Affiliation(s)
- Xinrui Wang
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Kamal Batra
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France
| | - Gilles Clavier
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, 34095, France
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for, Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin, 300387, P. R. China
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| |
Collapse
|
6
|
Reddy HR, Pratap SR, Chandrasekhar N, Shamshuddin SZM. A Novel Liquid Chromatographic Method for the Quantitative Determination of Degradation Products in Remdesivir Injectable Drug product. J Chromatogr Sci 2021; 60:194-200. [PMID: 33948643 DOI: 10.1093/chromsci/bmab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 11/13/2022]
Abstract
An effectual and stability signifying technique has been validated for the quantitative verification of degradation products in Remdesivir Injectable pharmaceutical products by employing high-performance liquid chromatography with ultraviolet detector. The process was optimized by using an octyldecylsilane chemically bonded column (Kromasil KR100-5 C18; USP L1 phase) with dimensions; 250 mm length × 4.5 mm inner diameter and 5-μm particle size. The method was validated as per International Conference on Harmonization and other current regulatory guidelines for analytical method validation. The anticipated process was found to be robust, accurate, specific, linear, precise, stable and rugged in the concentration ranging from quantification level to 200% of the specification level of specified and unknown degradation impurities. The technique was effectively applied to analyze degradation products in Remdesivir Injectable drug products.
Collapse
Affiliation(s)
- H Ramakrishna Reddy
- Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.,Research and Development Centre, Department of Chemistry, Shridevi Institute of Engineering and Technology, Tumkur 572106, Karnataka, India
| | - S R Pratap
- Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India.,Channabasaveshwara Institute of Technology, Gubbi, Tumkur 572216, Karnataka, India
| | - N Chandrasekhar
- Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.,Research and Development Centre, Department of Chemistry, Shridevi Institute of Engineering and Technology, Tumkur 572106, Karnataka, India
| | - S Z M Shamshuddin
- Research and Development Centre, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.,Chemistry Research Laboratory, HMS Institute of Technology, Tumkur, Karnataka, India
| |
Collapse
|