1
|
Li H, Cao H, Zhang Z, Tian F, Zhang Y, Wu L. Application of Polydopamine-Based Magnetic Solid-Phase Extraction for Highly Sensitive Determination of Aristolochic Acid I from Traditional Chinese Medicine Samples. J Chromatogr Sci 2025; 63:bmae055. [PMID: 39474901 DOI: 10.1093/chromsci/bmae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/28/2024] [Indexed: 03/29/2025]
Abstract
A low cost-effective and simple synthesis method combining magnetic solid-phase extraction (MSPE) and high-pressure liquid chromatography was developed for the analysis of aristolochic acids I (AAI) in traditional Chinese medicine samples. A novel polydopamine (PDA) modified magnetic nanoparticles with one single carbon layer (Fe3O4@1C NPs) via one-pot hydrothermal approach was prepared and then successfully employed to extract AAI for the first time. Dopamine (DA) can form a PDA layer on Fe3O4@1C NPs surface through self-polymerization to form Fe3O4@1C@PDA. As a surface modifier of DA, PDA offered more adsorption sites to AAI due to π-π stacking, hydrogen bonding and electrostatic interactions. The parameters of MSPE were optimized by univariate and multivariate methods (Box-Behnken design) in detail. High degree of linearity was obtained in the range of 0.05-200.0 μg/mL. The limits of detection (S/N = 3) and quantification (S/N = 10) were 0.08 and 0.25 μg/mL, respectively. The recoveries of AAI in spiked Xiaoqinglong mixture samples were in the range of 86.7 to 108.5% with the relative standard deviation of less than 5.2%. Thus, a fast, convenient, sensitive and eco-friendly method was successfully proposed and became a promising approach for the determination of AAI in herbal plants or its preparation in the manufacturing procedure.
Collapse
Affiliation(s)
- Huimin Li
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Huina Cao
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Zixin Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Fei Tian
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Lijie Wu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
2
|
Borhani Yazdi N, Rezvani Ghalhari M, Parach A, Ehrampoush MH, Ghadiri K, Ghorbanian M, Zare Hassanabadi MH, Abouee Mehrizi E. Degradation of piroxicam and celecoxib from aqueous solution by high-energy electron beam as a Sustainable method. Heliyon 2024; 10:e39839. [PMID: 39524863 PMCID: PMC11550070 DOI: 10.1016/j.heliyon.2024.e39839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most commonly prescribed drugs that can reduce pain. This study aimed to measure the concentration of piroxicam and celecoxib in Iranian hospitals, as well as the effect of electron beam irradiation on the degradation of these pollutants in synthetic and real samples. The high-performance liquid chromatography (HPLC) was used to detect the residual analytes in the samples. The Response Surface Methodology (RSM) was used to design the experiment conditions that investigate the effect of electron beam irradiation on degradation of piroxicam and celecoxib from synthetic samples, and then according to the optimum condition, the experiments were carried out for real wastewater samples. The results of wastewater analysis shown that the mean concentration of PIRO and CELE were 6.32 ± 2.5 and 11.5 ± 3.2 μg/L, respectively. Also, the findings show that 98.98 % and 97.62 % of piroxicam and celecoxib was degraded, respectively, when the optimum conditions (pH = 4, electron beam irradiation = 8 kGy, and concentrations of 60 μg/L for piroxicam and 50 μg/L for celecoxib) were applied. Results show that the degradation rates of piroxicam and celecoxib in the real wastewater sample at optimum condition were 89.6 % and 84.25 %, respectively. So, electron beam irradiation is a long-lasting and promising method for removal emerging contaminants from wastewater, like non-steroidal anti-inflammatory drugs, that can't be removed by conventional wastewater treatment methods; so, it can be used in combination with conventional wastewater treatment methods.
Collapse
Affiliation(s)
- Niloufar Borhani Yazdi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student’s Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Parach
- Department of Medical Physics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hassan Ehrampoush
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kamal Ghadiri
- Environmental and Occupational Health Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Ghorbanian
- Vector-borne Diseases Research Center, School of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Ehsan Abouee Mehrizi
- Department of Environmental Health, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
O'Sullivan-Carroll E, Hogan A, O'Mahoney N, Howlett S, Pyne C, Downing P, Lynch M, Moore E. Determination of an Anti-Parasitic Active Pharmaceutical Ingredient in Wastewater Effluents Using Capillary Zone Electrophoresis. Electrophoresis 2024; 45:1906-1914. [PMID: 39373618 DOI: 10.1002/elps.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024]
Abstract
Ireland has a successful pharmaceutical industry with over 100 pharmaceutical manufacturing sites across the island. Although this success has many benefits, the irreversible effects emissions from pharmaceutical manufacturing can have on the environment are a major drawback. Although known pollutants are regularly monitored with limits set out by the Environmental Protection Agency, one significant pollutant has been overlooked: pharmaceutical pollution. Detecting these pollutants and ensuring they are at a safe concentration for the environment is of utmost importance. In recent years, capillary electrophoresis is being recognised as a suitable alternative to high-performance liquid chromatography due to its many benefits such as faster analysis, water-based buffers and smaller sample volumes. In this paper, a capillary zone electrophoresis (CZE) method with a preconcentration step of solid-phase extraction was developed for an anti-parasitic active pharmaceutical ingredient (API) called ZB23. The API was successfully detected in a wastewater sample in less than 10 min using the CZE parameters of 25 mM borate buffer with a pH of 10.5, 15% MeOH, 10 kV voltage, 25 mbar for 5 s injection size, an Lt of 40 cm, an Ld of 31.5 cm and a detection wavelength of 214 nm.
Collapse
Affiliation(s)
- Emma O'Sullivan-Carroll
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
- Hovione Ltd., Cork, Ireland
| | - Anna Hogan
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
| | - N O'Mahoney
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
| | | | - C Pyne
- Hovione Ltd., Cork, Ireland
| | | | | | - Eric Moore
- Sensing and Separations Group, School of Chemistry, University College Cork, Cork, Ireland
- Tyndall National Institute, Cork, Ireland
| |
Collapse
|
4
|
Shirkhodaie M, Seidi S, Shemirani F, Zaroudi F, Madadkar N. Natural deep eutectic solvent-functionalized mesoporous graphitic carbon nitride-reinforced electrospun nanofiber: a promising sorbent in miniaturized on-chip thin film micro-solid-phase extraction prior to liquid chromatography-tandem mass spectrometry for measuring NSAIDs in saliva. Mikrochim Acta 2024; 191:581. [PMID: 39243346 DOI: 10.1007/s00604-024-06650-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
To meet the needs of developing efficient extractive materials alongside the evolution of miniaturized sorbent-based sample preparation techniques, a mesoporous structure of g-C3N4 doped with sulfur as a heteroatom was achieved utilizing a bubble template approach while avoiding the severe conditions of other methods. In an effort to increase the number of adsorption sites, the resultant exfoliated structure was then modified with thymol-coumarin NADES as a natural sorbent modifier, followed by introduction into a nylon 6 polymer via an electrospinning process. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) surface area analysis validated S-doped g-C3N4 and composite production. The prepared electrospun fiber nanocomposite, entailing satisfactory processability, was then successfully utilized as a sorbent in on-chip thin film micro-solid-phase extraction of non-steroidal anti-inflammatory drugs (NSAIDs) from saliva samples prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Utilizing a chip device, a thin film μ-SPE coupled with LC-MS/MS analysis yielded promising outcomes with reduced sample solution and organic solvents while extending lifetime of a thin film sorbent. The DES-modified S-doped g-C3N4 amount in electrospun was optimized, along with adsorption and desorption variables. Under optimal conditions, selected NSAIDs were found to have a linear range of 0.05-100.0 ng mL-1 with an R2 ≥ 0.997. The detection limits were ranged between 0.02 and 0.2 ng mL-1. The intra-day and inter-day precisions obtained were less than 6.0%. Relative recoveries were between 93.3 and 111.4%.
Collapse
Affiliation(s)
- Mahsa Shirkhodaie
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Shahram Seidi
- Nanomaterial, Separation and Trace Analysis Research Lab, K.N, Toosi University of Technology, P.O. Box 16315-1618, Tehran, 15418-49611, Iran.
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Farnaz Zaroudi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N, Toosi University of Technology, P.O. Box 16315-1618, Tehran, 15418-49611, Iran
- Nanomaterial, Separation and Trace Analysis Research Lab, K.N, Toosi University of Technology, P.O. Box 16315-1618, Tehran, 15418-49611, Iran
| | - Nasim Madadkar
- Department of Analytical Chemistry, Faculty of Chemistry, K.N, Toosi University of Technology, P.O. Box 16315-1618, Tehran, 15418-49611, Iran
- Nanomaterial, Separation and Trace Analysis Research Lab, K.N, Toosi University of Technology, P.O. Box 16315-1618, Tehran, 15418-49611, Iran
| |
Collapse
|
5
|
Muniandy Y, Mohamad S, Raoov M. Green and efficient magnetic micro-solid phase extraction utilizing tea waste impregnated with magnetic nanoparticles for the analysis of ibuprofen in water samples by using UV-vis spectrophotometry. RSC Adv 2024; 14:11977-11985. [PMID: 38623288 PMCID: PMC11017375 DOI: 10.1039/d4ra00940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L-1 for IBP, with determination coefficients (R2) of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L-1 and 28.50 μg L-1, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Collapse
Affiliation(s)
- Yagulan Muniandy
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
| | - Sharifah Mohamad
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of Science, Universiti Malaya 50603 Kuala Lumpur Malaysia
- Universiti Malaya Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, Universiti Malaya Kuala Lumpur 50603 Malaysia
| |
Collapse
|
6
|
Aouled Abdallah M, Ben Sghaier R, Zougagh M, Latrous L, Megriche A. The potential of lignocellulosic biomass for magnetic solid phase extraction of naproxen from saliva samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1870-1879. [PMID: 38465391 DOI: 10.1039/d3ay01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
This paper presents a study on the application of magnetic biochars derived from three distinct biomass sources: almond (AMBC), walnut (WMBC), and peanut (PMBC) shells for magnetic solid-phase extraction (MSPE) of naproxen, a non-steroidal anti-inflammatory drug, from human saliva prior to LC-MS analysis. The three magnetic biochars were synthesized and characterized through IR, XRD, SEM, and EDX analyses. This work explored the factors influencing extraction efficiency using these three bioadsorbents through experimental design. The results obtained revealed that magnetic biochar derived from almond shells demonstrated outstanding performance in terms of naproxen extraction, achieving an impressive yield of 100.2%. This remarkable efficiency was achieved by optimizing parameters, including a 12-minute extraction time, a 3.5 mL elution volume, a 10 mg adsorbent mass, and a 4-minute elution time. Consequently, this study established almond shell as a low-cost, environmentally friendly, and efficient magnetic biochar for extracting naproxen from human saliva. This superior performance was made possible due to the abundant lignocellulosic potential inherent in almond shell structures, surpassing that of the other two biochars. The combination of magnetic extraction with LC-MS demonstrates good linearity, with an R2 value equal to 0.9987. The limits of detection (LOD) and quantification (LOQ) are 0.013 and 0.047 μg L-1, respectively.
Collapse
Affiliation(s)
- Marwa Aouled Abdallah
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092 Tunis, Tunisia.
| | - Rafika Ben Sghaier
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092 Tunis, Tunisia.
- Laboratory of Composite Materials and Clay Minerals, National Center of Researches in Material Sciences, Technopole Borj Cédria, Soliman, Tunisia
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Camilo Jos'e Cela Avenue, E-13005, Ciudad Real, Spain
- Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092 Tunis, Tunisia.
- Institut Préparatoire Aux Etudes d'Ingénieurs d'El Manar, B.P.244 El Manar II, 2092 Tunis, Tunisia
| | - Adel Megriche
- Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092 Tunis, Tunisia.
| |
Collapse
|
7
|
Xin Y, Foster SW, Makey DM, Parker D, Bradow J, Wang X, Berritt S, Mongillo R, Grinias JP, Kennedy RT. High-Throughput Capillary Liquid Chromatography Using a Droplet Injection and Application to Reaction Screening. Anal Chem 2024; 96:4693-4701. [PMID: 38442211 PMCID: PMC11001260 DOI: 10.1021/acs.analchem.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The cycle time of a standard liquid chromatography (LC) system is the sum of the time for the chromatographic run and the autosampler injection sequence. Although LC separation times in the 1-10 s range have been demonstrated, injection sequences are commonly >15 s, limiting throughput possible with LC separations. Further, such separations are performed on relatively large bore columns requiring flow rates of ≥5 mL/min, thus generating large volumes of mobile phase waste when used for large scale screening and increasing the difficulty in interfacing to mass spectrometry. Here, a droplet injector system was established that replaces the autosampler with a four-port, two-position valve equipped with a 20 nL internal loop interfaced to a syringe pump and a three-axis positioner to withdraw sample droplets from a well plate. In the system, sample and immiscible fluid are pulled alternately from a well plate into a capillary and then through the injection valve. The valve is actuated when sample fills the loop to allow sequential injection of samples at high throughput. Capillary LC columns with 300 μm inner diameter were used to reduce the consumption of mobile phase and sample. The system achieved 96 separations of 20 nL droplet samples containing 3 components in as little as 8.1 min with 5-s cycle time. This system was coupled to a mass spectrometer through an electrospray ionization source for high-throughput chemical reaction screening.
Collapse
Affiliation(s)
- Yue Xin
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Samuel W Foster
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Devin M Makey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Deklin Parker
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - James Bradow
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Xiaochun Wang
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Simon Berritt
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - Robert Mongillo
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06415, United States
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Cuttlefish bone powder as an efficient solid-phase extraction sorbent of anti-SARS-CoV-2 drugs in environmental water. CHEMICAL PAPERS 2022; 76:6941-6951. [PMID: 35966344 PMCID: PMC9362547 DOI: 10.1007/s11696-022-02388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Many antiviral drugs were developed to counteract coronavirus disease, 2019 (COVID-19) with severe acute respiratory syndrome. Therefore, the scientific community's efforts have focused on the detection and quantification of antiviral compounds currently being tested for COVID-19 treatment. Cuttlefish bone powder (CFBP) has been used for the first time as solid-phase extraction (SPE) sorbent for the extraction of SARS CoV-2 antiviral drugs (chloroquine, ritonavir and indomethacin) from water samples. An effective and sensitive method was developed by combining SPE and liquid chromatography- UV detection (LC-UV). An experimental design was applied for the optimization of extraction process. Experimental variables were optimized using Doehlert matrix. The developed method included 50 mg of CFBP sorbent, 20 mL of water sample at pH = 9 and 5 mL of ACN/KH2PO4 buffer solution (80:20, v/v) in the elution step. For validation of the method, selectivity, linearity precision, and sensitivity were evaluated. Extraction recovery percentage of all Sars cov-2 antivirals were above 98.2%. The detection and quantification limits were between 0.1 and 0.5 µg L−1 and 0.6 and 2 µg L−1, respectively. The current study suggested that CFBP has the application potential for the enhanced SPE of SARS CoV-2 antiviral drugs from water samples.
Collapse
|