1
|
Bora S, Adole PS, Vinod KV, Pillai AA. A validated and optimized method for separation and quantification of total fatty acids by gas chromatography-ion trap mass spectrometry in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1210:123473. [PMID: 36155260 DOI: 10.1016/j.jchromb.2022.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Fatty acids (FAs) are associated with many physiological functions of tissues, and their alteration has been linked with tissue-specific or systemic diseases. The current situation warrants us to have a sensitive and specific method for analysis of total FAs simultaneously from the biological fluid so that the risk prediction, diagnosis or prognosis of the disease can be made effectively. Because of greater sensitivity and resolution, a method of gas chromatography-ion trap mass spectrometry (GC-IT/MS) has been optimized and validated to quantify simultaneously 19 total FAs levels in plasma and compared with GC-triple quadrupole mass spectrometry. FAs have been transesterified by methanolic acetyl chloride to fatty acid methyl esters (FAMEs). A 65 min GC method separated all 19 FAMEs. The calibration curve had good linearity up to 313-922 μM with a correlation coefficient between 0.9882 and 0.9998. The LODs and LOQs of FAMEs were in the range of 0.63 to 9.55 and 2.12 to 31.8 μM, respectively. The method has recovery up to 144 %, stability at 4 °C for 48 h and one freeze-thaw cycle, and good intra-day and inter-day precision. The optimized method has been used to quantify plasma total FAs in type 2 diabetes mellitus patients with and without acute coronary syndrome. Though a significant difference has been found between IT/MS and triple quadrupole mass spectrometry, the GC-IT/MS can help to quantify total FAs in the clinical setting.
Collapse
Affiliation(s)
- Sushmita Bora
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Prashant S Adole
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India.
| | - Kolar V Vinod
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Ajith A Pillai
- Department of Cardiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
2
|
Towards the Physiological Understanding of Yarrowia lipolytica Growth and Lipase Production Using Waste Cooking Oils. ENERGIES 2022. [DOI: 10.3390/en15145217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yeast Yarrowia lipolytica is an industrially relevant microorganism, which is able to convert low-value wastes into different high-value, bio-based products, such as enzymes, lipids, and other important metabolites. Waste cooking oil (WCO) represents one of the main streams generated in the food supply chain, especially from the domestic sector. The need to avoid its incorrect disposal makes this waste a resource for developing bioprocesses in the perspective of a circular bioeconomy. To this end, the strain Y. lipolytica W29 was used as a platform for the simultaneous production of intracellular lipids and extracellular lipases. Three different minimal media conditions with different pH controls were utilized in a small-scale (50 mL final volume) screening strategy, and the best condition was tested for an up-scaling procedure in higher volumes (800 mL) by selecting the best-performing possibility. The tested media were constituted by YNB media with high nitrogen restriction (1 g L−1 (NH4)2SO4) and different carbon sources (3% w v−1 glucose and 10% v v−1 WCO) with different levels of pH controls. Lipase production and SCO content were analyzed. A direct correlation was found between decreasing FFA availability in the media and increasing SCO levels and lipase activity. The simultaneous production of extracellular lipase (1.164 ± 0.025 U mL−1) and intracellular single-cell oil accumulation by Y. lipolytica W29 growing on WCO demonstrates the potential and the industrial relevance of this biorefinery model.
Collapse
|
3
|
Kargioti E, Vouvoudi E, Nannou C, Bikiaris D, Lambropoulou D. Unraveling the origin of aged varnishes for the proper restoration of old paintings using spectroscopic and spectrometric techniques. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Hagedoorn PL, Hollmann F, Hanefeld U. Novel oleate hydratases and potential biotechnological applications. Appl Microbiol Biotechnol 2021; 105:6159-6172. [PMID: 34350478 PMCID: PMC8403116 DOI: 10.1007/s00253-021-11465-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Abstract Oleate hydratase catalyses the addition of water to the CC double bond of oleic acid to produce (R)-10-hydroxystearic acid. The enzyme requires an FAD cofactor that functions to optimise the active site structure. A wide range of unsaturated fatty acids can be hydrated at the C10 and in some cases the C13 position. The substrate scope can be expanded using ‘decoy’ small carboxylic acids to convert small chain alkenes to secondary alcohols, albeit at low conversion rates. Systematic protein engineering and directed evolution to widen the substrate scope and increase the conversion rate is possible, supported by new high throughput screening assays that have been developed. Multi-enzyme cascades allow the formation of a wide range of products including keto-fatty acids, secondary alcohols, secondary amines and α,ω-dicarboxylic acids. Key points • Phylogenetically distinct oleate hydratases may exhibit mechanistic differences. • Protein engineering to improve productivity and substrate scope is possible. • Multi-enzymatic cascades greatly widen the product portfolio.
Collapse
Affiliation(s)
- Peter Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands.
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| | - Ulf Hanefeld
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ, Delft, The Netherlands
| |
Collapse
|
5
|
Capriotti AL, Cerrato A, Aita SE, Montone CM, Piovesana S, Laganà A, Cavaliere C. Degradation of the polar lipid and fatty acid molecular species in extra virgin olive oil during storage based on shotgun lipidomics. J Chromatogr A 2021; 1639:461881. [PMID: 33486446 DOI: 10.1016/j.chroma.2021.461881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
Among the bioactive compounds present in extra-virgin olive oil, polar lipids and free fatty acids are minor compounds with well-known nutritional values and have been studied for traceability and adulteration investigations as well. In the present paper, the simultaneous characterization of polar lipids and free fatty acids in a pool of fifteen EVOO samples was achieved by means of reversed phase C18 analysis coupled to negative polarity high-resolution mass spectrometry. A total of 24 polar lipids, comprising 19 phospholipids and 5 sulfolipids, and 27 free fatty acids were tentatively identified, including several odd-chain and very long-chain fatty acids at trace levels. Moreover, a one-month study of lipid degradation on simulated storage conditions was carried out thanks to the set-up of a dedicated approach for degradation product analysis which was implemented of Compound Discoverer software. By virtue of the customized data processing workflow, more than forty compounds were tentatively identified, including compounds deriving from hydrolysis and oxidation reactions. Finally, by analysis of peak area trends, phosphoester hydrolyses of polar heads of phospholipids emerged as the fastest reactions, followed by glycerol ester hydrolyses and oxidative processes.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Cerrato
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Sara Elsa Aita
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy; CNR NANOTEC, Campus Ecotekne, University of Salento, Via Monteroni, Lecce 73100, Italy.
| | - Chiara Cavaliere
- Department of Chemistry, Università di Roma "La Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
6
|
Ramsay TG, Kahl S, Long JA, Summers KL. Peripheral histamine and neonatal growth performance in swine. Domest Anim Endocrinol 2020; 70:106370. [PMID: 31585314 DOI: 10.1016/j.domaniend.2019.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/23/2019] [Accepted: 06/10/2019] [Indexed: 01/01/2023]
Abstract
Identification of plasma and/or serum markers at birth that will predict animal performance may be useful for identifying animals susceptible to poor growth. Metabolomic analysis of plasma from newborn swine was used to identified potential metabolite differences between 8 pairs of littermates with similar birth weights but whose ADG differed by >50 g/d so that, at weaning (21 d), littermates differed in BW by 1.62 kg (P < 0.01). Plasma analysis failed to identify metabolic pathways impacted by growth, most likely because of the small sample population. Interestingly, despite comparative analysis of 576 metabolites between these slow-growing and normal-growing littermates, the relative abundance of only 36 metabolites differed between the pairs. Most of these metabolites could be eliminated as potential markers because of the difficulty with the extraction and rapid measurement of their plasma/serum concentrations. Histamine differed from most of these potential metabolite markers in that commercial sandwich ELISAs are readily available. Using an ELISA, we verified the metabolomic data, demonstrating that plasma histamine concentrations were 150% higher in slow-growing than normal growing littermates of similar birth weight (P < 0.05). Subsequently, a separate data set was obtained using swine from a different geographical location and genetic background and also showed that elevated histamine (ng/mL) at birth is associated with increased preweaning growth rate (P = 0.009, r = 0.306, n = 9 litters). Together, the data indicate that perinatal histamine concentrations may serve as a tool to identify potentially slower growing pigs and as a serum biomarker for predicting litter growth rate.
Collapse
Affiliation(s)
- T G Ramsay
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | - S Kahl
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - J A Long
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - K L Summers
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
7
|
Jonnada M, El Rassi GD, El Rassi Z. Selective precolumn derivatization of fatty acids with the fluorescent tag 6-aminoquinoline and their determination in some food samples by reversed-phase chromatography. Electrophoresis 2017; 38:1592-1601. [DOI: 10.1002/elps.201600544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/17/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Murthy Jonnada
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| | | | - Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
8
|
Jawień E, Ząbek A, Deja S, Łukaszewicz M, Młynarz P. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing. Cell Mol Biol Lett 2015; 20:757-72. [PMID: 26540222 DOI: 10.1515/cmble-2015-0044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/13/2015] [Indexed: 11/15/2022] Open
Abstract
Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.
Collapse
|