1
|
Bhuia MS, Chowdhury R, Ara I, Mamun M, Rouf R, Khan MA, Uddin SJ, Shakil MAK, Habtemariam S, Ferdous J, Calina D, Sharifi-Rad J, Islam MT. Bioactivities of morroniside: A comprehensive review of pharmacological properties and molecular mechanisms. Fitoterapia 2024; 175:105896. [PMID: 38471574 DOI: 10.1016/j.fitote.2024.105896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Morroniside (MOR) is an iridoid glycoside and the main active principle of the medicinal plant, Cornus officinalis Sieb. This phytochemical is associated with numerous health benefits due to its antioxidant properties. The primary objective of the present study was to assess the pharmacological effects and underlying mechanisms of MOR, utilizing published data obtained from literature databases. Data collection involved accessing various sources, including PubMed/Medline, Scopus, Science Direct, Google Scholar, Web of Science, and SpringerLink. Our findings demonstrate that MOR can be utilized for the treatment of several diseases and disorders, as numerous studies have revealed its significant therapeutic activities. These activities encompass anti-inflammatory, antidiabetic, lipid-lowering capability, anticancer, trichogenic, hepatoprotective, gastroprotective, osteoprotective, renoprotective, and cardioprotective effects. MOR has also shown promising benefits against various neurological ailments, including Alzheimer's disease, Parkinson's disease, spinal cord injury, cerebral ischemia, and neuropathic pain. Considering these therapeutic features, MOR holds promise as a lead compound for the treatment of various ailments and disorders. However, further comprehensive preclinical and clinical trials are required to establish MOR as an effective and reliable therapeutic agent.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Iffat Ara
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Mamun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Razina Rouf
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muahmmad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | | | - Md Abdul Kader Shakil
- Research Center, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania.
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
2
|
Gurunathan S, Thangaraj P, Kim JH. Postbiotics: Functional Food Materials and Therapeutic Agents for Cancer, Diabetes, and Inflammatory Diseases. Foods 2023; 13:89. [PMID: 38201117 PMCID: PMC10778838 DOI: 10.3390/foods13010089] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Postbiotics are (i) "soluble factors secreted by live bacteria, or released after bacterial lysis, such as enzymes, peptides, teichoic acids, peptidoglycan-derived muropeptides, polysaccharides, cell-surface proteins and organic acids"; (ii) "non-viable metabolites produced by microorganisms that exert biological effects on the hosts"; and (iii) "compounds produced by microorganisms, released from food components or microbial constituents, including non-viable cells that, when administered in adequate amounts, promote health and wellbeing". A probiotic- and prebiotic-rich diet ensures an adequate supply of these vital nutrients. During the anaerobic fermentation of organic nutrients, such as prebiotics, postbiotics act as a benevolent bioactive molecule matrix. Postbiotics can be used as functional components in the food industry by offering a number of advantages, such as being added to foods that are harmful to probiotic survival. Postbiotic supplements have grown in popularity in the food, cosmetic, and healthcare industries because of their numerous health advantages. Their classification depends on various factors, including the type of microorganism, structural composition, and physiological functions. This review offers a succinct introduction to postbiotics while discussing their salient features and classification, production, purification, characterization, biological functions, and applications in the food industry. Furthermore, their therapeutic mechanisms as antibacterial, antiviral, antioxidant, anticancer, anti-diabetic, and anti-inflammatory agents are elucidated.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Pratheep Thangaraj
- Department of Biotechnology, Rathinam College of Arts and Science, Eachanari, Coimbatore 641021, Tamil Nadu, India;
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Jin J, Luo Q, Shi F. Identification of intestinal metabolic activation of loganin generated dialdehyde reactive intermediates improves intestinal bile salt hydrolase activities. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123861. [PMID: 37639995 DOI: 10.1016/j.jchromb.2023.123861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Loganin is an iridoid with potent pharmacological effects. Loganin contains a hemiacetal structure and can convert to dialdehyde intermediates after deglycosylation. We hypothesized that the metabolites of loganin with hemiacetal can generate reactive dialdehyde intermediates. This study aims to characterize the metabolic profiling of loganin and especially for the unstable dialdehyde intermediates by using ultra-performance liquid chromatograph-quadrupole orbitrap mass spectrometry. In this study, a total of 26 stable metabolites were identified in loganin-treated rats. Loganin underwent different metabolism in the intestine and liver, which was confirmed mainly by the metabolites in the hepatic portal vein. In the intestine, the major metabolic pathways were ester hydrolysis and deglycosylation, followed by methylation and dehydrogenation. The hepatic metabolism pathways were hydrogenation, hydroxylation, glucuronidation, and sulfonation. The circulating metabolites with high abundance were mainly derived from intestinal metabolism. Importantly, 11 unstable dialdehyde intermediates of loganin were identified and described for the first time. The dialdehyde intermediates were identified by their dihydropyridine conjugates with amino acids. The dialdehyde intermediates were mainly produced in the intestine. The dialdehyde intermediates enable covalent modification of intestinal proteins. Loganin can up-regulate the activity of intestinal bile salt hydrolase (BSH), catalyzing bile acid metabolism. The level of protein adducts was positively associated with BSH activity, indicating dialdehyde intermediates played a key role in the up-regulation of BSH activities. In conclusion, this study not only demonstrates the characteristic metabolic fate of loganin but also facilitates the understanding of the pharmacologic effects of dialdehyde intermediates.
Collapse
Affiliation(s)
- Junli Jin
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Qi Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
4
|
Zeng J, Peng J, Jiang H, Deng P, Li K, Long D, Wang K. Establishment of an early diagnosis model of colon cancerous bowel obstruction based on 1H NMR. PLoS One 2022; 17:e0266730. [PMID: 35972924 PMCID: PMC9380946 DOI: 10.1371/journal.pone.0266730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/28/2022] [Indexed: 11/23/2022] Open
Abstract
Objective To prospectively establish an early diagnosis model of acute colon cancerous bowel obstruction by applying nuclear magnetic resonance hydrogen spectroscopy(1H NMR) technology based metabolomics methods, combined with machine learning. Methods In this study, serum samples of 71 patients with acute bowel obstruction requiring emergency surgery who were admitted to the Emergency Department of Sichuan Provincial People’s Hospital from December 2018 to November 2020 were collected within 2 hours after admission, and NMR spectroscopy data was taken after pretreatment. After postoperative pathological confirmation, they were divided into colon cancerous bowel obstruction (CBO) group and adhesive bowel obstruction (ABO) control group. Used MestReNova software to extract the two sets of spectra bins, and used the MetaboAnalyst5.0 website to perform partial least square discrimination (PLS-DA), combining the human metabolome database (HMDB) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to find possible different Metabolites and related metabolic pathways. Results 22 patients were classified as CBO group and 30 were classified as ABO control group. Compared with ABO group, the level of Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicyluric acid, Ferulic acid, Kynurenic acid, CDP, Mandelic acid, NADPH, FAD, Phenylpyruvate, Allyl isothiocyanate, and Vanillylmandelic acid increased in the CBO group; while the lecel of L-Tryptophan and Bilirubin decreased. There were significant differences between two groups in the tryptophan metabolism, tyrosine metabolism, glutathione metabolism, phenylalanine metabolism and synthesis pathways of phenylalanine, tyrosine and tryptophan (all P<0.05). Tryptophan metabolism pathway had the greatest impact (Impact = 0.19). The early diagnosis model of colon cancerous bowel was established based on the levels of six metabolites: Xanthurenic acid, 3-Hydroxyanthranilic acid, Gentisic acid, Salicylic acid, Ferulic acid and Kynurenic acid (R2 = 0.995, Q2 = 0.931, RMSE = 0.239, AUC = 0.962). Conclusion This study firstly used serum to determine the difference in metabolome between patients with colon cancerous bowel obstruction and those with adhesive bowel obstruction. The study found that the metabolic information carried by the serum was sufficient to discriminate the two groups of patients and provided the theoretical supporting for the future using of the more convenient sample for the differential diagnosis of patients with colon cancerous bowel obstruction. Quantitative experiments on a large number of samples were still needed in the future.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Jin Peng
- Department of Histology Embryology and Neurobiology, Sichuan University West China School of Basic Medical Sciences and Forensic Medicine, Chengdu, Sichuan, P.R. China
- * E-mail:
| | - Hua Jiang
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Kexun Li
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Daolin Long
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| | - Kai Wang
- Department of Emergency Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, P.R. China
| |
Collapse
|
5
|
Zhang F, Yan Y, Zhang J, Li L, Wang YW, Xia CY, Lian WW, Peng Y, Zheng J, He J, Xu JK, Zhang WK. Phytochemistry, synthesis, analytical methods, pharmacological activity, and pharmacokinetics of loganin: A comprehensive review. Phytother Res 2022; 36:2272-2299. [PMID: 35583806 DOI: 10.1002/ptr.7347] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/13/2021] [Accepted: 11/21/2021] [Indexed: 10/18/2022]
Abstract
Iridoid glycosides (IGs) are found in many medicinal and edible plants, such as Gardenia jasminoides, Cistanche tubulosa, Eucommia ulmoides, Rehmanniae Radix, Lonicera japonica, and Cornus officinalis. Loganin, an IG, is one of the main active ingredient of Cornus officinalis Sieb. et Zucc., which approved as a medicinal and edible plant in China. Loganin has been widely concerned due to its extensive pharmacological effects, including anti-diabetic, antiinflammatory, neuroprotective, and anti-tumor activities, etc. Studies have shown that these underlying mechanisms include anti-oxidation, antiinflammation and anti-apoptosis by regulating a variety of signaling pathways, such as STAT3/NF-κB, JAK/STAT3, TLR4/NF-κB, PI3K/Akt, MCP-1/CCR2, and RAGE/Nox4/p65 NF-κB signaling pathways. In order to better understand the research status of loganin and promote its application in human health, this paper systematically summarized the phytochemistry, analysis methods, synthesis, pharmacological properties and related mechanisms, and pharmacokinetics based on the research in the past decades.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yu Yan
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Li Li
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, People's Republic of China
| | - Yu-Wei Wang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Cong-Yuan Xia
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Wen-Wen Lian
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, People's Republic of China
| | - Jun He
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Wei-Ku Zhang
- Department of Pharmacy & Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Zhang W, Cui Y, Liu Z, Wang S, Yang A, Li X, Zhang J. Astragalus membranaceus ultrafine powder alleviates hyperuricemia by regulating the gut microbiome and reversing bile acid and adrenal hormone biosynthesis dysregulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Dose-independent pharmacokinetics of loganin in rats: effect of intestinal first-pass metabolism on bioavailability. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Park C, Cha HJ, Lee H, Kim GY, Choi YH. The regulation of the TLR4/NF-κB and Nrf2/HO-1 signaling pathways is involved in the inhibition of lipopolysaccharide-induced inflammation and oxidative reactions by morroniside in RAW 264.7 macrophages. Arch Biochem Biophys 2021; 706:108926. [PMID: 34029560 DOI: 10.1016/j.abb.2021.108926] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
Morroniside, a major iridoid glycoside isolated from Cornus officinalis, has a variety of beneficial pharmacological properties. Although morroniside has recently been reported to exhibit anti-inflammatory and antioxidant effects, the detailed mechanism has not yet been fully elucidated. In this study, we investigated the inhibitory effect of morroniside on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages. Our results indicated that morroniside pretreatment significantly inhibited the LPS-induced phagocytic activity and release of pro-inflammatory factors, which was associated with blocking the expression of their regulatory genes. Morroniside also markedly suppressed the expression of myeloid differentiation factor 88 as well as Toll-like receptor 4 (TLR4), and attenuated the translocation of nuclear factor-κB (NF-κB) to the nucleus in LPS-treated RAW 264.7 macrophages. Furthermore, morroniside prevented the binding of LPS to the TLR4 on the cell surface. In addition, morroniside abolished reactive oxygen species (ROS) generation, and enhanced the expression of heme oxygenase-1 (HO-1) following activation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the morroniside-mediated inhibition of inflammatory response in LPS-treated RAW 264.7 macrophages. In conclusion, our findings suggest that morroniside exerts LPS-induced anti-inflammatory and antioxidant effects by targeting the TLR4/NF-κB and Nrf2/HO-1 signaling pathways in RAW 264.7 macrophages. Taken together, our findings suggest that morroniside interacted structurally and electrochemically with TLR4/MD2 complex, consequently can be a potential functional agent to prevent inflammatory and oxidative damage.
Collapse
Affiliation(s)
- Cheol Park
- Division of Basic Sciences, College of Liberal Studies, Dong-eui University, Busan, 47340, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan, 49104, Republic of Korea
| | - Hyesook Lee
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan, 47340, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan, 47227, Republic of Korea.
| |
Collapse
|
9
|
Xie L, Wang Y, Yin H, Li J, Xu Z, Sun Z, Liu F, Zhang X, Liu S, Sun J, Tian X, Huang C. Identification of the absorbed ingredients and metabolites in rats after an intravenous administration of Tanreqing injection using high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci 2021; 44:2097-2112. [PMID: 33719190 DOI: 10.1002/jssc.202000898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/30/2022]
Abstract
The metabolic profiles of Tanreqing injection, which is a traditional Chinese medicine recommended for complementary administration to treat a novel coronavirus, have remained unclear, which inhibit the understanding of the effective chemical compounds of Tanreqing injection. In this study, a sensitive high-performance liquid chromatography quadrupole time-of-flight mass spectrometry method was used to identify the compounds and metabolites in various biosamples, including plasma, bile, liver, lung, kidney, urine, and feces, following the intravenous administration of Tanreqing injection in rats. A total of 89 compounds were characterized in the biosamples of Tanreqing injection-treated rats including 25 precursor constituents and 64 metabolites. Nine flavonoid compounds, twelve phenolic acids, and four iridoid glycosides were identified in the rats. Their metabolites were mainly produced by glucuronidation, deglucuronidation, glycosylation, deglycosylation, methylation, demethylation, N-heterocyclisation, sulphation, dehydroxylation, decarboxylation, dehydration, hydroxylation, and corresponding recombination reactions. This study was the first to comprehensively investigate the metabolic profile of Tanreqing injection and provides a scientific basis to further elucidate the pharmacodynamic material basis and therapeutic mechanism of Tanreqing injection.
Collapse
Affiliation(s)
- Like Xie
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yangyang Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hao Yin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiajia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhaolin Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Fang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoli Zhang
- Shanghai Kaibao Pharmaceutical Co. Ltd, Shanghai, P. R. China
| | - Shaoyong Liu
- Shanghai Kaibao Pharmaceutical Co. Ltd, Shanghai, P. R. China
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, P. R. China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
10
|
Quality evaluation based on color grading: quality discrimination of the Chinese medicine Corni Fructus by an E-eye. Sci Rep 2019; 9:17006. [PMID: 31740693 PMCID: PMC6861232 DOI: 10.1038/s41598-019-53210-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 10/29/2019] [Indexed: 01/17/2023] Open
Abstract
‘Quality evaluation based on color grading’ is one of the features used in Chinese medicine discrimination. In order to assess the feasibility of electronic eye (E-eye) in implementing ‘quality evaluation based on color grading’, the present study applied an IRIS VA400 E-eye to test 58 batches of Corni Fructus samples. Their optical data were acquired and combined with their corresponding classes. A total of four quality discrimination models were produced according to discrimination analysis (DA), least squares support vector machine (LS-SVM), partial least squares-discrimination analysis (PLS-DA), and principal component analysis-discrimination analysis (PCA-DA). The accuracy rate of the aforementioned 4 cross evaluation models were 86.21%, 89.66%, 81.03% and 91.38%, respectively. Therefore, the PCA-DA method was used to build the final discrimination model for classifying Corni Fructus or discriminating its quality.
Collapse
|
11
|
Li B, Lei S, Xiong S, Chen S, Zhang Z. Pharmacokinetics and Pharmacodynamics of Morroniside: A Review. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19856526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Bo Li
- Zhejiang University of Technology, Hangzhou, China
| | - Shanshan Lei
- Zhejiang University of Technology, Hangzhou, China
| | - Shan Xiong
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
- Key Laboratory for Biotech-Drugs Ministry of Health, Jinan, China
- Key Laboratory for Rare and Uncommon Diseases of Shandong Province, Jinan, China
| | - Suhong Chen
- Zhejiang University of Technology, Hangzhou, China
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Zhang LQ, Wang J, Li T, Li PY, Wang YH, Yang M, Liu JP, Liu JH. Determination of the chemical components and phospholipids of velvet antler using UPLC/QTOF-MS coupled with UNIFI software. Exp Ther Med 2019; 17:3789-3799. [PMID: 30988765 PMCID: PMC6447902 DOI: 10.3892/etm.2019.7372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/11/2018] [Indexed: 01/24/2023] Open
Abstract
Velvet antler, which exhibits immune and growth enhancing effects, is commonly used in a variety of Asian health care products, but its complex components remain unknown. The current study analyzed extracts using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry in the MSE mode. Automated detection and data filtering were performed using UNIFI software and peaks were compared with a proprietary scientific library (Traditional Medicine Library; TML). The results obtained using different data processing parameters (including 3D peak detection, target by mass and fragment identification) were evaluated against 87 compounds comprising 1 lignan, 30 terpenoids (including 20 triterpenes), 39 steroids, 8 alkaloids, 4 organic acids and 5 esters in the TML. Using a screening method with a mass accuracy cutoff of ±2 mDa, a retention time cutoff of ±0.2 min, a minimum response threshold of 1,000 counts and an average of 10 false detects per sample analysis, 16 phospholipids were identified in the extracts of velvet antler, three of which were quantified. The results demonstrated that there was 1.07±0.02 µg/g of 1-myristoyl-sn-glycero-3-phosphocholine, 7.05±0.52 ng/g of 1,2-dimyristoyl-sn-glycero-3-phosphocholine and 18.81±0.55 ng/g of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in velvet antler. The current study successfully identified certain components of velvet antler. Furthermore, the results may provide an experimental basis for further pharmacological and clinical study.
Collapse
Affiliation(s)
- Li-Qun Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Wang
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ting Li
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ping-Ya Li
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yun-Hua Wang
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Miao Yang
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jin-Ping Liu
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ji-Hua Liu
- Department of Natural Medicinal Chemistry, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|