1
|
Kim JYV, Assadian S, Hollander Z, Burns P, Shannon CP, Lam K, Toma M, Ignaszewski A, Davies RA, Delgado D, Haddad H, Isaac D, Kim D, Mui A, Rajda M, West L, White M, Zieroth S, Keown PA, McMaster WR, Ng RT, McManus BM, Levings MK, Tebbutt SJ. Regulatory T Cell Biomarkers Identify Patients at Risk of Developing Acute Cellular Rejection in the First Year Following Heart Transplantation. Transplantation 2023; 107:1810-1819. [PMID: 37365692 DOI: 10.1097/tp.0000000000004607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
BACKGROUND Acute cellular rejection (ACR), an alloimmune response involving CD4+ and CD8+ T cells, occurs in up to 20% of patients within the first year following heart transplantation. The balance between a conventional versus regulatory CD4+ T cell alloimmune response is believed to contribute to developing ACR. Therefore, tracking these cells may elucidate whether changes in these cell populations could signal ACR risk. METHODS We used a CD4+ T cell gene signature (TGS) panel that tracks CD4+ conventional T cells (Tconv) and regulatory T cells (Treg) on longitudinal samples from 94 adult heart transplant recipients. We evaluated combined diagnostic performance of the TGS panel with a previously developed biomarker panel for ACR diagnosis, HEARTBiT, while also investigating TGS' prognostic utility. RESULTS Compared with nonrejection samples, rejection samples showed decreased Treg- and increased Tconv-gene expression. The TGS panel was able to discriminate between ACR and nonrejection samples and, when combined with HEARTBiT, showed improved specificity compared with either model alone. Furthermore, the increased risk of ACR in the TGS model was associated with lower expression of Treg genes in patients who later developed ACR. Reduced Treg gene expression was positively associated with younger recipient age and higher intrapatient tacrolimus variability. CONCLUSIONS We demonstrated that expression of genes associated with CD4+ Tconv and Treg could identify patients at risk of ACR. In our post hoc analysis, complementing HEARTBiT with TGS resulted in an improved classification of ACR. Our study suggests that HEARTBiT and TGS may serve as useful tools for further research and test development.
Collapse
Affiliation(s)
- Ji-Young V Kim
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Sara Assadian
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Paloma Burns
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Casey P Shannon
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Karen Lam
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Mustafa Toma
- Department of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Andrew Ignaszewski
- Department of Cardiology, University of British Columbia, Vancouver, BC, Canada
| | - Ross A Davies
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Diego Delgado
- University Health Network/Mount Sinai Hospital, Toronto, ON, Canada
| | - Haissam Haddad
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Debra Isaac
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Daniel Kim
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Alice Mui
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Miroslaw Rajda
- Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Lori West
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Michel White
- Institut de Cardiologie de Montréal, Montréal, QC, Canada
| | - Shelley Zieroth
- Department of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Paul A Keown
- Department of Medicine, Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | - W Robert McMaster
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Raymond T Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Bruce M McManus
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Megan K Levings
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Scott J Tebbutt
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Providence Research, Providence Health Care Research Institute, Vancouver, BC, Canada
| |
Collapse
|
2
|
Adedinsewo D, Hardway HD, Morales-Lara AC, Wieczorek MA, Johnson PW, Douglass EJ, Dangott BJ, Nakhleh RE, Narula T, Patel PC, Goswami RM, Lyle MA, Heckman AJ, Leoni-Moreno JC, Steidley DE, Arsanjani R, Hardaway B, Abbas M, Behfar A, Attia ZI, Lopez-Jimenez F, Noseworthy PA, Friedman P, Carter RE, Yamani M. Non-invasive detection of cardiac allograft rejection among heart transplant recipients using an electrocardiogram based deep learning model. EUROPEAN HEART JOURNAL. DIGITAL HEALTH 2023; 4:71-80. [PMID: 36974261 PMCID: PMC10039431 DOI: 10.1093/ehjdh/ztad001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/08/2022] [Indexed: 01/15/2023]
Abstract
Aims Current non-invasive screening methods for cardiac allograft rejection have shown limited discrimination and are yet to be broadly integrated into heart transplant care. Given electrocardiogram (ECG) changes have been reported with severe cardiac allograft rejection, this study aimed to develop a deep-learning model, a form of artificial intelligence, to detect allograft rejection using the 12-lead ECG (AI-ECG). Methods and results Heart transplant recipients were identified across three Mayo Clinic sites between 1998 and 2021. Twelve-lead digital ECG data and endomyocardial biopsy results were extracted from medical records. Allograft rejection was defined as moderate or severe acute cellular rejection (ACR) based on International Society for Heart and Lung Transplantation guidelines. The extracted data (7590 unique ECG-biopsy pairs, belonging to 1427 patients) was partitioned into training (80%), validation (10%), and test sets (10%) such that each patient was included in only one partition. Model performance metrics were based on the test set (n = 140 patients; 758 ECG-biopsy pairs). The AI-ECG detected ACR with an area under the receiver operating curve (AUC) of 0.84 [95% confidence interval (CI): 0.78-0.90] and 95% (19/20; 95% CI: 75-100%) sensitivity. A prospective proof-of-concept screening study (n = 56; 97 ECG-biopsy pairs) showed the AI-ECG detected ACR with AUC = 0.78 (95% CI: 0.61-0.96) and 100% (2/2; 95% CI: 16-100%) sensitivity. Conclusion An AI-ECG model is effective for detection of moderate-to-severe ACR in heart transplant recipients. Our findings could improve transplant care by providing a rapid, non-invasive, and potentially remote screening option for cardiac allograft function.
Collapse
Affiliation(s)
- Demilade Adedinsewo
- Department of Cardiovascular Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Heather D Hardway
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Andrea Carolina Morales-Lara
- Department of Cardiovascular Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Mikolaj A Wieczorek
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Patrick W Johnson
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Erika J Douglass
- Department of Cardiovascular Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Bryan J Dangott
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Raouf E Nakhleh
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Tathagat Narula
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Parag C Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Rohan M Goswami
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Melissa A Lyle
- Department of Transplantation, Mayo Clinic, Jacksonville, FL, USA
| | - Alexander J Heckman
- Department of Cardiovascular Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | | | - D Eric Steidley
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Brian Hardaway
- Department of Cardiovascular Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Mohsin Abbas
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Atta Behfar
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zachi I Attia
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | | | - Paul Friedman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rickey E Carter
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Mohamad Yamani
- Department of Cardiovascular Medicine, Division of Cardiovascular Diseases, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| |
Collapse
|
3
|
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021; 10:cells10102512. [PMID: 34685492 PMCID: PMC8533951 DOI: 10.3390/cells10102512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- COVID-19
- Homeostasis
- Humans
- Mice
- MicroRNAs/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- Myocardium/metabolism
- Origin of Life
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Untranslated/genetics
- RNA, Viral/metabolism
- Regeneration
- SARS-CoV-2/genetics
Collapse
Affiliation(s)
- Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Fabio Desideri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Center for Life Nano & Neuro-Science of Instituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Correspondence:
| |
Collapse
|
4
|
Deng MC. The evolution of patient-specific precision biomarkers to guide personalized heart-transplant care. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:51-63. [PMID: 33768160 DOI: 10.1080/23808993.2021.1840273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Introduction In parallel to the clinical maturation of heart transplantation over the last 50 years, rejection testing has been revolutionized within the systems biology paradigm triggered by the Human Genome Project. Areas Covered We have co-developed the first FDA-cleared diagnostic and prognostic leukocyte gene expression profiling biomarker test in transplantation medicine that gained international evidence-based medicine guideline acceptance to rule out moderate/severe acute cellular cardiac allograft rejection without invasive endomyocardial biopsies. This work prompted molecular re-classification of intragraft biology, culminating in the identification of a pattern of intragraft myocyte injury, in addition to acute cellular rejection and antibody-mediated rejection. This insight stimulated research into non-invasive detection of myocardial allograft injury. The addition of a donor-organ specific myocardial injury marker based on donor-derived cell-free DNA further strengthens the non-invasive monitoring concept, combining the clinical use of two complementary non-invasive blood-based measures, host immune activity-related risk of acute rejection as well as cardiac allograft injury. Expert Opinion This novel complementary non-invasive heart transplant monitoring strategy based on leukocyte gene expression profiling and donor-derived cell-free DNA that incorporates longitudinal variability measures provides an exciting novel algorithm of heart transplant allograft monitoring. This algorithm's clinical utility will need to be tested in an appropriately designed randomized clinical trial which is in preparation.
Collapse
Affiliation(s)
- Mario C Deng
- Advanced Heart Failure/Mechanical Support/Heart Transplant, David Geffen School of Medicine at UCLA, Ronald Reagan UCLA Medical Center, 100 Medical Plaza Drive, Suite 630, Los Angeles, CA 90095
| |
Collapse
|
5
|
Giarraputo A, Barison I, Fedrigo M, Burrello J, Castellani C, Tona F, Bottio T, Gerosa G, Barile L, Angelini A. A Changing Paradigm in Heart Transplantation: An Integrative Approach for Invasive and Non-Invasive Allograft Rejection Monitoring. Biomolecules 2021; 11:biom11020201. [PMID: 33535640 PMCID: PMC7912846 DOI: 10.3390/biom11020201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac allograft rejection following heart transplantation is challenging to diagnose. Tissue biopsies are the gold standard in monitoring the different types of rejection. The last decade has seen an increased emphasis on identifying non-invasive methods to improve rejection diagnosis and overcome tissue biopsy invasiveness. Liquid biopsy, as an efficient non-invasive diagnostic and prognostic oncological monitoring tool, seems to be applicable in heart transplant follow-ups. Moreover, molecular techniques applied on blood can be translated to tissue samples to provide novel perspectives on tissue and reveal new diagnostic and prognostic biomarkers. This review aims to provide a comprehensive overview of the state-of-the-art of the new methodologies in cardiac allograft rejection monitoring and investigate the future perspectives on invasive and non-invasive rejection biomarkers identification. We reviewed literature from the most used scientific databases, such as PubMed, Google Scholar, and Scopus. We extracted 192 papers and, after a selection and exclusion process, we included in the review 81 papers. The described limitations notwithstanding, this review show how molecular biology techniques and omics science could be deployed complementarily to the histopathological rejection diagnosis on tissue biopsies, thus representing an integrated approach for heart transplant patients monitoring.
Collapse
Affiliation(s)
- Alessia Giarraputo
- Cardiovascular Pathology and Pathological Anatomy, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (A.G.); (I.B.); (M.F.); (C.C.)
| | - Ilaria Barison
- Cardiovascular Pathology and Pathological Anatomy, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (A.G.); (I.B.); (M.F.); (C.C.)
| | - Marny Fedrigo
- Cardiovascular Pathology and Pathological Anatomy, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (A.G.); (I.B.); (M.F.); (C.C.)
| | - Jacopo Burrello
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland; (J.B.); (L.B.)
| | - Chiara Castellani
- Cardiovascular Pathology and Pathological Anatomy, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (A.G.); (I.B.); (M.F.); (C.C.)
| | - Francesco Tona
- Division of Cardiac Surgery, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (F.T.); (T.B.); (G.G.)
| | - Tomaso Bottio
- Division of Cardiac Surgery, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (F.T.); (T.B.); (G.G.)
| | - Gino Gerosa
- Division of Cardiac Surgery, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (F.T.); (T.B.); (G.G.)
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Cardiocentro Ticino Foundation, 6900 Lugano, Switzerland; (J.B.); (L.B.)
- Faculty of Biomedical Sciences, Università Svizzera Italiana, 6900 Lugano, Switzerland
- Institute of Life Sciences, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Annalisa Angelini
- Cardiovascular Pathology and Pathological Anatomy, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (A.G.); (I.B.); (M.F.); (C.C.)
- Correspondence: ; Tel.: +39-049-821-1699
| |
Collapse
|
6
|
Zhuo DX, Ginder K, Hardin EA. Markers of Immune Function in Heart Transplantation: Implications for Immunosuppression and Screening for Rejection. Curr Heart Fail Rep 2021; 18:33-40. [PMID: 33400150 DOI: 10.1007/s11897-020-00499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE OF REVIEW Recent developments in high-throughput DNA and RNA sequencing technologies have facilitated the development of noninvasive assays to monitor heart transplant rejection. In this review, we summarize existing assays employed for the surveillance of allograft rejection, as well as promising future directions for such tests in the molecular biology field. RECENT FINDINGS The AlloMap genome expression profiling assay remains the only noninvasive test for rejection surveillance and is incorporated into the International Society of Heart and Lung Transplantation guidelines. Other efforts have focused on messenger RNA (mRNA), microRNA (miRNA), and donor-derived cell-free DNA (dd-cfDNA) as potential viable biomarkers. Mitochondrial pathways in allograft necroptosis and inflammation signaling may represent a novel direction for future research endeavors. Although endomyocardial biopsy remains the gold standard, several converging areas of molecular biology could soon yield successful alternative methods of heart transplant rejection monitoring, with the distinct advantage of avoiding procedural complications.
Collapse
Affiliation(s)
- David X Zhuo
- Fellow, Advanced Heart Failure and Transplant Cardiology, Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9047, USA
| | - Katie Ginder
- Nurse Practitioner, Advanced Heart Failure, Transplant, LVAD, Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E Ashley Hardin
- Internal Medicine, Advanced Heart Failure and Transplant Cardiology, Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, 5959 Harry Hines Boulevard, Ste #HP.8.110, Dallas, TX, 75390-9047, USA.
| |
Collapse
|