1
|
Valente R, Cordeiro M, Pinto B, Machado A, Alves F, Sousa-Pinto I, Ruivo R, Castro LFC. Alterations of pleiotropic neuropeptide-receptor gene couples in Cetacea. BMC Biol 2024; 22:186. [PMID: 39218857 PMCID: PMC11367936 DOI: 10.1186/s12915-024-01984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.
Collapse
Affiliation(s)
- Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Miguel Cordeiro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
| | - Bernardo Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - André Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Filipe Alves
- MARE - Marine and Environmental Sciences Centre, Funchal, Madeira, Portugal
- ARNET - Aquatic Research Network, ARDITI, Funchal, Madeira, Portugal
| | - Isabel Sousa-Pinto
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, 4450-208, Matosinhos, S/N, Portugal.
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua Do Campo Alegre, Porto, Portugal.
| |
Collapse
|
2
|
Booth CG, Guilpin M, Darias-O’Hara AK, Ransijn JM, Ryder M, Rosen D, Pirotta E, Smout S, McHuron EA, Nabe-Nielsen J, Costa DP. Estimating energetic intake for marine mammal bioenergetic models. CONSERVATION PHYSIOLOGY 2023; 11:coac083. [PMID: 36756464 PMCID: PMC9900471 DOI: 10.1093/conphys/coac083] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
Bioenergetics is the study of how animals achieve energetic balance. Energetic balance results from the energetic expenditure of an individual and the energy they extract from their environment. Ingested energy depends on several extrinsic (e.g prey species, nutritional value and composition, prey density and availability) and intrinsic factors (e.g. foraging effort, success at catching prey, digestive processes and associated energy losses, and digestive capacity). While the focus in bioenergetic modelling is often on the energetic costs an animal incurs, the robust estimation of an individual's energy intake is equally critical for producing meaningful predictions. Here, we review the components and processes that affect energy intake from ingested gross energy to biologically useful net energy (NE). The current state of knowledge of each parameter is reviewed, shedding light on research gaps to advance this field. The review highlighted that the foraging behaviour of many marine mammals is relatively well studied via biologging tags, with estimates of success rate typically assumed for most species. However, actual prey capture success rates are often only assumed, although we note studies that provide approaches for its estimation using current techniques. A comprehensive collation of the nutritional content of marine mammal prey species revealed a robust foundation from which prey quality (comprising prey species, size and energy density) can be assessed, though data remain unavailable for many prey species. Empirical information on various energy losses following ingestion of prey was unbalanced among marine mammal species, with considerably more literature available for pinnipeds. An increased understanding and accurate estimate of each of the components that comprise a species NE intake are an integral part of bioenergetics. Such models provide a key tool to investigate the effects of disturbance on marine mammals at an individual and population level and to support effective conservation and management.
Collapse
Affiliation(s)
- Cormac G Booth
- Corresponding author: SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK.
| | | | - Aimee-Kate Darias-O’Hara
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Janneke M Ransijn
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Megan Ryder
- SMRU Consulting, Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews, KY16 8LB, UK
| | - Dave Rosen
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall,
Vancouver, BC V6T 1Z4, Canada
| | - Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling,
The Observatory, Buchanan
Gardens, University of St. Andrews, St. Andrews,
KY16 9LZ, UK
| | - Sophie Smout
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St. Andrews, St. Andrews, KY16 8LB, UK
| | - Elizabeth A McHuron
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, 3737 Brooklyn Ave NE, Seattle, WA, 98105, USA
| | - Jacob Nabe-Nielsen
- Marine Mammal Research, Department of Ecoscience, Aarhus University, Aarhus, DK-4000
Roskilde, Denmark
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 130
McAlister Way, Santa Cruz, CA, 95064, USA
| |
Collapse
|
3
|
Monteiro JP, Ferreira HB, Melo T, Flanagan C, Urbani N, Neves J, Domingues P, Domingues MR. The plasma phospholipidome of the bottlenose dolphin ( Tursiops truncatus) is modulated by both sex and developmental stage. Mol Omics 2023; 19:35-47. [PMID: 36314173 DOI: 10.1039/d2mo00202g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipidomics represent a valid complementary tool to the biochemical analysis of plasma in humans. However, in cetaceans, these tools have been unexplored. Here, we evaluated how the plasma lipid composition of Tursiops truncatus is modulated by developmental stage and sex, aiming at a potential use of lipidomics in integrated strategies to monitor cetacean health. We characterized the fatty acid profile and detected a total of 26 fatty acids in T. truncatus plasma. The most abundant fatty acids were palmitic acid (C16:0), stearic acid (C18:0) and oleic acid (C18:1n-9). Interestingly, there are consistent differences between the fatty acid profile of mature female and mature male specimens. Phospholipidome analysis identified 320 different lipid species belonging to phosphatidylcholine (PC, 105 lipid species), lysophosphatidylcholine (42), phosphatidylethanolamine (PE, 67), lysophosphatidylethanolamine (18), phosphatidylglycerol (14), lysophosphatidylglycerol (8), phosphatidylinositol (14), lysophosphatidylinositol (2), phosphatidylserine (3), sphingomyelin (45) and ceramides (2) classes. The statistical analysis of the phospholipidome showed that its composition allows discriminating mature animals between sexes and mature males from immature males. Notably, discrimination between sexes is mainly determined by the contents of PE plasmalogens and lysophospholipids (LPC and LPE), while the differences between mature and immature male animals were mainly determined by the levels of PC lipids. This is the first time that a correlation between developmental stage and sex and the lipid composition of the plasma has been established in cetaceans. Being able to discern between age and sex-related changes is an encouraging step towards using these tools to also detect differences related to disease/dysfunction processes.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Helena B Ferreira
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal. .,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Divergent evolution of mitogenomics in Cetartiodactyla niche adaptation. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
5
|
Pirotta E. A review of bioenergetic modelling for marine mammal populations. CONSERVATION PHYSIOLOGY 2022; 10:coac036. [PMID: 35754757 PMCID: PMC9215292 DOI: 10.1093/conphys/coac036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/07/2022] [Accepted: 06/15/2022] [Indexed: 05/16/2023]
Abstract
Bioenergetic models describe the processes through which animals acquire energy from resources in the environment and allocate it to different life history functions. They capture some of the fundamental mechanisms regulating individuals, populations and ecosystems and have thus been used in a wide variety of theoretical and applied contexts. Here, I review the development of bioenergetic models for marine mammals and their application to management and conservation. For these long-lived, wide-ranging species, bioenergetic approaches were initially used to assess the energy requirements and prey consumption of individuals and populations. Increasingly, models are developed to describe the dynamics of energy intake and allocation and predict how resulting body reserves, vital rates and population dynamics might change as external conditions vary. The building blocks required to develop such models include estimates of intake rate, maintenance costs, growth patterns, energy storage and the dynamics of gestation and lactation, as well as rules for prioritizing allocation. I describe how these components have been parameterized for marine mammals and highlight critical research gaps. Large variation exists among available analytical approaches, reflecting the large range of life histories, management needs and data availability across studies. Flexibility in modelling strategy has supported tailored applications to specific case studies but has resulted in limited generality. Despite the many empirical and theoretical uncertainties that remain, bioenergetic models can be used to predict individual and population responses to environmental change and other anthropogenic impacts, thus providing powerful tools to inform effective management and conservation.
Collapse
Affiliation(s)
- Enrico Pirotta
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews KY16 9LZ, UK. Tel: (+44) (0)1334 461 842.
| |
Collapse
|
6
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
7
|
Junker N, Gossmann TI. Adaptation-Driven Evolution of Sirtuin 1 (SIRT1), a Key Regulator of Metabolism and Aging, in Marmot Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.666564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sirtuin protein family plays a role in the lifespan of various species and is involved in numerous key metabolic processes. To understand the evolutionary role of sirtuins in marmots, a long-living rodent species group with remarkable metabolic shutdown during hibernation, we conducted a phylogeny-based substitution rate analysis of coding genes based on genetic information of seven marmot species. We show that sirtuin 1 (SIRT1) has evolved under positive selection in the marmot lineage. We pinpoint three amino acid changes in four different marmot species that underlie the signal of positive selection and that may favor increased longevity in marmots. Based on a computational structural analysis we can show that all three substitutions affect the secondary structure of the same region in human SIRT1. We propose that the identified region is close to the catalytic domain and that the potential structural changes may impact the catalytic activity of the enzyme and therefore might be playing a functional role in marmot's extended lifespan and metabolic shutdown.
Collapse
|
8
|
Alves LQ, Ruivo R, Valente R, Fonseca MM, Machado AM, Plön S, Monteiro N, García-Parraga D, Ruiz-Díaz S, Sánchez-Calabuig MJ, Gutiérrez-Adán A, Castro LFC. A drastic shift in the energetic landscape of toothed whale sperm cells. Curr Biol 2021; 31:3648-3655.e9. [PMID: 34171300 DOI: 10.1016/j.cub.2021.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Mammalian spermatozoa are a notable example of metabolic compartmentalization.1 Energy in the form of ATP production, vital for motility, capacitation, and fertilization, is subcellularly separated in sperm cells. While glycolysis provides a local, rapid, and low-yielding input of ATP along the flagellum fibrous sheath, oxidative phosphorylation (OXPHOS), far more efficient over a longer time frame, is concentrated in the midpiece mitochondria.2 The relative weight of glycolysis and OXPHOS pathways in sperm function is variable among species and sensitive to oxygen and substrate availability.3-5 Besides partitioning energy production, sperm cell energetics display an additional singularity: the occurrence of sperm-specific gene duplicates and alternative spliced variants, with conserved function but structurally bound to the flagellar fibrous sheath.6,7 The wider selective forces driving the compartmentalization and adaptability of this energy system in mammalian species remain largely unknown, much like the impact of ecosystem resource availability (e.g., carbohydrates, fatty acids, and proteins) and dietary adaptations in reproductive physiology traits.8 Here, we investigated the Cetacea, an iconic group of fully aquatic and carnivorous marine mammals, evolutionarily related to extant terrestrial herbivores.9 In this lineage, episodes of profound trait remodeling have been accompanied by clear genomic signatures.10-14 We show that toothed whales exhibit impaired sperm glycolysis, due to gene and exon erosion, and demonstrate that dolphin spermatozoa motility depends on endogenous fatty acid β-oxidation, but not carbohydrates. Such unique energetic rewiring substantiates the observation of large mitochondria in toothed whale spermatozoa and emphasizes the radical physiological reorganization imposed by the transition to a carbohydrate-depleted marine environment.
Collapse
Affiliation(s)
- Luís Q Alves
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raquel Ruivo
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Raul Valente
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Miguel M Fonseca
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - André M Machado
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Stephanie Plön
- Department of Pathology, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Nuno Monteiro
- FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal; CIBIO - Research Centre in Biodiversity and Genetic Resources, Campus Agrário de Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
| | - David García-Parraga
- Veterinary Services, L'Oceanográfic, Ciudad de las Artes y las Ciencias, Junta de Murs i Vals, s/n, 46013 Valencia, Spain
| | - Sara Ruiz-Díaz
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Mistral Fertility Clinics S.L., Clínica Tambre, 28002 Madrid, Spain
| | - Maria J Sánchez-Calabuig
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain; Department of Animal Medicine and Surgery, Faculty of Veterinary Science, University Complutense of Madrid, 28040 Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, INIA, Av. Puerta de Hierro, 18, 28040 Madrid, Spain.
| | - L Filipe C Castro
- CIMAR/CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto (U. Porto), Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
9
|
Monteiro JP, Maciel E, Melo T, Flanagan C, Urbani N, Neves J, Domingues MR. The plasma phospholipidome of Tursiops truncatus: From physiological insight to the design of prospective tools for managed cetacean monitorization. Lipids 2021; 56:461-473. [PMID: 34036588 DOI: 10.1002/lipd.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023]
Abstract
Plasma biochemical analysis remains one of the established ways of monitoring captive marine mammal health. More recently, complementary plasma lipidomic analysis has proven to be a valid tool in disease diagnosis and prevention, with the potential to validate and complement common biochemical analysis, providing a more integrative approach. In this study, we thoroughly characterized the plasma polar lipid content of Tursiops truncatus, the most common cetacean species held under human care. Our results showed that phosphatidylcholine, lysophosphatidylcholine, and sphingomyelins (CerPCho) are the most represented phospholipid classes in T. truncatus plasma. Palmitic, oleic, and stearic acids are the major fatty acid (FA) present esterified to the plasma polar lipids of this species, although some n-3 species are also remarkably present, namely eicosapentaenoic and docosahexaenoic acids. The polar lipidome identified by HILIC LC-MS allowed identifying 304 different lipid species. These species belong to the phosphatidylcholine (103 lipid species), lysophosphatidylcholine (35), phosphatidylethanolamine (71), lysophosphatidylethanolamine (20), phosphatidylglycerol (13), lysophosphatidylglycerol (5), phosphatidylinositol (15), lysophosphatidylinositol (3), phosphatidylserine (6) lysophosphatidylserine (1), and sphimgomyelin (32) classes. This was the first time that the dolphin plasma phospholipid profile was characterized, providing a knowledge that will be important to further understand lipid metabolism and physiological regulation in small cetaceans. Furthermore, this study proved the practicability of the use of plasma lipid profiling for health assessment in marine mammals under human care.
Collapse
Affiliation(s)
- João P Monteiro
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Elisabete Maciel
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Maria Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal.,CESAM-Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Houser DS, Derous D, Douglas A, Lusseau D. Metabolic response of dolphins to short-term fasting reveals physiological changes that differ from the traditional fasting model. J Exp Biol 2021; 224:jeb238915. [PMID: 33766933 PMCID: PMC8126448 DOI: 10.1242/jeb.238915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Bottlenose dolphins (Tursiops truncatus) typically feed on prey that are high in lipid and protein content and nearly devoid of carbohydrate, a dietary feature shared with other marine mammals. However, unlike fasted-adapted marine mammals that predictably incorporate fasting into their life history, dolphins feed intermittently throughout the day and are not believed to be fasting-adapted. To assess whether the physiological response to fasting in the dolphin shares features with or distinguishes them from those of fasting-adapted marine mammals, the plasma metabolomes of eight bottlenose dolphins were compared between post-absorptive and 24-h fasted states. Increases in most identified free fatty acids and lipid metabolites and reductions in most amino acids and their metabolites were consistent with the upregulation of lipolysis and lipid oxidation and the downregulation of protein catabolism and synthesis. Consistent with a previously hypothesized diabetic-like fasting state, fasting was associated with elevated glucose and patterns of certain metabolites (e.g. citrate, cis-aconitate, myristoleic acid) indicative of lipid synthesis and glucose cycling to protect endogenous glucose from oxidative disposal. Pathway analysis predicted an upregulation of cytokines, decreased cell growth and increased apoptosis including apoptosis of insulin-secreting β-cells. Metabolomic conditional mutual information networks were estimated for the post-absorptive and fasted states and 'topological modules' were estimated for each using the eigenvector approach to modularity network division. A dynamic network marker indicative of a physiological shift toward a negative energy state was subsequently identified that has the potential conservation application of assessing energy state balance in at-risk wild dolphins.
Collapse
Affiliation(s)
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Alex Douglas
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - David Lusseau
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
- National Institute of Aquatic Resources, DTU Aqua, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|