1
|
Ames EM, Gade MR, Nieman CL, Wright JR, Tonra CM, Marroquin CM, Tutterow AM, Gray SM. Striving for population-level conservation: integrating physiology across the biological hierarchy. CONSERVATION PHYSIOLOGY 2020; 8:coaa019. [PMID: 32274066 PMCID: PMC7125044 DOI: 10.1093/conphys/coaa019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 05/05/2023]
Abstract
The field of conservation physiology strives to achieve conservation goals by revealing physiological mechanisms that drive population declines in the face of human-induced rapid environmental change (HIREC) and has informed many successful conservation actions. However, many studies still struggle to explicitly link individual physiological measures to impacts across the biological hierarchy (to population and ecosystem levels) and instead rely on a 'black box' of assumptions to scale up results for conservation implications. Here, we highlight some examples of studies that were successful in scaling beyond the individual level, including two case studies of well-researched species, and using other studies we highlight challenges and future opportunities to increase the impact of research by scaling up the biological hierarchy. We first examine studies that use individual physiological measures to scale up to population-level impacts and discuss several emerging fields that have made significant steps toward addressing the gap between individual-based and demographic studies, such as macrophysiology and landscape physiology. Next, we examine how future studies can scale from population or species-level to community- and ecosystem-level impacts and discuss avenues of research that can lead to conservation implications at the ecosystem level, such as abiotic gradients and interspecific interactions. In the process, we review methods that researchers can use to make links across the biological hierarchy, including crossing disciplinary boundaries, collaboration and data sharing, spatial modelling and incorporating multiple markers (e.g. physiological, behavioural or demographic) into their research. We recommend future studies incorporating tools that consider the diversity of 'landscapes' experienced by animals at higher levels of the biological hierarchy, will make more effective contributions to conservation and management decisions.
Collapse
Affiliation(s)
- Elizabeth M Ames
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Meaghan R Gade
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Chelsey L Nieman
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - James R Wright
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Christopher M Tonra
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Cynthia M Marroquin
- Departmant of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W. 12th Ave., Columbus, OH 43210, USA
| | - Annalee M Tutterow
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
| | - Suzanne M Gray
- School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA
- Corresponding author: School of the Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA. Tel: 614-292-4643.
| |
Collapse
|
2
|
Glądalski M, Kaliński A, Wawrzyniak J, Bańbura M, Markowski M, Skwarska J, Bańbura J. Physiological condition of nestling great tits Parus major in response to experimental reduction in nest micro- and macro-parasites. CONSERVATION PHYSIOLOGY 2018; 6:coy062. [PMID: 30483402 PMCID: PMC6249426 DOI: 10.1093/conphys/coy062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/04/2018] [Accepted: 10/31/2018] [Indexed: 05/09/2023]
Abstract
Most passerines use nests as the exclusive place to lay and incubate eggs and bring nestlings up to fledging. Nests of secondary cavity nesters, like tits, provide a moist, warm and protected habitat for reproduction of blood parasites. Offspring fitness depends on interactions between parental care and environmental constraints. Life-history theory suggests that macro- and micro-parasites may generate selection pressures by affecting host health. In the present study, we replaced natural great tit Parus major nests in two, structurally and floristically contrasting sites (an urban parkland and a rich deciduous forest, located 10 km apart in Łódź, central Poland), with fresh, sterilized, artificial moss-cotton wool nests, twice, on the fifth and tenth day of nestlings life. We then examined haematological condition indicators (haemoglobin and glucose concentrations) of about 14-day-old nestlings. Nestlings that were developing in treated nests improved their health status in comparison with control nestlings. The mean haemoglobin and glucose concentrations (treated and control) also varied between both study areas. Our study confirms that the level of haemoglobin and especially the level of glucose may be treated as reliable indicator of environmental characteristics in great tits.
Collapse
Affiliation(s)
- Michał Glądalski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
- Corresponding author: Michał Glądalski. Tel: +48 42 635 44 90.
| | - Adam Kaliński
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Jarosław Wawrzyniak
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Mirosława Bańbura
- Museum of Natural History, Faculty of Biology and Environmental Protection, University of Łódź, Kilińskiego 101, 90-011 Łódź, Poland
| | - Marcin Markowski
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Joanna Skwarska
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Jerzy Bańbura
- Department of Experimental Zoology and Evolutionary Biology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| |
Collapse
|