1
|
Crane AL, Bairos‐Novak KR, Goldman JA, Brown GE. Chemical disturbance cues in aquatic systems: a review and prospectus. ECOL MONOGR 2021. [DOI: 10.1002/ecm.1487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adam L. Crane
- Department of Biology Concordia University Montreal Quebec H4B 1R6 Canada
| | - Kevin R. Bairos‐Novak
- ARC Centre of Excellence for Coral Reef Studies & College of Science and Engineering James Cook University Townsville Queensland 4811 Australia
| | - Jack A. Goldman
- Institute of Forestry and Conservation University of Toronto Toronto Ontario M5S 3B3 Canada
| | - Grant E. Brown
- Department of Biology Concordia University Montreal Quebec H4B 1R6 Canada
| |
Collapse
|
2
|
Elmer LK, Madliger CL, Blumstein DT, Elvidge CK, Fernández-Juricic E, Horodysky AZ, Johnson NS, McGuire LP, Swaisgood RR, Cooke SJ. Exploiting common senses: sensory ecology meets wildlife conservation and management. CONSERVATION PHYSIOLOGY 2021; 9:coab002. [PMID: 33815799 PMCID: PMC8009554 DOI: 10.1093/conphys/coab002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 10/27/2020] [Accepted: 01/06/2021] [Indexed: 05/21/2023]
Abstract
Multidisciplinary approaches to conservation and wildlife management are often effective in addressing complex, multi-factor problems. Emerging fields such as conservation physiology and conservation behaviour can provide innovative solutions and management strategies for target species and systems. Sensory ecology combines the study of 'how animals acquire' and process sensory stimuli from their environments, and the ecological and evolutionary significance of 'how animals respond' to this information. We review the benefits that sensory ecology can bring to wildlife conservation and management by discussing case studies across major taxa and sensory modalities. Conservation practices informed by a sensory ecology approach include the amelioration of sensory traps, control of invasive species, reduction of human-wildlife conflicts and relocation and establishment of new populations of endangered species. We illustrate that sensory ecology can facilitate the understanding of mechanistic ecological and physiological explanations underlying particular conservation issues and also can help develop innovative solutions to ameliorate conservation problems.
Collapse
Affiliation(s)
- Laura K Elmer
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, VA 23668, USA
| | - Nicholas S Johnson
- USGS, Great Lakes Science Center, Hammond Bay Biological Station, Millersburg, MI 49759, USA
| | - Liam P McGuire
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ronald R Swaisgood
- Institute for Conservation Research, San Diego Zoo Global, San Diego, CA 92027-7000, USA
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
3
|
Johnson NS, Lewandoski SA, Alger BJ, O'Connor L, Bravener G, Hrodey P, Huerta B, Barber J, Li W, Wagner CM, Siefkes MJ. Behavioral Responses of Sea Lamprey to Varying Application Rates of a Synthesized Pheromone in Diverse Trapping Scenarios. J Chem Ecol 2020; 46:233-249. [PMID: 31970605 DOI: 10.1007/s10886-020-01151-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
Abstract
Use of the first fish pheromone biopesticide, 3-keto petromyzonol sulfate (3kPZS) in sea lamprey (Petromyzon marinus) control requires an understanding of both how the amount 3kPZS applied to a trap relates to catch, and how that relationship varies among stream types. By conducting 3kPZS dose-response experiments over two years and across six varied trapping contexts, we conclude (1) that 3kPZS application is best standardized by how much is emitted from the trap instead of the fully mixed concentration achieved downstream, and (2) that 3kPZS is more effective in wide streams (>30 m). In wide streams, emission of 3kPZS at 50 mg hr.-1 from the trap increased capture rate by 10-15% as sea lamprey were 25-50% more likely to enter the trap after encounter. However, in narrow streams (< 15 m), 50 mg hr.-1 3kPZS generally reduced probabilities of upstream movement, trap encounter, and entrance. While 3kPZS significantly influenced upstream movement, encounter, and capture probabilities, these behaviors were also highly influenced by water temperature, stream width, sea lamprey length, and sex. This study highlights that a pheromone component in a stream environment does not ubiquitously increase trap catch in all contexts, but that where, how, and when the pheromone is applied has major impacts on whether it benefits or hinders trapping efforts.
Collapse
Affiliation(s)
- Nicholas S Johnson
- U. S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA.
| | - Sean A Lewandoski
- U. S. Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St, Marquette, MI, 49855, USA
| | - Bethany J Alger
- U. S. Geological Survey, Great Lakes Science Center, Hammond Bay Biological Station, 11188 Ray Road, Millersburg, MI, 49759, USA
| | - Lisa O'Connor
- Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Sciences, 1219 Queen Street, East Sault Ste., Marie, ON, Canada
| | - Gale Bravener
- Fisheries and Oceans Canada, Sea Lamprey Control Centre, 1219 Queen Street, East Sault Ste., Marie, ON, P6A 2E5, USA
| | - Peter Hrodey
- U. S. Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St, Marquette, MI, 49855, USA
| | - Belinda Huerta
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, East Lansing, MI, 48824, USA
| | - Jessica Barber
- U. S. Fish and Wildlife Service, Marquette Biological Station, 3090 Wright St, Marquette, MI, 49855, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, East Lansing, MI, 48824, USA
| | - C Michael Wagner
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, East Lansing, MI, 48824, USA
| | - Michael J Siefkes
- Great Lakes Fishery Commission, 2100 Commonwealth Blvd., Suite 100, Ann Arbor, MI, 48105, USA
| |
Collapse
|