1
|
Zhang Y, Seidel M, Rabesahala de Meritens C, Beckmann A, Ahmed S, Hurtz M, Lai FA, Zorio E, Parthimos D, Zissimopoulos S. Disparate molecular mechanisms in cardiac ryanodine receptor channelopathies. Front Mol Biosci 2024; 11:1505698. [PMID: 39777228 PMCID: PMC11703740 DOI: 10.3389/fmolb.2024.1505698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Aims Mutations in the cardiac ryanodine receptor (RyR2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). This study investigates the underlying molecular mechanisms for CPVT mutations within the RyR2 N-terminus domain (NTD). Methods and Results We consulted the high-resolution RyR2 structure in both open and closed configuration to identify mutations G357S/R407I and A77T, which lie within the NTD intra- and inter-subunit interface with the Core Solenoid (CSol), respectively. Their structural and functional roles were compared to R169L, a mutation that lies within the NTD-NTD inter-subunit interface. Using chemical cross-linking and co-immunoprecipitation assays, we show that R169L disrupts NTD tetramerization, while it does not alter the NTD-CSol interaction. Single cell Ca2+ imaging revealed that R169L increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, while reducing the Ca2+ store content. G357S and R407I do not affect NTD tetramerization, but they also do not alter the NTD-CSol interaction. Functionally, RyR2G357S-expressing cells have Ca2+ handling properties similar to RyR2WT. A77T enhances the NTD-CSol interaction, while it does not affect NTD tetramerization. Like R169L, A77T also increases the number of spontaneous Ca2+ transients and the proportion of oscillating cells, and it reduces the Ca2+ store content. However, unlike R169L that displays Ca2+ transients of normal amplitude and shorter duration, Ca2+ transients for A77T are of smaller amplitude and normal duration. Conclusion The NTD-CSol inter-subunit interface variant, A77T, produces a hyperactive channel by altering a different structure-function parameter to other CPVT mutations within the RyR2 NTD. Reduced NTD-NTD inter-subunit interaction and reinforced NTD inter-subunit interaction with CSol are distinct molecular mechanisms for gain-of-function RyR2 arrhythmogenic mutations.
Collapse
Affiliation(s)
- Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Monika Seidel
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | | | - Astrid Beckmann
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Syeda Ahmed
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Melanie Hurtz
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - F. Anthony Lai
- College of Medicine and Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Esther Zorio
- Inherited Cardiac Disease Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- CAFAMUSME Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Medicine Department, Universitat de València, Valencia, Spain
- Research group CB16/11/00261, Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Dimitris Parthimos
- School of Medicine, Division of Cancer and Genetics, Cardiff University, Cardiff, United Kingdom
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| |
Collapse
|
5
|
Jiang H, Wang G, Gu J, Xiao Y, Wang P, Huang X, Sha H, Wang Z, Ma Q. Resveratrol inhibits the expression of RYR2 and is a potential treatment for pancreatic cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:315-324. [PMID: 35044499 DOI: 10.1007/s00210-022-02203-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/08/2022] [Indexed: 10/19/2022]
Abstract
Resveratrol is a polyphonous natural compound that has cardioprotective, anticancer, and anti-inflammatory properties. Studies have proved that resveratrol (RES) inhibits cancer cell proliferation, migration, and invasion and promotes apoptosis. Elevated expression of ryanodine receptor type 2 (RYR2) may participate in the pathway responsible for calcium metabolism as well as anti-apoptosis and anti-autophagy events in malignant tumor cells. However, the underlying molecular mechanisms of RES anticancer effects with RYR2 are not completely understood in pancreatic cancer. The aim of the present study was tantamount to study the effect of RES in human pancreatic cancer and investigate the underlying mechanisms of RES. We found that RES inhibits proliferation, migration, and invasion and suppresses RYR2 expression in pancreatic cancer cells. In addition, RYR2 knockdown impedes the proliferation, migration, and invasiveness of pancreatic cancer cells. RYR2 knockdown can also increase PTEN expression, while increased RYR2 expression can inhibit PTEN expression. Moreover, RES can upregulate PTEN expression. Taken together, these results indicate that RES could play an antitumor role by decreasing RYR2 expression.
Collapse
Affiliation(s)
- He Jiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guotai Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Jingtao Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Pengli Wang
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Xin Huang
- Department of General Surgery, Xi'an Central Hospital, Xi'an, 710003, China
| | - Huanchen Sha
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
7
|
Yin L, Zahradnikova A, Rizzetto R, Boncompagni S, Rabesahala de Meritens C, Zhang Y, Joanne P, Marqués-Sulé E, Aguilar-Sánchez Y, Fernández-Tenorio M, Villejoubert O, Li L, Wang YY, Mateo P, Nicolas V, Gerbaud P, Lai FA, Perrier R, Álvarez JL, Niggli E, Valdivia HH, Valdivia CR, Ramos-Franco J, Zorio E, Zissimopoulos S, Protasi F, Benitah JP, Gómez AM. Impaired Binding to Junctophilin-2 and Nanostructural Alteration in CPVT Mutation. Circ Res 2021; 129:e35-e52. [PMID: 34111951 DOI: 10.1161/circresaha.121.319094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Liheng Yin
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Alexandra Zahradnikova
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Riccardo Rizzetto
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Simona Boncompagni
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | | | - Yadan Zhang
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Pierre Joanne
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Elena Marqués-Sulé
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Physiotherapy, University of Valencia, Valencia, Spain (E.M.-S.)
| | - Yuriana Aguilar-Sánchez
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | | | - Olivier Villejoubert
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Linwei Li
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Yue Yi Wang
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Philippe Mateo
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | | | - Pascale Gerbaud
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - F Anthony Lai
- College of Medicine, Biomedical & Pharmaceutical Research Unit, QU Health, & Biomedical Research Centre, Qatar University, Doha, Qatar (F.A.L.)
| | | | - Julio L Álvarez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.).,Institute of Cardiology, Havana, Cuba (J.L.A.)
| | - Ernst Niggli
- Physiology, University of Bern, Bern, Switzerland (M.F.-T., E.N.)
| | - Héctor H Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Carmen R Valdivia
- Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin (H.H.V., C.R.V.)
| | - Josefina Ramos-Franco
- Physiology and Biophysics, Rush University Medical Center, Chicago, IL, USA (Y.A.-S., J.R.-F.)
| | - Esther Zorio
- Cardiology Department and Unidad de Cardiopatías Familiares, Muerte Súbita y Mecanismos de Enfermedad (CaFaMuSMe), Hospital Universitario y Politécnico La Fe and Instituto de Investigación Sanitaria La Fe, Valencia, Spain (E.Z.).,Center for Biomedical Network Research on Cardiovascular diseases (CIBERCV), Madrid, Spain (E.Z.)
| | - Spyros Zissimopoulos
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK (C.R.d.M., Y.Z., S.Z.)
| | - Feliciano Protasi
- CAST, Department of Neuroscience, Imaging and Clinical Sciences (DNICS), Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy (S.B., F.P.)
| | - Jean-Pierre Benitah
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| | - Ana M Gómez
- Signaling and Cardiovascular Pathophysiology - UMR-S 1180, Inserm, Université Paris-Saclay 92296 Châtenay-Malabry, France (L.Y., A.Z., R.R., P.J., E.M.-S., O.V., L.L., Y.Y.W., P.M., P.G., R.P., J.L.A., J.-P.B., A.M.G.)
| |
Collapse
|
8
|
Ma MG, Liu XR, Wu Y, Wang J, Li BM, Shi YW, Su T, Li B, Liu DT, Yi YH, Liao WP. RYR2 Mutations Are Associated With Benign Epilepsy of Childhood With Centrotemporal Spikes With or Without Arrhythmia. Front Neurosci 2021; 15:629610. [PMID: 33897349 PMCID: PMC8058200 DOI: 10.3389/fnins.2021.629610] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
RYR2 encodes ryanodine receptor 2 protein (RYR-2) that is mainly located on endoplasmic reticulum membrane and regulates intracellular calcium concentration. The RYR-2 protein is ubiquitously distributed and highly expressed in the heart and brain. Previous studies have identified the RYR2 mutations in the etiology of arrhythmogenic right ventricular dysplasia 2 and catecholaminergic polymorphic ventricular tachycardia. However, the relationship between RYR2 gene and epilepsy is not determined. In this study, we screened for novel genetic variants in a group of 292 cases (families) with benign epilepsy of childhood with centrotemporal spikes (BECTS) by trio-based whole-exome sequencing. RYR2 mutations were identified in five cases with BECTS, including one heterozygous frameshift mutation (c.14361dup/p.Arg4790Pro fs∗6), two heterozygous missense mutations (c.2353G > A/p.Asp785Asn and c.8574G > A/p.Met2858Ile), and two pairs of compound heterozygous mutations (c.4652A > G/p.Asn1551Ser and c.11693T > C/p.Ile3898Thr, c.7469T > C/p.Val2490Ala and c.12770G > A/p.Arg4257Gln, respectively). Asp785Asn was a de novo missense mutation. All the missense mutations were suggested to be damaging by at least three web-based prediction tools. These mutations do not present or at low minor allele frequency in gnomAD database and present statistically higher frequency in the cohort of BECTS than in the control populations of gnomAD. Asp785Asn, Asn1551Ser, and Ile3898Thr were predicted to affect hydrogen bonds with surrounding amino acids. Three affected individuals had arrhythmia (sinus arrhythmia and occasional atrial premature). The two probands with compound heterozygous missense mutations presented mild cardiac structural abnormalities. Strong evidence from ClinGen Clinical Validity Framework suggested an association between RYR2 variants and epilepsy. This study suggests that RYR2 gene is potentially a candidate pathogenic gene of BECTS. More attention should be paid to epilepsy patients with RYR2 mutations, which were associated with arrhythmia and sudden unexpected death in previous reports.
Collapse
Affiliation(s)
- Mei-Gang Ma
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiao-Rong Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Wang
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bing-Mei Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yi-Wu Shi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Bin Li
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - De-Tian Liu
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|