1
|
Imran M, Altamimi ASA, Afzal M, Babu MA, Goyal K, Ballal S, Sharma P, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H. Targeting senescence and GATA4 in age-related cardiovascular disease: a comprehensive approach. Biogerontology 2025; 26:45. [PMID: 39831933 DOI: 10.1007/s10522-025-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
The growing prevalence of age-related cardiovascular diseases (CVDs) poses significant health challenges, necessitating the formulation of novel treatment approaches. GATA4, a vital transcription factor identified for modulating cardiovascular biology and cellular senescence, is recognized for its critical involvement in CVD pathogenesis. This review collected relevant studies from PubMed, Google Scholar, and Science Direct using search terms like 'GATA4,' 'cellular senescence,' 'coronary artery diseases,' 'hypertension,' 'heart failure,' 'arrhythmias,' 'congenital heart diseases,' 'cardiomyopathy,' and 'cardiovascular disease.' Additionally, studies investigating the molecular mechanisms underlying GATA4-mediated regulation of GATA4 and senescence in CVDs were analyzed to provide comprehensive insights into this critical aspect of potential treatment targeting. Dysregulation of GATA4 is involved in a variety of CVDs, as demonstrated by both experimental and clinical research, comprising CAD, hypertension, congenital heart diseases, cardiomyopathy, arrhythmias, and cardiac insufficiency. Furthermore, cellular senescence enhances the advancement of age-related CVDs. These observations suggested that therapies targeting GATA4, senescence pathways, or both as necessary may be an effective intervention in CVD progression and prognosis. Addressing age-related CVDs by targeting GATA4 and senescence is a broad mechanism approach. It implies further investigation of the molecular nature of these processes and elaboration of an effective therapeutic strategy. This review highlights the importance of GATA4 and senescence in CVD pathogenesis, emphasizing their potential as therapeutic targets for age-related CVDs.
Collapse
Affiliation(s)
- Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha, 91911, Saudi Arabia.
- Center for Health Research, Northern Border University, Arar, Saudi Arabia.
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Pawan Sharma
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Fadiyah Jadid Alanazi
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
2
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
3
|
Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans - Evidence from untargeted mRNA and miRNA studies. Ageing Res Rev 2022; 79:101649. [PMID: 35595185 DOI: 10.1016/j.arr.2022.101649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular and metabolic disorders present major causes of mortality in the ageing population. Polyphenols present in human diets possess cardiometabolic protective properties, however their underlying molecular mechanisms in humans are still not well identified. Even though preclinical and in vitro studies advocate that these bioactives can modulate gene expression, most studies were performed using targeted approaches. With the objective to decipher the molecular mechanisms underlying polyphenols cardiometabolic preventive properties in humans, we performed integrative multi-omic bioinformatic analyses of published studies which reported improvements of cardiometabolic risk factors following polyphenol intake, together with genomic analyses performed using untargeted approach. We identified 5 studies within our criteria and nearly 5000 differentially expressed genes, both mRNAs and miRNAs, in peripheral blood cells. Integrative bioinformatic analyses (e.g. pathway and gene network analyses, identification of transcription factors, correlation of gene expression profiles with those associated with diseases and drug intake) revealed that these genes are involved in the processes such as cell adhesion and mobility, immune system, metabolism, or cell signaling. We also identified 27 miRNAs known to regulate processes such as cell cytoskeleton, chemotaxis, cell signaling, or cell metabolism. Gene expression profiles negatively correlated with expression profiles of cardiovascular disease patients, while a positive correlation was observed with gene expression profiles following intake of drugs against cardiometabolic disorders. These analyses further advocate for health protective effects of these bioactives against age-associated diseases. In conclusion, polyphenols can exert multi-genomic modifications in humans and use of untargeted methods coupled with bioinformatic analyses represent the best approach to decipher molecular mechanisms underlying healthy-ageing effects of these bioactives.
Collapse
|