1
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
2
|
Migunova E, Rajamani S, Bonanni S, Wang F, Zhou C, Dubrovsky EB. Cardiac RNase Z edited via CRISPR-Cas9 drives heart hypertrophy in Drosophila. PLoS One 2023; 18:e0286214. [PMID: 37228086 PMCID: PMC10212119 DOI: 10.1371/journal.pone.0286214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiomyopathy (CM) is a group of diseases distinguished by morphological and functional abnormalities in the myocardium. It is etiologically heterogeneous and may develop via cell autonomous and/or non-autonomous mechanisms. One of the most severe forms of CM has been linked to the deficiency of the ubiquitously expressed RNase Z endoribonuclease. RNase Z cleaves off the 3'-trailer of both nuclear and mitochondrial primary tRNA (pre-tRNA) transcripts. Cells mutant for RNase Z accumulate unprocessed pre-tRNA molecules. Patients carrying RNase Z variants with reduced enzymatic activity display a plethora of symptoms including muscular hypotonia, microcephaly and severe heart hypertrophy; still, they die primarily due to acute heart decompensation. Determining whether the underlying mechanism of heart malfunction is cell autonomous or not will provide an opportunity to develop novel strategies of more efficient treatments for these patients. In this study, we used CRISPR-TRiM technology to create Drosophila models that carry cardiomyopathy-linked alleles of RNase Z only in the cardiomyocytes. We found that this modification is sufficient for flies to develop heart hypertrophy and systolic dysfunction. These observations support the idea that the RNase Z linked CM is driven by cell autonomous mechanisms.
Collapse
Affiliation(s)
- Ekaterina Migunova
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Saathvika Rajamani
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Stefania Bonanni
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
| | - Fei Wang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Chao Zhou
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Edward B. Dubrovsky
- Department of Biological Sciences, Fordham University, Bronx, NY, United States of America
- Center for Cancer, Genetic Diseases, and Gene Regulation, Fordham University, Bronx, NY, United States of America
| |
Collapse
|
3
|
Srisakuldee W, Nickel BE, Fandrich RR, Zhang F, Pasumarthi KBS, Kardami E. A Cardiac Mitochondrial FGFR1 Mediates the Antithetical Effects of FGF2 Isoforms on Permeability Transition. Cells 2021; 10:2735. [PMID: 34685716 PMCID: PMC8534529 DOI: 10.3390/cells10102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondria, abundant organelles in high energy demand cells such as cardiomyocytes, can determine cell death or survival by regulating the opening of mitochondrial permeability transition pore, mPTP. We addressed the hypothesis that the growth factor FGF2, known to reside in intracellular locations, can directly influence mitochondrial susceptibility to mPTP opening. Rat cardiac subsarcolemmal (SSM) or interfibrillar (IFM) mitochondrial suspensions exposed directly to rat 18 kDa low molecular weight (Lo-) FGF2 isoform displayed increased resistance to calcium overload-induced mPTP, measured spectrophotometrically as "swelling", or as cytochrome c release from mitochondria. Inhibition of mitochondrial protein kinase C epsilon abrogated direct Lo-FGF2 mito-protection. Exposure to the rat 23 kDa high molecular weight (Hi) FGF2 isoform promoted cytochrome c release from SSM and IFM under nonstressed conditions. The effect of Hi-FGF2 was prevented by mPTP inhibitors, pre-exposure to Lo-FGF2, and okadaic acid, a serine/threonine phosphatase inhibitor. Western blotting and immunoelectron microscopy pointed to the presence of immunoreactive FGFR1 in cardiac mitochondria in situ. The direct mito-protective effect of Lo-FGF2, as well as the deleterious effect of Hi-FGF2, were prevented by FGFR1 inhibitors and FGFR1 neutralizing antibodies. We propose that intracellular FGF2 isoforms can modulate mPTP opening by interacting with mito-FGFR1 and relaying isoform-specific intramitochondrial signal transduction.
Collapse
Affiliation(s)
- Wattamon Srisakuldee
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
| | - Barbara E. Nickel
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
| | - Robert R. Fandrich
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Feixong Zhang
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (F.Z.); (K.B.S.P.)
| | - Kishore B. S. Pasumarthi
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (F.Z.); (K.B.S.P.)
| | - Elissavet Kardami
- Department of Physiology & Pathophysiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- St. Boniface Research Centre, Institute of Cardiovascular Sciences, Winnipeg, MB R2H 2A6, Canada; (B.E.N.); (R.R.F.)
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
4
|
Elimination of endogenous high molecular weight FGF2 prevents pressure-overload-induced systolic dysfunction, linked to increased FGFR1 activity and NR1D1 expression. Cell Tissue Res 2021; 385:753-768. [PMID: 34057573 DOI: 10.1007/s00441-021-03465-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor 2 (FGF2), produced as high (Hi-) and low (Lo-) molecular weight isoforms, is implicated in cardiac response to injury. The role of endogenous FGF2 isoforms during chronic stress is not well defined. We investigated the effects of endogenous Hi-FGF2 in a mouse model of simulated pressure-overload stress achieved by transverse aortic constriction (TAC) surgery. Hi-FGF2 knockout mice, expressing only Lo-FGF2, FGF2(Lo), and wild-type mice, FGF2(WT), expressing both Hi-FGF2 and Lo-FGF2, were used. By echocardiography, a decline in systolic function was observed in FGF2(WT) but not FGF2(Lo) mice compared to corresponding sham-operated animals at 4-8 weeks post-TAC surgery. TAC surgery increased markers of myocardial stress/damage including B-type natriuretic peptide (BNP) and the pro-cell death protein BCL2/adenovirus E1B 19 kDa protein-interacting protein-3 (Bnip3) in FGF2(WT) but not FGF2(Lo) mice. In FGF2(Lo) mice, cardiac levels of activated FGF receptor 1 (FGFR1), and downstream signals, including phosphorylated mTOR and p70S6 kinase, were elevated post-TAC. Finally, NR1D1 (nuclear receptor subfamily 1 group D member 1), implicated in cardioprotection from pressure-overload stress, was downregulated or upregulated in the presence or absence, respectively, of Hi-FGF2 expression, post-TAC surgery. In wild-type cardiomyocyte cultures, endothelin-1 (added to simulate pressure-overload signals) caused NR1D1 downregulation and BNP upregulation, similar to the effect of TAC surgery on the FGF2(WT) mice. The NR1D1 agonist SR9009 prevented BNP upregulation, simulating post-TAC findings in FGF2(Lo) mice. We propose that elimination of Hi-FGF2 is cardioprotective during pressure-overload by increasing FGFR1-associated signaling and NR1D1 expression.
Collapse
|
5
|
Chen X, Li Z, Cheng Y, Kardami E, Loh YP. Low and High Molecular Weight FGF-2 Have Differential Effects on Astrocyte Proliferation, but Are Both Protective Against Aβ-Induced Cytotoxicity. Front Mol Neurosci 2020; 12:328. [PMID: 32038161 PMCID: PMC6992557 DOI: 10.3389/fnmol.2019.00328] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Astrocytes are the most abundant type of glial cells in the brain, and they play a key role in Alzheimer’s disease (AD). Fibroblast Growth Factor-2 (FGF-2) has been implicated as a potential therapeutic agent for treating AD. In the present study, we investigated the protective effects of low molecular weight (LMW; 17 KDa) and high molecular weight (HMW; 23 KDa) forms of FGF-2 on Aβ1–42-induced toxicity, and proliferation in astrocytes. We show that both isoforms of FGF-2 have similar protective effects against Aβ1–42-induced cytotoxicity in primary cultured cortical astrocytes as measured by Lactate Dehydrogenase (LDH) release assay. Additionally, 17 KDa FGF-2 significantly promoted astrocyte proliferation as measured by Trypan Blue, DRAQ5 and 5-ethynyl-2’-deoxyuridine (EdU) staining, but not 23 kDa FGF-2. Furthermore, our results demonstrated that AKT signaling pathway was required for the protective and proliferative effects of FGF-2. Downstream effector studies indicated that 17 kDa FGF-2 promoted astrocyte proliferation by enhanced expression of c-Myc, Cyclin D1, Cyclin E. Furthermore, our data suggested that Cyclin D1 was required for the proliferative effect of LMW FGF2 in astrocytes. Taken together, our findings provide important information for the similarities and differences between 23 kDa and17 kDa isoforms of FGF-2 on astrocyte survival and proliferation.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zhaojin Li
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.,Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Koleini N, Nickel BE, Edel AL, Fandrich RR, Ravandi A, Kardami E. Non-mitogenic FGF2 protects cardiomyocytes from acute doxorubicin-induced toxicity independently of the protein kinase CK2/heme oxygenase-1 pathway. Cell Tissue Res 2018; 374:607-617. [PMID: 30159756 PMCID: PMC6267702 DOI: 10.1007/s00441-018-2905-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/25/2018] [Indexed: 12/01/2022]
Abstract
Doxorubicin (Dox)-induced cardiotoxicity, a limiting factor in the use of Dox to treat cancer, can be mitigated by the mitogenic factor FGF2 in vitro, via a heme oxygenase 1 (HO-1)-dependent pathway. HO-1 upregulation was reported to require protein kinase CK2 activity. We show that a mutant non-mitogenic FGF2 (S117A-FGF2), which does not activate CK2, is cardioprotective against acute cardiac ischemic injury. We now investigate the potential of S117A-FGF2 to protect cardiomyocytes against acute Dox injury and decrease Dox-induced upregulation of oxidized phospholipids. The roles of CK2 and HO-1 in cardiomyocyte protection are also addressed.Rat neonatal cardiomyocyte cultures were used as an established in vitro model of acute Dox toxicity. Pretreatment with S117A-FGF2 protected against Dox-induced: oxidative stress; upregulation of fragmented and non-fragmented oxidized phosphatidylcholine species, measured by LC/MS/MS; and cardiomyocyte injury and cell death measured by LDH release and a live-dead assay. CK2 inhibitors (TBB and Ellagic acid), did not affect protection by S117A-FGF2 but prevented protection by mitogenic FGF2. Furthermore, protection by S117A-FGF2, unlike that of FGF2, was not prevented by HO-1 inhibitors and S117A-FGF2 did not upregulate HO-1. Protection by S117A-FGF2 required the activity of FGF receptor 1 and ERK.We conclude that mitogenic and non-mitogenic FGF2 protect from acute Dox toxicity by common (FGFR1) and distinct, CK2/HO-1- dependent or CK2/HO-1-independent (respectively), pathways. Non-mitogenic FGF2 merits further consideration as a preventative treatment against Dox cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
| | - Andrea L Edel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
| | - Robert R Fandrich
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada
- Interventional Cardiology, Section of Cardiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre., 351 Tache Ave, Winnipeg, Manitoba, R2H2A6, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Canada.
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
7
|
Koleini N, Santiago JJ, Nickel BE, Sequiera GL, Wang J, Fandrich RR, Jassal DS, Dhingra S, Kirshenbaum LA, Cattini PA, Kardami E. Elimination or neutralization of endogenous high-molecular-weight FGF2 mitigates doxorubicin-induced cardiotoxicity. Am J Physiol Heart Circ Physiol 2018; 316:H279-H288. [PMID: 30412444 DOI: 10.1152/ajpheart.00587.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fibroblast growth factor 2 (FGF2) exerts multiple paracrine activities related to cardiac response to injury. Endogenous FGF2 is composed of a mixture of 70% high- and 30% low-molecular-weight isoforms (Hi-FGF2 and Lo-FGF2, respectivley); although exogenously added Lo-FGF2 is cardioprotective, the roles of endogenous Hi-FGF2 or Lo-FGF2 have not been well defined. Therefore, we investigated the effect of elimination of Hi-FGF2 expression on susceptibility to acute cardiac damage in vivo caused by an injection of the genotoxic drug doxorubicin (Dox). Mice genetically depleted of endogenous Hi-FGF2 and expressing only Lo-FGF2 [FGF2(Lo) mice] were protected from the Dox-induced decline in ejection fraction displayed by their wild-type FGF2 [FGF2(WT)] mouse counterparts, regardless of sex, as assessed by echocardiography for up to 10 days post-Dox treatment. Because cardiac FGF2 is produced mainly by nonmyocytes, we next addressed potential contribution of fibroblast-produced FGF2 on myocyte vulnerability to Dox. In cocultures of neonatal rat cardiomyocytes (r-cardiomyocytes) with mouse fibroblasts from FGF2(WT) or FGF2(Lo) mice, only the FGF2(Lo)-fibroblast cocultures protected r-cardiomyocytes from Dox-induced mitochondrial and cellular damage. When r-cardiomyocytes were cocultured with or exposed to conditioned medium from human fibroblasts, neutralizing antibodies for human Hi-FGF-2, but not total FGF2, mitigated Dox-induced injury of cardiomyocytes. We conclude that endogenous Hi-FGF2 reduces cardioprotection by endogenous Lo-FGF2. Antibody-based neutralization of endogenous Hi-FGF2 may offer a prophylactic treatment against agents causing acute cardiac damage. NEW & NOTEWORTHY Cardiomyocytes, in vivo and in vitro, were protected from the deleterious effects of the anticancer drug doxorubicin by the genetic elimination or antibody-based neutralization of endogenous paracrine high-molecular-weight fibroblast growth factor 2 isoforms. These findings have a translational potential for mitigating doxorubicin-induced cardiac damage in patients with cancer by an antibody-based treatment.
Collapse
Affiliation(s)
- Navid Koleini
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Jon-Jon Santiago
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Glen Lester Sequiera
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Jie Wang
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Robert R Fandrich
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Davinder S Jassal
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Elissavet Kardami
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada.,Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre , Winnipeg, Manitoba , Canada.,Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
8
|
Koleini N, Nickel BE, Wang J, Roveimiab Z, Fandrich RR, Kirshenbaum LA, Cattini PA, Kardami E. Fibroblast growth factor-2-mediated protection of cardiomyocytes from the toxic effects of doxorubicin requires the mTOR/Nrf-2/HO-1 pathway. Oncotarget 2017; 8:87415-87430. [PMID: 29152091 PMCID: PMC5675643 DOI: 10.18632/oncotarget.20558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/04/2017] [Indexed: 12/09/2022] Open
Abstract
Background Cardiotoxic side effects impose limits to the use of anti-tumour chemotherapeutic drugs such as doxorubicin (Dox). There is a need for cardioprotective strategies to prevent the multiple deleterious effects of Dox. Here, we examined the ability of administered fibroblast growth factor-2 (FGF-2), a cardioprotective protein that is synthesized as high and low molecular weight (Hi-, Lo-FGF-2) isoforms, to prevent Dox-induced: oxidative stress; cell death; lysosome dysregulation; and inactivation of potent endogenous protective pathways, such as the anti-oxidant/detoxification nuclear factor erythroid-2-related factor (Nrf-2), heme oxygenase-1 (HO-1) axis. Methods and Results Brief pre-incubation of neonatal rat cardiomyocyte cultures with either Hi- or Lo-FGF-2 reduced the Dox-induced: oxidative stress; apoptotic/necrotic cell death; lysosomal dysregulation; decrease in active mammalian target of Rapamycin (mTOR). FGF-2 isoforms prevented the Dox-induced downregulation of Nrf-2, and promoted robust increases in the Nrf-2-downstream targets including the cardioprotective protein HO-1, and p62/SQSTM1, a multifunctional scaffold protein involved in autophagy. Chloroquine, an autophagic flux inhibitor, caused a further increase in p62/SQSTM1, indicating intact autophagic flux in the FGF-2-treated groups. A selective inhibitor for HO-1, Tin-Protoporphyrin, prevented the FGF-2 protection against cell death. The mTOR inhibitor Rapamycin prevented FGF-2 protection, and blocked the FGF-2 effects on Nrf-2, HO-1 and p62/SQSTM1. Conclusions In an acute setting Hi- or Lo-FGF-2 protect cardiomyocytes against multiple Dox-induced deleterious effects, by a mechanism dependent on preservation of mTOR activity, Nrf-2 levels, and the upregulation of HO-1. Preservation/activation of endogenous anti-oxidant/detoxification defences by FGF-2 is a desirable property in the setting of Dox-cardiotoxicity.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E Nickel
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Jie Wang
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Zeinab Roveimiab
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Robert R Fandrich
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lorrie A Kirshenbaum
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Mechanisms contributing to cardiac remodelling. Clin Sci (Lond) 2017; 131:2319-2345. [PMID: 28842527 DOI: 10.1042/cs20171167] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Cardiac remodelling is classified as physiological (in response to growth, exercise and pregnancy) or pathological (in response to inflammation, ischaemia, ischaemia/reperfusion (I/R) injury, biomechanical stress, excess neurohormonal activation and excess afterload). Physiological remodelling of the heart is characterized by a fine-tuned and orchestrated process of beneficial adaptations. Pathological cardiac remodelling is the process of structural and functional changes in the left ventricle (LV) in response to internal or external cardiovascular damage or influence by pathogenic risk factors, and is a precursor of clinical heart failure (HF). Pathological remodelling is associated with fibrosis, inflammation and cellular dysfunction (e.g. abnormal cardiomyocyte/non-cardiomyocyte interactions, oxidative stress, endoplasmic reticulum (ER) stress, autophagy alterations, impairment of metabolism and signalling pathways), leading to HF. This review describes the key molecular and cellular responses involved in pathological cardiac remodelling.
Collapse
|
10
|
Shimizu T, Narang N, Chen P, Yu B, Knapp M, Janardanan J, Blair J, Liao JK. Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis, and diastolic dysfunction. JCI Insight 2017; 2:93187. [PMID: 28679962 DOI: 10.1172/jci.insight.93187] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/25/2017] [Indexed: 12/26/2022] Open
Abstract
Although left ventricular (LV) diastolic dysfunction is often associated with hypertension, little is known regarding its underlying pathophysiological mechanism. Here, we show that the actin cytoskeletal regulator, Rho-associated coiled-coil containing kinase-2 (ROCK2), is a critical mediator of LV diastolic dysfunction. In response to angiotensin II (Ang II), mutant mice with fibroblast-specific deletion of ROCK2 (ROCK2Postn-/-) developed less LV wall thickness and fibrosis, along with improved isovolumetric relaxation. This corresponded with decreased connective tissue growth factor (CTGF) and fibroblast growth factor-2 (FGF2) expression in the hearts of ROCK2Postn-/- mice. Indeed, knockdown of ROCK2 in cardiac fibroblasts leads to decreased expression of CTGF and secretion of FGF2, and cardiomyocytes incubated with conditioned media from ROCK2-knockdown cardiac fibroblasts exhibited less hypertrophic response. In contrast, mutant mice with elevated fibroblast ROCK activity exhibited enhanced Ang II-stimulated cardiac hypertrophy and fibrosis. Clinically, higher leukocyte ROCK2 activity was observed in patients with diastolic dysfunction compared with age- and sex-matched controls, and correlated with higher grades of diastolic dysfunction by echocardiography. These findings indicate that fibroblast ROCK2 is necessary to cause cardiac hypertrophy and fibrosis through the induction CTGF and FGF2, and they suggest that targeting ROCK2 may have therapeutic benefits in patients with LV diastolic dysfunction.
Collapse
|
11
|
Abstract
Myocardial injury, mechanical stress, neurohormonal activation, inflammation, and/or aging all lead to cardiac remodeling, which is responsible for cardiac dysfunction and arrhythmogenesis. Of the key histological components of cardiac remodeling, fibrosis either in the form of interstitial, patchy, or dense scars, constitutes a key histological substrate of arrhythmias. Here we discuss current research findings focusing on the role of fibrosis, in arrhythmogenesis. Numerous studies have convincingly shown that patchy or interstitial fibrosis interferes with myocardial electrophysiology by slowing down action potential propagation, initiating reentry, promoting after-depolarizations, and increasing ectopic automaticity. Meanwhile, there has been increasing appreciation of direct involvement of myofibroblasts, the activated form of fibroblasts, in arrhythmogenesis. Myofibroblasts undergo phenotypic changes with expression of gap-junctions and ion channels thereby forming direct electrical coupling with cardiomyocytes, which potentially results in profound disturbances of electrophysiology. There is strong evidence that systemic and regional inflammatory processes contribute to fibrogenesis (i.e., structural remodeling) and dysfunction of ion channels and Ca2+ homeostasis (i.e., electrical remodeling). Recognizing the pivotal role of fibrosis in the arrhythmogenesis has promoted clinical research on characterizing fibrosis by means of cardiac imaging or fibrosis biomarkers for clinical stratification of patients at higher risk of lethal arrhythmia, as well as preclinical research on the development of antifibrotic therapies. At the end of this review, we discuss remaining key questions in this area and propose new research approaches. © 2017 American Physiological Society. Compr Physiol 7:1009-1049, 2017.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiao-Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
12
|
Xu HL, Yu WZ, Lu CT, Li XK, Zhao YZ. Delivery of growth factor-based therapeutics in vascular diseases: Challenges and strategies. Biotechnol J 2017; 12. [PMID: 28296342 DOI: 10.1002/biot.201600243] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022]
Abstract
Either cardiovascular or peripheral vascular diseases have become the major cause of morbidity and mortality worldwide. Recently, growth factors therapeutics, whatever administrated in form of exogenous growth factors or their relevant genes have been discovered to be an effective strategy for the prevention and therapy of vascular diseases, because of their promoting angiogenesis. Besides, as an alternative, stem cell-based therapy has been also developed in view of their paracrine-mediated effect or ability of differentiation toward angiogenesis-related cells under assistance of growth factors. Despite of being specific and potent, no matter growth factors or stem cells-based therapy, their full clinical transformation is limited from bench to bedside. In this review, the potential choices of therapeutic modes based on types of different growth factors or stem cells were firstly summarized for vascular diseases. The confronted various challenges such as lack of non-invasive delivery method, the physiochemical challenge, the short half-life time, and poor cell survival, were carefully analyzed for these therapeutic modes. Various strategies to overcome these limitations are put forward from the perspective of drug delivery. The expertised design of a suitable delivery form will undoubtedly provide valuable insight into their clinical application in the regenerative medicine.
Collapse
Affiliation(s)
- He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Wen-Ze Yu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
- Collaborative Innovation Center of Biomedical Science by Wenzhou University & Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, China
| |
Collapse
|
13
|
Kole D, Grella A, Dolivo D, Shumaker L, Hermans W, Dominko T. High molecular weight FGF2 isoforms demonstrate canonical receptor-mediated activity and support human embryonic stem cell self-renewal. Stem Cell Res 2017; 21:106-116. [PMID: 28433654 DOI: 10.1016/j.scr.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 11/28/2022] Open
Abstract
Basic fibroblast growth factor (FGF2) is a highly pleiotropic member of a large family of growth factors with a broad range of activities, including mitogenesis and angiogenesis (Ornitz et al., 1996; Zhang et al., 2006), and it is known to be essential for maintenance of balance between survival, proliferation, and self-renewal in human pluripotent stem cells (Eiselleova et al., 2009; Zoumaro-Djayoon et al., 2011). A single FGF2 transcript can be translated into five FGF2 protein isoforms, an 18kDa low molecular weight (LMW) isoform and four larger high molecular weight (HMW) isoforms (Arese et al., 1999; Arnaud et al., 1999). As they are not generally secreted, high molecular weight (HMW) FGF2 isoforms have predominantly been investigated intracellularly; only a very limited number of studies have investigated their activity as extracellular factors. Here we report over-expression, isolation, and biological activity of all recombinant human FGF2 isoforms. We show that HMW FGF2 isoforms can support self-renewal of human embryonic stem cells (hESCs) in vitro. Exogenous supplementation with HMW FGF2 isoforms also activates the canonical FGFR/MAPK pathway and induces mitogenic activity in a manner similar to that of the 18kDa FGF2 isoform. Though all HMW isoforms, when supplemented exogenously, are able to recapitulate LMW FGF2 activity to some degree, it appears that certain isoforms tend to do so more poorly, demonstrating a lesser functional response by several measures. A better understanding of isoform-specific FGF2 effects will lead to a better understanding of developmental and pathological FGF2 signaling.
Collapse
Affiliation(s)
- Denis Kole
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA 01609, United States
| | - Alexandra Grella
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA 01609, United States
| | - David Dolivo
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA 01609, United States
| | - Lucia Shumaker
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA 01609, United States
| | - William Hermans
- Blue Sky Bioservices Inc., 60 Prescott Street, Worcester, MA 01605, United States
| | - Tanja Dominko
- Worcester Polytechnic Institute, Department of Biology and Biotechnology, 100 Institute Road, Worcester, MA 01609, United States; University of Nova Gorica, Center for Biomedical Sciences and Engineering, Glavni trg 8, Vipava, Slovenia.
| |
Collapse
|
14
|
Cheng Y, Li Z, Kardami E, Loh YP. Neuroprotective effects of LMW and HMW FGF2 against amyloid beta toxicity in primary cultured hippocampal neurons. Neurosci Lett 2016; 632:109-13. [PMID: 27546824 DOI: 10.1016/j.neulet.2016.08.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Basic Fibroblast growth factor (FGF2) is important in development and maintenance of central nervous system function. Studies have demonstrated that low molecular weight (LMW) FGF2 is a neuroprotective factor against various insults in vivo and in vitro. In the present study we investigated the neuroprotective effects of high molecular weight (HMW) and LMW FGF2 against amyloid beta-induced neurotoxicity. The results showed that both LMW and HMW FGF2 attenuated the amyloid beta toxicity in the primary cultured hippocampal neurons as measured by WST and LDH release assay. Moreover, the analysis suggested that HMW FGF2 had stronger neuroprotective effect than LMW FGF2. We then demonstrated that LMW and HMW FGF2 activated the ERK and AKT signaling pathways in a similar way. Furthermore, using the ERK inhibitor and AKT inhibitor, we found that the AKT signaling but not ERK signaling pathway was required for the neuroprotective effects of FGF2. Taken together, these results showed the neuroprotective effects of different forms of FGF2 in an AD model and the mechanism underlying the neuroprotection.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhaojin Li
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Y Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Oliveira LCFD, Danilucci TM, Chaves-Neto AH, Campanelli AP, Silva TCCD, Oliveira SHP. Tracheal Smooth Muscle Cells Stimulated by Stem Cell Factor-c-Kit Coordinate the Production of Transforming Growth Factor-β1 and Fibroblast Growth Factor-2 Mediated by Chemokine (C-C Motif) Ligand 3. J Interferon Cytokine Res 2016; 36:401-11. [PMID: 27123814 DOI: 10.1089/jir.2015.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the mechanism involved in the stem cell factor (SCF)-induced production of fibroblast growth factor-2 (FGF-2), transforming growth factor-β1 (TGF-β1), and chemokine (C-C motif) ligand 3 (CCL3) in tracheal smooth muscle cells (tSMCs) and the signaling pathway involved in the process. tSMC primary cultures were stimulated with SCF and evaluated at 24 h. Cells treated with specific antibodies did not show any immunolabeling for cytokeratin or fibroblast activation protein, but were positive for α-smooth muscle actin, indicating the purity of the primary cell line. Western blot analysis showed constitutive phosphorylation of c-Kit, as well as increased total protein and phosphorylated c-Kit levels in tSMCs after SCF stimulation. Flow cytometry analysis also showed an increase in cell-surface c-Kit expression in the presence of SCF. SCF induced TGF-β mRNA expression in tSMCs, as well as the production of TGF-β1, CCL3, and FGF-2. Pretreatment with anti-CCL3 antibody blocked TGF-β1 expression and partially inhibited FGF-2 production. On the other hand, anti-c-Kit antibody blocked TGF-β1 expression and FGF-2 production. Thus, TGF-β1 and FGF-2 production were mediated by CCL3 production through c-Kit. Pretreatment with mitogen-activated protein kinase kinase 1, p38, and Jun N-terminal kinase inhibitors showed that the effects mediated by SCF were involved with the modulation of mitogen-activated protein kinase (MAPK) pathways. Development of inhibitors targeting CCL3 through MAPK activation could thus be an attractive strategy to inhibit tSMC activation during asthma.
Collapse
Affiliation(s)
- Luis Cezar Farias de Oliveira
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Taís Marolato Danilucci
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Ana Paula Campanelli
- 2 Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-USP , Bauru, Brazil
| | - Tereza Cristina Cardoso da Silva
- 3 Laboratory of Animal Virology and Cell Culture, School of Medicine Veterinary of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Sandra Helena Penha Oliveira
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| |
Collapse
|
16
|
Liu Y, Liu Y, Liu X, Chen J, Zhang K, Huang F, Wang JF, Tang W, Huang H. Apocynin Attenuates Cardiac Injury in Type 4 Cardiorenal Syndrome via Suppressing Cardiac Fibroblast Growth Factor-2 With Oxidative Stress Inhibition. J Am Heart Assoc 2015; 4:JAHA.114.001598. [PMID: 26109504 PMCID: PMC4608061 DOI: 10.1161/jaha.114.001598] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Type 4 cardiorenal syndrome (CRS) refers to the cardiac injury induced by chronic kidney disease. We aimed to assess oxidative stress and cardiac injury in patients with type 4 CRS, determine whether the antioxidant apocynin attenuated cardiac injury in rats with type 4 CRS, and explore potential mechanisms. Methods and Results A cross-sectional study was conducted among patients with type 4 CRS (n=17) and controls (n=16). Compared with controls, patients with type 4 CRS showed elevated oxidative stress, which was significantly correlated with cardiac hypertrophy and decreased ejection fraction. In vivo study, male Sprague-Dawley rats underwent 5/6 subtotal nephrectomy and sham surgery, followed with apocynin or vehicle treatment for 8 weeks. Eight weeks after surgery, the 5/6 subtotal nephrectomy rats mimicked type 4 CRS, showing increased serum creatinine, cardiac hypertrophy and fibrosis, and decreased ejection fraction compared with sham-operated animals. Cardiac malondialdehyde, NADPH oxidase activity, fibroblast growth factor-2, and extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation increased significantly in the 5/6 subtotal nephrectomy rats. These changes were significantly attenuated by apocynin. In vitro study showed that apocynin reduced angiotensin II–induced NADPH oxidase–dependent oxidative stress, upregulation of fibroblast growth factor-2 and fibrosis biomarkers, and ERK1/2 phosphorylation in cardiac fibroblasts. Importantly, the ERK1/2 inhibitor U0126 reduced the upregulation of fibroblast growth factor-2 and fibrosis biomarkers in angiotensin II–treated fibroblasts. Conclusions Oxidative stress is a candidate mediator for type 4 CRS. Apocynin attenuated cardiac injury in type 4 CRS rats via inhibiting NADPH oxidase–dependent oxidative stress-activated ERK1/2 pathway and subsequent fibroblast growth factor-2 upregulation. Our study added evidence to the beneficial effect of apocynin in type 4 CRS.
Collapse
Affiliation(s)
- Yang Liu
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.)
| | - Yu Liu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.) Department of Cardiology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China (Y.L.)
| | - Xun Liu
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (X.L.)
| | - Jie Chen
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.)
| | - Kun Zhang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.)
| | - Feifei Huang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.)
| | - Jing-Feng Wang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.)
| | - Wanchun Tang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Weil Institute of Critical Care Medicine, Rancho Mirage, CA (W.T.)
| | - Hui Huang
- Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China (Y.L., J.C., K.Z., F.H., J.F.W., W.T., H.H.) Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China (Y.L., Y.L., J.C., K.Z., F.H., J.F.W., H.H.)
| |
Collapse
|
17
|
Cheng Y, Rodriguiz RM, Murthy SRK, Senatorov V, Thouennon E, Cawley NX, Aryal DK, Ahn S, Lecka-Czernik B, Wetsel WC, Loh YP. Neurotrophic factor-α1 prevents stress-induced depression through enhancement of neurogenesis and is activated by rosiglitazone. Mol Psychiatry 2015; 20:744-54. [PMID: 25330741 PMCID: PMC4405386 DOI: 10.1038/mp.2014.136] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/14/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
Abstract
Major depressive disorder is often linked to stress. Although short-term stress is without effect in mice, prolonged stress leads to depressive-like behavior, indicating that an allostatic mechanism exists in this difference. Here we demonstrate that mice after short-term (1 h per day for 7 days) chronic restraint stress (CRS), do not display depressive-like behavior. Analysis of the hippocampus of these mice showed increased levels of neurotrophic factor-α1 (NF-α1; also known as carboxypeptidase E, CPE), concomitant with enhanced fibroblast growth factor 2 (FGF2) expression, and an increase in neurogenesis in the dentate gyrus. In contrast, after prolonged (6 h per day for 21 days) CRS, mice show decreased hippocampal NF-α1 and FGF2 levels and depressive-like responses. In NF-α1-knockout mice, hippocampal FGF2 levels and neurogenesis are reduced. These mice exhibit depressive-like behavior that is reversed by FGF2 administration. Indeed, studies in cultured hippocampal neurons reveal that NF-α1 treatment directly upregulates FGF2 expression through extracellular signal-regulated kinase-Sp1 signaling. Thus, during short-term CRS, hippocampal NF-α1 expression is upregulated and has a key role in preventing the onset of depressive-like behavior through enhanced FGF2-mediated neurogenesis. To evaluate the therapeutic potential of this pathway, we examined, rosiglitazone (Rosi), a PPARγ agonist, which has been shown to have antidepressant activity in rodents and humans. Rosi upregulates FGF2 expression in a NF-α1-dependent manner in hippocampal neurons. Mice fed Rosi show increased hippocampal NF-α1 levels and neurogenesis compared with controls, thereby indicating the antidepressant action of this drug. Development of drugs that activate the NF-α1/FGF2/neurogenesis pathway can offer a new approach to depression therapy.
Collapse
Affiliation(s)
- Yong Cheng
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Saravana R. K. Murthy
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vladimir Senatorov
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erwan Thouennon
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dipendra K. Aryal
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA
| | - Sohyun Ahn
- Program in Genomics Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beata Lecka-Czernik
- Departments of Orthopaedic Surgery and Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, Ohio 43614, USA
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, USA,Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Y. Peng Loh
- Section on Cellular Neurobiology, Program on Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA,Correspondence should be addressed to: Dr. Y. Peng Loh, 49 Convent Drive, Bldg. 49, Room 6C80, National Institutes of Health, Bethesda, MD 20892, USA. , Tel: 301-496-3239, Fax: 301-496-9938
| |
Collapse
|
18
|
Chang YT, Tseng CN, Tannenberg P, Eriksson L, Yuan K, de Jesus Perez VA, Lundberg J, Lengquist M, Botusan IR, Catrina SB, Tran PK, Hedin U, Tran-Lundmark K. Perlecan heparan sulfate deficiency impairs pulmonary vascular development and attenuates hypoxic pulmonary hypertension. Cardiovasc Res 2015; 107:20-31. [PMID: 25952902 DOI: 10.1093/cvr/cvv143] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/01/2015] [Indexed: 12/21/2022] Open
Abstract
AIMS Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation. In this study, we have explored the effects of perlecan HS deficiency on pulmonary vascular development and in hypoxia-induced PH. METHODS AND RESULTS In normoxia, Hspg2(Δ3/Δ3) mice, deficient in perlecan HS, had reduced pericytes and muscularization of intra-acinar vessels. Pulmonary angiography revealed a peripheral perfusion defect. Despite these abnormalities, right ventricular systolic pressure (RVSP) and myocardial mass remained normal. After 4 weeks of hypoxia, increases in the proportion of muscularized vessels, RVSP, and right ventricular hypertrophy were significantly less in Hspg2(Δ3/Δ3) compared with wild type. The early phase of hypoxia induced a significantly lower increase in fibroblast growth factor receptor-1 (FGFR1) protein level and receptor phosphorylation, and reduced pulmonary artery smooth muscle cell (PASMC) proliferation in Hspg2(Δ3/Δ3). At 4 weeks, FGF2 mRNA and protein were also significantly reduced in Hspg2(Δ3/Δ3) lungs. Ligand and carbohydrate engagement assay showed that perlecan HS is required for HS-FGF2-FGFR1 ternary complex formation. In vitro, proliferation assays showed that PASMC proliferation is reduced by selective FGFR1 inhibition. PASMC adhesion to fibronectin was higher in Hspg2(Δ3/Δ3) compared with wild type. CONCLUSIONS Perlecan HS chains are important for normal vascular arborization and recruitment of pericytes to pulmonary vessels. Perlecan HS deficiency also attenuates hypoxia-induced PH, where the underlying mechanisms involve impaired FGF2/FGFR1 interaction, inhibition of PASMC growth, and altered cell-matrix interactions.
Collapse
Affiliation(s)
- Ya-Ting Chang
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chi-Nan Tseng
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Philip Tannenberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Linnéa Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, CA, USA Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mariette Lengquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | - Sergiu-Bogdan Catrina
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Phan-Kiet Tran
- Department of Cardiothoracic Surgery, Uppsala University, Uppsala, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karin Tran-Lundmark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
19
|
Deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. Crit Care Med 2014; 42:e345-54. [PMID: 24448199 DOI: 10.1097/ccm.0000000000000226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Inhibition of soluble epoxide hydrolase (Ephx2) has been shown to play a protective role in cardiac hypertrophy, but the mechanism is not fully understood. We tested the hypothesis that deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. DESIGN Prospective, controlled, and randomized animal study. SETTING University laboratory. SUBJECTS Male wild-type C57BL/6 mice and Ephx2 (-/-) mice. INTERVENTIONS Male wild-type or Ephx2 (-/-) mice were subjected to transverse aorta constriction surgery. MEASUREMENTS AND MAIN RESULTS Four weeks after transverse aorta constriction, Ephx2 (-/-) mice did not develop significant cardiac hypertrophy as that of wild-type mice, indicated by no changes in the ratio of heart weight/body weight and ventricular wall thickness after transverse aorta constriction. Cardiac fibroblast growth factor-2 increased in wild-type-transverse aorta constriction group but this did not change in Ephx2 (-/-)-transverse aorta constriction group, and the serum level of fibroblast growth factor-2 did not change in both groups. In vitro, cardiac fibroblasts were stimulated by angiotensin II to analyze the expression of fibroblast growth factor-2. The effect of increased fibroblast growth factor-2 from cardiac fibroblasts induced by angiotensin II was attenuated by soluble epoxide hydrolase deletion. ERK1/2, p38, and AKT kinase were involved in fibroblast growth factor-2 expression regulated by angiotensin II, and soluble epoxide hydrolase deletion lowered the phosphorylation of ERK1/2 not p38 or AKT to mediate fibroblast growth factor-2 expression. In addition, soluble epoxide hydrolase deletion did not attenuate cardiomyocytes hypertrophy induced by exogenous fibroblast growth factor-2. CONCLUSIONS Our present data demonstrated that deletion of soluble epoxide hydrolase prevented cardiac hypertrophy not only directly to cardiomyocytes but also to cardiac fibroblasts by reducing expression of fibroblast growth factor-2.
Collapse
|
20
|
Santiago JJ, McNaughton LJ, Koleini N, Ma X, Bestvater B, Nickel BE, Fandrich RR, Wigle JT, Freed DH, Arora RC, Kardami E. High molecular weight fibroblast growth factor-2 in the human heart is a potential target for prevention of cardiac remodeling. PLoS One 2014; 9:e97281. [PMID: 24827991 PMCID: PMC4020823 DOI: 10.1371/journal.pone.0097281] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
Fibroblast growth factor 2 (FGF-2) is a multifunctional protein synthesized as high (Hi-) and low (Lo-) molecular weight isoforms. Studies using rodent models showed that Hi- and Lo-FGF-2 exert distinct biological activities: after myocardial infarction, rat Lo-FGF-2, but not Hi-FGF-2, promoted sustained cardioprotection and angiogenesis, while Hi-FGF-2, but not Lo-FGF-2, promoted myocardial hypertrophy and reduced contractile function. Because there is no information regarding Hi-FGF-2 in human myocardium, we undertook to investigate expression, regulation, secretion and potential tissue remodeling-associated activities of human cardiac (atrial) Hi-FGF-2. Human patient-derived atrial tissue extracts, as well as pericardial fluid, contained Hi-FGF-2 isoforms, comprising, respectively, 53%(±20 SD) and 68% (±25 SD) of total FGF-2, assessed by western blotting. Human atrial tissue-derived primary myofibroblasts (hMFs) expressed and secreted predominantly Hi-FGF-2, at about 80% of total. Angiotensin II (Ang II) up-regulated Hi-FGF-2 in hMFs, via activation of both type 1 and type 2 Ang II receptors; the ERK pathway; and matrix metalloprotease-2. Treatment of hMFs with neutralizing antibodies selective for human Hi-FGF-2 (neu-AbHi-FGF-2) reduced accumulation of proteins associated with fibroblast-to-myofibroblast conversion and fibrosis, including α-smooth muscle actin, extra-domain A fibronectin, and procollagen. Stimulation of hMFs with recombinant human Hi-FGF-2 was significantly more potent than Lo-FGF-2 in upregulating inflammation-associated proteins such as pro-interleukin-1β and plasminogen-activator-inhibitor-1. Culture media conditioned by hMFs promoted cardiomyocyte hypertrophy, an effect that was prevented by neu-AbHi-FGF-2 in vitro. In conclusion, we have documented that Hi-FGF-2 represents a substantial fraction of FGF-2 in human cardiac (atrial) tissue and in pericardial fluid, and have shown that human Hi-FGF-2, unlike Lo-FGF-2, promotes deleterious (pro-fibrotic, pro-inflammatory, and pro-hypertrophic) responses in vitro. Selective targeting of Hi-FGF-2 production may, therefore, reduce pathological remodelling in the human heart.
Collapse
Affiliation(s)
- Jon-Jon Santiago
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leslie J. McNaughton
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xin Ma
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brian Bestvater
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara E. Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robert R. Fandrich
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeffrey T. Wigle
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Darren H. Freed
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rakesh C. Arora
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy & Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
21
|
Fujiu K, Nagai R. Fibroblast-mediated pathways in cardiac hypertrophy. J Mol Cell Cardiol 2014; 70:64-73. [PMID: 24492068 DOI: 10.1016/j.yjmcc.2014.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/26/2022]
Abstract
Under normal physiological conditions, cardiac fibroblasts are the primary producers of extracellular matrix and supply a mechanical scaffold for efficacious heart contractions induced by cardiomyocytes. In the hypertrophic heart, cardiac fibroblasts provide a pivotal contribution to cardiac remodeling. Many growth factors and extracellular matrix components secreted by cardiac fibroblasts induce and modify cardiomyocyte hypertrophy. Recent evidence revealed that cardiomyocyte-cardiac fibroblast communications are complex and multifactorial. Many growth factors and molecules contribute to cardiac hypertrophy via different roles that include induction of hypertrophy and the feedback hypertrophic response, fine-tuning of adaptive hypertrophy, limitation of left ventricular dilation, and modification of interstitial changes. This review focuses on recent work and topics and provides a mechanistic insight into cardiomyocyte-cardiac fibroblast communication in cardiac hypertrophy. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Translational Systems Biology and Medicine Initiative (TSBMI), The University of Tokyo, Tokyo, Japan.
| | - Ryozo Nagai
- Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program), Tokyo, Japan; Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
22
|
Sandanger Ø, Ranheim T, Vinge LE, Bliksøen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, Fitzgerald KA, Lien E, Valen G, Espevik T, Aukrust P, Yndestad A. The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res 2013; 99:164-74. [PMID: 23580606 DOI: 10.1093/cvr/cvt091] [Citation(s) in RCA: 403] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS Nucleotide-binding oligomerization domain-Like Receptor with a Pyrin domain 3 (NLRP3) is considered necessary for initiating a profound sterile inflammatory response. NLRP3 forms multi-protein complexes with Apoptosis-associated Speck-like protein containing a Caspase recruitment domain (ASC) and Caspase-1, which activate pro-interleukin-1β (IL-1β) and pro-IL-18. The role of NLRP3 in cardiac cells is not known. Thus, we investigated the expression and function of NLRP3 during myocardial ischaemia. METHODS AND RESULTS Myocardial infarction (MI) was induced in adult C57BL/6 mice and Wistar rats by ligation of the coronary artery. A marked increase in NLRP3, IL-1β, and IL-18 mRNA expression was found in the left ventricle after MI, primarily located to myocardial fibroblasts. In vitro studies in cells from adult mice showed that myocardial fibroblasts released IL-1β and IL-18 when primed with lipopolysaccharide and subsequently exposed to the danger signal adenosine triphosphate, a molecule released after tissue damage during MI. When hearts were isolated from NLRP3-deficient mice, perfused and subjected to global ischaemia and reperfusion, a marked improvement of cardiac function and reduction of hypoxic damage was found compared with wild-type hearts. This was not observed in ASC-deficient hearts, potentially reflecting a protective role of other ASC-dependent inflammasomes or inflammasome-independent effects of NLRP3. CONCLUSION This study shows that the NLRP3 inflammasome is up-regulated in myocardial fibroblasts post-MI, and may be a significant contributor to infarct size development during ischaemia-reperfusion.
Collapse
Affiliation(s)
- Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo N-0027, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rao N, Evans S, Stewart D, Spencer KH, Sheikh F, Hui EE, Christman KL. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices. Biomed Microdevices 2013; 15:161-9. [PMID: 22983793 PMCID: PMC3537877 DOI: 10.1007/s10544-012-9709-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myoblasts are precursor muscle cells that lie nascent to mature skeletal muscle. Once muscle is damaged, these cells migrate, fuse, and regenerate the muscle tissue. It is known that skeletal muscle can partially regenerate in vivo after muscle tissue damage. However, this regeneration does not always occur, especially in more severe injuries. Cellular therapy using tissue-engineering approaches has been shown to improve organ repair and function. To exploit potential benefits of using cell therapy as an avenue for skeletal muscle repair, it is important to understand the cellular dynamics underlying skeletal myocyte formation and growth. Cardiac fibroblasts have been shown to have a major influence on cardiomyocyte function, repair, and overall spatial distribution. However, little is known regarding fibroblasts' role on skeletal myocyte function. In this study, we utilized a reconfigurable co-culture device to understand the contact and paracrine effects of fibroblasts on skeletal myocyte alignment and differentiation using murine myoblast and fibroblast cell lines. We demonstrate that myotube alignment is increased by direct contact with fibroblasts, while myotube differentiation is reduced both in the gap and contact configurations with fibroblasts after 6 days of co-culture. Furthermore, neutralizing antibodies to FGF-2 can block these effects of fibroblasts on myotube differentiation and alignment. Finally, bi-directional signaling is critical to the observed myoblast-fibroblast interactions, since conditioned media could not reproduce the same effects observed in the gap configuration. These findings could have direct implications on cell therapies for repairing skeletal muscle, which have only utilized skeletal myoblasts or stem cell populations alone.
Collapse
Affiliation(s)
- Nikhil Rao
- Department of Bioengineering, University of California, San Diego. 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
DO MKQ, Suzuki T, Gerelt B, Sato Y, Mizunoya W, Nakamura M, Ikeuchi Y, Anderson JE, Tatsumi R. Time-coordinated prevalence of extracellular HGF, FGF2 and TGF-β3 in crush-injured skeletal muscle. Anim Sci J 2012; 83:712-7. [PMID: 23035711 DOI: 10.1111/j.1740-0929.2012.01057.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022]
Abstract
Successful regeneration and remodeling of neuromuscular junctions are critical for restoring functional capacities and properties of skeletal muscle after damage, and axon-guidance molecules may be involved in the signaling that regulates such restoration. Recently, we found that early-differentiated satellite cells up-regulate a secreted neural chemorepellent Sema3A upon in vivo muscle-crush injury. The study also revealed that Sema3A expression is up-regulated in primary satellite-cell cultures in response to hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) and is prevented by transforming growth factor (TGF)-β2, 3. In order to verify the physiological significance of this regulation in vitro, the present study was designed to estimate the time-course of extracellular HGF, FGF2 and TGF-β3 concentrations after crush-injury of Gastrocnemius muscle in the rat lower hind-limb, using a combination of a non-homogenization/non-spin extraction of extracellular wound fluids and enhanced chemiluminescence-Western blotting analyses. Results clearly demonstrated that active HGF and FGF2 are prevalent in 2-8 days post-crush, whereas active TGF-β3 increases after 12 days, providing a better understanding of the time-coordinated levels of HGF, FGF2 and TGF-β3 that drive regulation of Sema3A expression during regenerative intramuscular moto-neuritogenesis.
Collapse
Affiliation(s)
- Mai-Khoi Q DO
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hotowy A, Sawosz E, Pineda L, Sawosz F, Grodzik M, Chwalibog A. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart. NANOSCALE RESEARCH LETTERS 2012; 7:418. [PMID: 22827927 PMCID: PMC3507702 DOI: 10.1186/1556-276x-7-418] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/14/2012] [Indexed: 05/25/2023]
Abstract
Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level (FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA (P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.
Collapse
Affiliation(s)
- Anna Hotowy
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Ewa Sawosz
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Lane Pineda
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Filip Sawosz
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| | - Marta Grodzik
- Nanobiotechnology Laboratory, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - André Chwalibog
- Department of Basic Animal and Veterinary Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg, 1870, Denmark
| |
Collapse
|
26
|
Abstract
A heart attack kills off many cells in the heart. Parts of the heart become thin and fail to contract properly following the replacement of lost cells by scar tissue. However, the notion that the same adult cardiomyocytes beat throughout the lifespan of the organ and organism, without the need for a minimum turnover, gives way to a fascinating investigations. Since the late 1800s, scientists and cardiologists wanted to demonstrate that the cardiomyocytes cannot be generated after the perinatal period in human beings. This curiosity has been passed down in subsequent years and has motivated more and more accurate studies in an attempt to exclude the presence of renewed cardiomyocytes in the tissue bordering the ischaemic area, and then to confirm the dogma of the heart as terminally differentiated organ. Conversely, peri-lesional mitosis of cardiomyocytes were discovered initially by light microscopy and subsequently confirmed by more sophisticated technologies. Controversial evidence of mechanisms underlying myocardial regeneration has shown that adult cardiomyocytes are renewed through a slow turnover, even in the absence of damage. This turnover is ensured by the activation of rare clusters of progenitor cells interspersed among the cardiac cells functionally mature. Cardiac progenitor cells continuously interact with each other, with the cells circulating in the vessels of the coronary microcirculation and myocardial cells in auto-/paracrine manner. Much remains to be understood; however, the limited functional recovery in human beings after myocardial injury clearly demonstrates weak regenerative potential of cardiomyocytes and encourages the development of new approaches to stimulate this process.
Collapse
Affiliation(s)
- Lucio Barile
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
27
|
Fathi E, Nassiri SM, Atyabi N, Ahmadi SH, Imani M, Farahzadi R, Rabbani S, Akhlaghpour S, Sahebjam M, Taheri M. Induction of angiogenesis via topical delivery of basic-fibroblast growth factor from polyvinyl alcohol-dextran blend hydrogel in an ovine model of acute myocardial infarction. J Tissue Eng Regen Med 2012; 7:697-707. [DOI: 10.1002/term.1460] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2010] [Revised: 06/08/2011] [Accepted: 11/29/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences; Faculty of Veterinary Medicine, University of Tabriz; Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology; Faculty of Veterinary Medicine, University of Tehran; Iran
| | - Nahid Atyabi
- Department of Clinical Pathology; Faculty of Veterinary Medicine, University of Tehran; Iran
| | | | - Mohammad Imani
- Novel Drug Delivery Systems Department; Iran Polymer and Petrochemical Institute; Tehran; Iran
| | - Raheleh Farahzadi
- Department of Clinical Biochemistry, Faculty of Medical Sciences; Tarbiat Modares University; Tehran; Iran
| | - Shahram Rabbani
- Tehran Heart Centre; Tehran University of Medical Sciences; Iran
| | - Shahram Akhlaghpour
- Noor Medical Imaging Centre and Sina Hospital; Tehran University of Medical Sciences; Iran
| | | | - Mohammad Taheri
- Rastegar Central Research Laboratory; Faculty of Veterinary Medicine, University of Tehran; Iran
| |
Collapse
|