1
|
Tao H, Ma R, Cui J, Yang Z, He W, Li Y, Zhao Y. Immunomodulatory effect of efferocytosis at the maternal-fetal interface. Cell Commun Signal 2025; 23:49. [PMID: 39865240 PMCID: PMC11770964 DOI: 10.1186/s12964-025-02055-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Efferocytosis is a mechanism by which phagocytes efficiently clear apoptotic cells, averting their secondary necrosis and the subsequent release of potentially immunogenic or cytotoxic substances that can trigger strong immune and inflammatory responses. During efferocytosis, the metabolic pathways of phagocytes are transformed, which, along with the catabolism of apoptotic cargo, can affect their function and inflammatory state. Extensive apoptosis occurs during placental development, and some studies reported the immunomodulatory effects of efferocytosis at the maternal-fetal interface. The dysregulation of efferocytosis is strongly linked to pregnancy complications such as preeclampsia and recurrent spontaneous abortion. In this review, we discuss the mechanisms of efferocytosis and its relationships with metabolism and inflammation. We also highlight the roles of professional and non-professional phagocytes in efferocytosis at the maternal-fetal interface and their impact on pregnancy outcomes and explore relevant regulatory factors. These insights are expected to guide future basic research and clinical strategies for identifying efferocytosis-related molecules as potential predictors or therapeutic targets in obstetric diseases.
Collapse
Affiliation(s)
- Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yanan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
- Department of Prenatal Diagnosis Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
2
|
Kavurma MM, Bursill C, Stanley CP, Passam F, Cartland SP, Patel S, Loa J, Figtree GA, Golledge J, Aitken S, Robinson DA. Endothelial cell dysfunction: Implications for the pathogenesis of peripheral artery disease. Front Cardiovasc Med 2022; 9:1054576. [PMID: 36465438 PMCID: PMC9709122 DOI: 10.3389/fcvm.2022.1054576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 08/27/2023] Open
Abstract
Peripheral artery disease (PAD) is caused by occluded or narrowed arteries that reduce blood flow to the lower limbs. The treatment focuses on lifestyle changes, management of modifiable risk factors and vascular surgery. In this review we focus on how Endothelial Cell (EC) dysfunction contributes to PAD pathophysiology and describe the largely untapped potential of correcting endothelial dysfunction. Moreover, we describe current treatments and clinical trials which improve EC dysfunction and offer insights into where future research efforts could be made. Endothelial dysfunction could represent a target for PAD therapy.
Collapse
Affiliation(s)
- Mary M. Kavurma
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Christina Bursill
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Faculty of Health and Medical Science, University of Adelaide, Adelaide, SA, Australia
| | | | - Freda Passam
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Central Clinical School, Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Siân P. Cartland
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Sanjay Patel
- Heart Research Institute, The University of Sydney, Sydney, NSW, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jacky Loa
- Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gemma A. Figtree
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| | - Sarah Aitken
- Faculty of Health and Medicine, The University of Sydney, Sydney, NSW, Australia
- Concord Institute of Academic Surgery, Concord Hospital, Sydney, NSW, Australia
| | | |
Collapse
|
3
|
Feng Y, Chen Q, Lau SY, Tsai BW, Groom K, Barrett CJ, Chamley LW. The Blocking of Integrin-Mediated Interactions with Maternal Endothelial Cells Reversed the Endothelial Cell Dysfunction Induced by EVs, Derived from Preeclamptic Placentae. Int J Mol Sci 2022; 23:13115. [PMID: 36361901 PMCID: PMC9657319 DOI: 10.3390/ijms232113115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 08/31/2023] Open
Abstract
Placental extracellular vesicles (EVs) have increasingly been recognized as a major mediator of feto-maternal communication. However, the cellular and molecular mechanisms of the uptake of placental EVs by recipient cells are still not well-understood. We previously reported that placental EVs target a limited number of organs in vivo. In the current study, we investigated the mechanisms underlying the uptake of placental EVs into target cells. Placental EVs were derived from explant cultures of normal or preeclamptic placentae. The mechanisms underlying the uptake of placental EVs were elucidated, using the phagocytosis or endocytosis inhibitor, trypsin-treatment or integrin-blocking peptides. The endothelial cell activation was studied using the monocyte adhesion assay after the preeclamptic EVs exposure, with and/or without treatment with the integrin blocking peptide, YIGSR. The cellular mechanism of the uptake of the placental EVs was time, concentration and energy-dependent and both the phagocytosis and endocytosis were involved in this process. Additionally, proteins on the surface of the placental EVs, including integrins, were involved in the EV uptake process. Furthermore, inhibiting the uptake of preeclamptic EVs with YIGSR, reduced the endothelial cell activation. The interaction between the placental EVs and the recipient cells is mediated by integrins, and the cellular uptake is mediated by a combination of both phagocytosis and endocytosis.
Collapse
Affiliation(s)
- Yourong Feng
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Sien Yee Lau
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Bridget W. Tsai
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Katie Groom
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Carolyn J. Barrett
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Lawrence W. Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Hub for Extracellular Vesicles Investigations (HEVI), University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
4
|
Sakowicz A. The Targeting of Nuclear Factor Kappa B by Drugs Adopted for the Prevention and Treatment of Preeclampsia. Int J Mol Sci 2022; 23:2881. [PMID: 35270023 PMCID: PMC8911173 DOI: 10.3390/ijms23052881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) is characterised by high levels and activity of the transcription factor Nuclear Factor kappa B (NFĸB) in the maternal blood and placental cells. This factor is responsible for the regulation of over 400 genes known to influence processes related to inflammation, apoptosis and angiogenesis, and cellular responses to oxidative stress and hypoxia. Although high NFĸB activity induces hypoxia and inflammation, which are beneficial for the process of implantation, NFĸB level should be reduced in the later stages of physiological pregnancy to favour maternal immunosuppression and maintain gestation. It is believed that the downregulation of NFĸB activity by pharmacotherapy might be a promising way to treat preeclampsia. Interestingly, many of the drugs adopted for the prevention and treatment of preeclampsia have been found to regulate NFĸB activity. Despite this, further innovation is urgently needed to ensure treatment safety and efficacy. The present article summarizes the current state of knowledge about the drugs recommended by cardiology, obstetrics, and gynaecology societies for the prevention and treatment of preeclampsia with regard to their impact on the cellular regulation of NFĸB pathways.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
5
|
Woolston E, Tang Y, Azizi S, Kando I, Chamley L, Stone P, Chen Q. Comparison of the effects on maternal endothelial cell activation: an in vitro study of anti-hypertensive drugs clinically used in pre-eclampsia. J Hum Hypertens 2022; 36:192-200. [PMID: 33686209 DOI: 10.1038/s41371-021-00497-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Endothelial cell dysfunction in pregnancy, which can be induced by placental factors, is the fundamental component of the pathogenesis of pre-eclampsia. The dysfunctional vascular endothelium disrupts the balance of vasodilatory and vasoconstrictive factors, resulting in increasing blood pressure. There is currently no effective treatment for pre-eclampsia and effective control of hypertension may reduce neonatal morbidity and mortality by prolonging gestation, especially in cases of early onset disease. To date methyldopa, labetalol, nifedipine and metoprolol are recommended for controlling blood pressure in pre-eclampsia. All of these drugs have different mechanisms of action. In this in vitro study we investigated whether different types of anti-hypertensive drugs could have different effects on improving maternal endothelial cell dysfunction. Endothelial cells (HMEC-1) were exposed to phorbol-12-myristate-13-acetate (PMA) or pre-eclamptic sera or extracellular vesicles (EVs) derived from pre-eclamptic placentae, in the presence of each of the studied anti-hypertensive drugs (methyldopa, labetalol, nifedipine and metoprolol) or placebo for 24 h. Endothelial cell-surface adhesion molecule (ICAM-1) and monocyte adhesion were measured. The expression of cell-face ICAM-1 by HMEC-1 cells and THP-1 monocyte adherent to HMEC-1 that were exposed to three separate well-known activators of endothelial cells in the presence of four anti-hypertensive drugs was significantly reduced regardless of the dose. However, the effect on the reduction of ICAM-1 expression and monocyte adhesion was not significantly different between the four medications. Our data suggest that the beneficial effect on improving endothelial cell function by these commonly prescribed anti-hypertensive drugs is seemingly independent of the anti-hypertensive mechanisms of the medication.
Collapse
Affiliation(s)
- Esther Woolston
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Yunhui Tang
- The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China. .,National Women's Health, Auckland City Hospital, Auckland, New Zealand.
| | - Sonia Azizi
- National Women's Health, Auckland City Hospital, Auckland, New Zealand
| | - Ian Kando
- National Women's Health, Auckland City Hospital, Auckland, New Zealand
| | - Larry Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Peter Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand.,The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Ijomone OK, Osahon IR, Okoh COA, Akingbade GT, Ijomone OM. Neurovascular dysfunctions in hypertensive disorders of pregnancy. Metab Brain Dis 2021; 36:1109-1117. [PMID: 33704662 DOI: 10.1007/s11011-021-00710-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Hypertensive disorders in pregnancy pose a huge challenge to the socioeconomic stability of a community; being a major cause of maternal and neonatal morbidity and mortality during delivery. Although there have been recent improvements in management strategies, still, the diversified nature of the underlying pathogenesis undermines their effectiveness. Generally, these disorders are categorized into two; hypertensive disorders of pregnancy with proteinuria (pre-eclampsia and eclampsia) and hypertensive disorders of pregnancy without proteinuria (gestational and chronic hypertension). Each of these conditions may present with unique characteristics that have interwoven symptoms. However, the tendency of occurrence heightens in the presence of any pre-existing life-threatening condition(s), environmental, and/or other genetic factors. Investigations into the cerebrovascular system demonstrate changes in the histoarchitectural organization of neurons, the proliferation of glial cells with an associated increase in inflammatory cytokines. These are oxidative stress indicators which impose a deteriorating impact on the structures that form the neurovascular unit and the blood-brain barrier (BBB). Such a pathologic state distorts the homeostatic supply of blood into the brain, and enhances the permeability of toxins/pathogens through a process called hyperperfusion at the BBB. Furthermore, a notable aspect of the pathogenesis of hypertensive disorders of pregnancy is endothelial dysfunction aggravated when signaling of the vasoprotective molecule, nitric oxide, amongst other neurotransmitter regulatory activities are impaired. This review aims to discuss the alterations in cerebrovascular regulation that determine the incidence of hypertension in pregnancy.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
| | - Itohan R Osahon
- Department of Anatomy, College of Health Sciences, Edo State University, Uzairue, Nigeria
| | - Comfort O A Okoh
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Grace T Akingbade
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria
| | - Omamuyovwi M Ijomone
- The Neuro- Lab, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, Akure, Nigeria.
| |
Collapse
|
7
|
Tang Y, Groom K, Chamley L, Chen Q. Melatonin, a Potential Therapeutic Agent for Preeclampsia, Reduces the Extrusion of Toxic Extracellular Vesicles from Preeclamptic Placentae. Cells 2021; 10:cells10081904. [PMID: 34440672 PMCID: PMC8393242 DOI: 10.3390/cells10081904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/29/2022] Open
Abstract
Preeclampsia, characterised by maternal endothelial cell activation, is triggered by toxic factors, such as placental extracellular vesicles (EVs) from a dysfunctional placenta. The increased oxidative stress seen in the preeclamptic placenta links to endoplasmic reticulum (ER) stress. The ER regulates protein folding and trafficking. When the ER is stressed, proteins are misfolded, and misfolded proteins are toxic. Misfolded proteins can be exported from cells, via EVs which target to other cells where the misfolded proteins may also be toxic. Melatonin is a hormone and antioxidant produced by the pineal gland and placenta. Levels of melatonin are reduced in preeclampsia. In this study we investigated whether melatonin treatment can change the nature of placental EVs that are released from a preeclamptic placenta. EVs were collected from preeclamptic (n = 6) and normotensive (n = 6) placental explants cultured in the presence or absence of melatonin for 18 h. Misfolded proteins were measured using a fluorescent compound, Thioflavin-T (ThT). Endothelial cells were exposed to placental EVs overnight. Endothelial cell activation was measured by the quantification of cell-surface ICAM-1 using a cell-based ELISA. EVs from preeclamptic placentae carried significantly (p < 0.001) more misfolded proteins than normotensive controls. Incubating preeclamptic placental explants in the presence of melatonin (1 µM and 10 µM) significantly (p < 0.001) reduced the misfolded proteins carried by EVs. Culturing endothelial cells in the presence of preeclamptic EVs significantly increased the expression of ICAM-1. This increased ICAM-1 expression was significantly reduced when the endothelial cells were exposed to preeclamptic EVs cultured in the presence of melatonin. This study demonstrates that melatonin reduces the amount of misfolded proteins carried by EVs from preeclamptic placentae and reduces the ability of these EVs to activate endothelial cells. Our study provides further preclinical support for the use of melatonin as a treatment for preeclampsia.
Collapse
Affiliation(s)
- Yunhui Tang
- Department of Family Planning, The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai 200081, China
- Department of Obstetrics and Gynaecology, The University of Auckland, 1142 Auckland, New Zealand
| | - Katie Groom
- National Women's Health, Auckland City Hospital, 1142 Auckland, New Zealand
- Liggins Institute, The University of Auckland, 1142 Auckland, New Zealand
| | - Larry Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, 1142 Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, The University of Auckland, 1142 Auckland, New Zealand
| | - Qi Chen
- Department of Obstetrics and Gynaecology, The University of Auckland, 1142 Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, The University of Auckland, 1142 Auckland, New Zealand
| |
Collapse
|
8
|
Adu-Gyamfi EA, Czika A, Gorleku PN, Ullah A, Panhwar Z, Ruan LL, Ding YB, Wang YX. The Involvement of Cell Adhesion Molecules, Tight Junctions, and Gap Junctions in Human Placentation. Reprod Sci 2020; 28:305-320. [PMID: 33146876 DOI: 10.1007/s43032-020-00364-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Placentation is a major determinant of the success of pregnancy. It is regulated by several factors such as cell adhesion molecules, tight junctions, and gap junctions. The cell adhesion molecules are integrins, cadherins, immunoglobulins, nectins, and selectins. The tight junctions are composed of claudins, occludin, and junction adhesion molecule proteins while the gap junctions are composed of connexins of varying molecular weights. During placentation, some of these molecules regulate trophoblast proliferation, trophoblast fusion, trophoblast migration, trophoblast invasion, trophoblast-endothelium adhesion, glandular remodeling, and spiral artery remodeling. There is a dysregulated placental expression of some of these molecules during obstetric complications. We have, hereby, indicated the expression patterns of the subunits of each of these molecules in the various trophoblast subtypes and in the decidua, and have highlighted their involvement in physiological and pathological placentation. The available evidence points to the relevance of these molecules as distinguishing markers of the various trophoblast lineages and as potential therapeutic targets in the management of malplacentation-mediated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Armin Czika
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Amin Ullah
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Zulqarnain Panhwar
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Box 197, No. 1 Yixueyuan Rd, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
Holme JA, Brinchmann BC, Le Ferrec E, Lagadic-Gossmann D, Øvrevik J. Combustion Particle-Induced Changes in Calcium Homeostasis: A Contributing Factor to Vascular Disease? Cardiovasc Toxicol 2020; 19:198-209. [PMID: 30955163 DOI: 10.1007/s12012-019-09518-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Air pollution is the leading environmental risk factor for disease and premature death in the world. This is mainly due to exposure to urban air particle matter (PM), in particular, fine and ultrafine combustion-derived particles (CDP) from traffic-related air pollution. PM and CDP, including particles from diesel exhaust (DEP), and cigarette smoke have been linked to various cardiovascular diseases (CVDs) including atherosclerosis, but the underlying cellular mechanisms remain unclear. Moreover, CDP typically consist of carbon cores with a complex mixture of organic chemicals such as polycyclic aromatic hydrocarbons (PAHs) adhered. The relative contribution of the carbon core and adhered soluble components to cardiovascular effects of CDP is still a matter of discussion. In the present review, we summarize evidence showing that CDP affects intracellular calcium regulation, and argue that CDP-induced impairment of normal calcium control may be a critical cellular event through which CDP exposure contributes to development or exacerbation of cardiovascular disease. Furthermore, we highlight in vitro research suggesting that adhered organic chemicals such as PAHs may be key drivers of these responses. CDP, extractable organic material from CDP (CDP-EOM), and PAHs may increase intracellular calcium levels by interacting with calcium channels like transient receptor potential (TRP) channels, and receptors such as G protein-coupled receptors (GPCR; e.g., beta-adrenergic receptors [βAR] and protease-activated receptor 2 [PAR-2]) and the aryl hydrocarbon receptor (AhR). Clarifying a possible role of calcium signaling and mechanisms involved may increase our understanding of how air pollution contributes to CVD.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
| | - Bendik C Brinchmann
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, 35000, Rennes, France
| | - Johan Øvrevik
- Department of Air Pollution and Noise, Division of Infection Control, Environment and Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, 0403, Oslo, Norway.
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
10
|
Korkmazer E, Nizam R, Arslan E, Akkurt Ö. Relationship between intercellular adhesion molecule-1 and morbidly adherent placenta. J Perinat Med 2018; 47:45-49. [PMID: 29995635 DOI: 10.1515/jpm-2018-0086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022]
Abstract
Objective Morbidly adherent placenta (MAP) is a clinical condition the prevalance of which is steadily increasing. It is described as the invasion of the placenta into the uterine wall through the myometrium and beyond. Several studies have shown that intercellular adhesion molecule-1 (ICAM-1) increases the invasion capability of tumor cells and placental cells. In our study, we investigated the expression of ICAM-1 in MAP cases. Methods This is a prospective case-control study. Eighty-nine patients who were diagnosed with MAP and 96 patients, without adherent placenta, as a control group were included in the study. ICAM-1 staining was examined by immuno-histochemical staining in placental samples. Results Of the 89 patients in the MAP group, 72 (80.8%) showed positive staining, while 26 (27%) did so in the control group. ICAM-1 positive staining in the MAP group was statistically significantly higher (P=0.03). Conclusion This is the first study investigating the relationship between MAP and ICAM-1 in the literature. In our study, we showed that ICAM-1 expression increased in the MAP group.
Collapse
Affiliation(s)
- Engin Korkmazer
- Health Sciences University, Department of Gynecology and Obstetrics, Bursa, Turkey
| | - Rampia Nizam
- Health Sciences University, Department of Gynecology and Obstetrics, Bursa, Turkey
| | - Emine Arslan
- Hitit University, Department of Gynecology and Obstetrics, Çorum, Turkey
| | - Özgür Akkurt
- Health Sciences University, Department of Gynecology and Obstetrics, Bursa, Turkey
| |
Collapse
|
11
|
Bolnick AD, Bolnick JM, Kohan-Ghadr HR, Kilburn BA, Hertz M, Dai J, Drewlo S, Armant DR. Nifedipine Prevents Apoptosis of Alcohol-Exposed First-Trimester Trophoblast Cells. Alcohol Clin Exp Res 2017; 42:53-60. [PMID: 29048755 DOI: 10.1111/acer.13534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 10/12/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Maternal alcohol abuse leading to fetal alcohol spectrum disorder (FASD) includes fetal growth restriction (FGR). Ethanol (EtOH) induces apoptosis of human placental trophoblast cells, possibly disrupting placentation and contributing to FGR in FASD. EtOH facilitates apoptosis in several embryonic tissues, including human trophoblasts, by raising intracellular Ca2+ . We previously found that acute EtOH exposure increases trophoblast apoptosis due to signaling from both intracellular and extracellular Ca2+ . Therefore, nifedipine, a Ca2+ channel blocker that is commonly administered to treat preeclampsia and preterm labor, was evaluated for cytoprotective properties in trophoblast cells exposed to alcohol. METHODS Human first-trimester chorionic villous explants and the human trophoblast cell line HTR-8/SVneo (HTR) were pretreated with 12.5 to 50 nM of the Ca2+ channel blocker nifedipine for 1 hour before exposure to 50 mM EtOH for an additional hour. Intracellular Ca2+ concentrations were monitored in real time by epifluorescence microscopy, using fluo-4-AM. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), accumulation of cytoplasmic cytochrome c, and cleavage rates of caspase 3 and caspase 9. RESULTS The increase in intracellular Ca2+ upon exposure to EtOH in both villous explants and HTR cells was completely blocked (p < 0.05) when pretreated with nifedipine, accompanied by inhibition of EtOH-induced release of cytochrome c, caspase activities, and TUNEL. CONCLUSIONS This study indicates that nifedipine can interrupt the apoptotic pathway downstream of EtOH exposure and could provide a novel strategy for future interventions in women with fetuses at risk for FASD.
Collapse
Affiliation(s)
- Alan D Bolnick
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jay M Bolnick
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Hamid-Reza Kohan-Ghadr
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Brian A Kilburn
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Michael Hertz
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jing Dai
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sascha Drewlo
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - D Randall Armant
- Departments of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Anatomy& Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
12
|
Zhao M, Li Y, Xu L, Hickey A, Groom K, Stone PR, Chamley LW, Chen Q. Melatonin prevents preeclamptic sera and antiphospholipid antibodies inducing the production of reactive nitrogen species and extrusion of toxic trophoblastic debris from first trimester placentae. Placenta 2017; 58:17-24. [PMID: 28962691 DOI: 10.1016/j.placenta.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND The exact cause of preeclampsia is unknown. However a "toxin" from the placenta triggers the condition via activation of the maternal endothelium. Extracellular vesicles (EVs) from the syncytiotrophoblast, may be an endothelial-activating toxin. Antiphospholipid antibodies (aPL) and preeclamptic sera both induce the production of endothelial cell-activating EVs by mechanisms which may produce excess free-radicals in the placenta. Melatonin is produced by the human placenta and has both direct and indirect anti-free-radical properties and may therefore counter the effects of aPL and preeclamptic sera. METHODS First trimester placental explants were exposed to preeclamptic sera or aPL in the presence or absence of melatonin. Nitrosylative damage was assessed in the explants by immunohistochemistry and the effect of EVs from these explants on endothelial cell activation determined by ICAM-1. Release of nitrosylated proteins from the explants was also measured. RESULTS Placental explants showed reduced secretion of melatonin after treatment with preeclamptic sera. Nitrosylated proteins were more abundant in placentae that had been treated with aPL or preeclamptic sera and EVs from such placentae induced endothelial cell activation. Adding melatonin to the aPL or preeclamptic sera reversed the protein nitrosylation and production of endothelial-activating EVs. DISCUSSION Our data are consistent with reports that the levels of circulating melatonin are reduced in preeclampsia and suggest that aPL and factors in preeclamptic sera induce free-radical-mediated damage in the placenta leading to the production of endothelial-activating EVs. Melatonin reversing production of endothelial-activating EVs indicates that melatonin may have therapeutic benefits in women with preeclampsia and/or aPL.
Collapse
Affiliation(s)
- Mingzhi Zhao
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Yanyun Li
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lance Xu
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Anthony Hickey
- School of Biological Science, The University of Auckland, New Zealand
| | - Katie Groom
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & Gynaecology, Fudan University, Shanghai, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
13
|
Xiao X, Xiao F, Zhao M, Tong M, Wise MR, Stone PR, Chamley LW, Chen Q. Treating normal early gestation placentae with preeclamptic sera produces extracellular micro and nano vesicles that activate endothelial cells. J Reprod Immunol 2017; 120:34-41. [PMID: 28441551 DOI: 10.1016/j.jri.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/09/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Preeclampsia is characterised by systemic endothelial cell dysfunction thought to be triggered by toxic/dangerous factors from the placenta, including placental extracellular vesicles (EVs). Why placental EVs become toxic is unknown. We previously reported that preeclamptic sera produced toxic/dangerous placental macrovesicles but whether small EVs are also toxic/dangerous in preeclampsia is unknown. STUDY DESIGN First trimester placental explants were treated with 10% preeclamptic or control sera (n=10) for 24h. Micro- and nano-vesicles were harvested by sequential centrifugation. Micro- or nano-vesicles were also exposed to monolayers of endothelial cells in the presence or absence of nifedipine (50μg/ml) or labetalol (0.5μg/ml) which are well-known anti-hypertensives in clinical practices. MAIN OUTCOMES MEASURES The number and size of micro- and nano-vesicles were counted. Endothelial cell-surface intercellular adhesion molecule 1 (ICAM-1) and high mobility group box 1 (HMGB1) levels in micro- or nano-vesicles were measured by immunoassays. RESULTS Neither the amount nor size of both micro- and nano-vesicles was different after treating placental explants with preeclamptic or control sera. The levels of HMGB1 were significantly increased in both micro- and nano-vesicles from preeclamptic sera treated placental explants (p<0.03). Exposing endothelial cells to micro- or nano-vesicles from preeclamptic sera-treated placental explants induced endothelial activation, but it was reversed by co-incubation with nifedipine (p=0.004) or labetalol (p=0.002). CONCLUSION Our data demonstrate that preeclamptic sera produce toxic/dangerous micro- and nano-placental EVs which activated endothelial cells. This effect was reversed by antihypertensives. The increased levels of HMGB1 in EVs may contribute to endothelial cell activation.
Collapse
Affiliation(s)
- Xirong Xiao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Fengyi Xiao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Mingzhi Zhao
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Mancy Tong
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Michelle R Wise
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Peter R Stone
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & Gynaecology, Fudan University, China; Department of Obstetrics & Gynaecology, The University of Auckland, New Zealand.
| |
Collapse
|
14
|
Labarrere CA, DiCarlo HL, Bammerlin E, Hardin JW, Kim YM, Chaemsaithong P, Haas DM, Kassab GS, Romero R. Failure of physiologic transformation of spiral arteries, endothelial and trophoblast cell activation, and acute atherosis in the basal plate of the placenta. Am J Obstet Gynecol 2017; 216:287.e1-287.e16. [PMID: 28034657 DOI: 10.1016/j.ajog.2016.12.029] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Failure of physiologic transformation of spiral arteries has been reported in preeclampsia, fetal growth restriction, fetal death, and spontaneous preterm labor with intact or ruptured membranes. Spiral arteries with failure of physiologic transformation are prone to develop atherosclerotic-like lesions of atherosis. There are striking parallels between preeclampsia and atherosclerotic disease, and between lesions of atherosis and atherosclerosis. Endothelial activation, identified by intercellular adhesion molecule-1 expression, is present in atherosclerotic-like lesions of heart transplantation, and is considered a manifestation of rejection. Similarly, endothelial activation/dysfunction has been implicated in the pathophysiology of atherosclerosis and preeclampsia. Intercellular adhesion molecule-1-overexpressing-activated endothelial cells are more resistant to trophoblast displacement than nonactivated endothelium, and may contribute to shallow spiral artery trophoblastic invasion in obstetrical syndromes having failure of physiologic transformation. OBJECTIVE We sought to determine whether failure of spiral artery physiologic transformation was associated with activation of interstitial extravillous trophoblasts and/or spiral artery endothelium and presence of acute atherosis in the placental basal plate. STUDY DESIGN A cross-sectional study of 123 placentas (19-42 weeks' gestation) obtained from normal pregnancies (n = 22), preterm prelabor rupture of membranes (n = 26), preterm labor (n = 23), preeclampsia (n = 27), intrauterine fetal death (n = 15), and small for gestational age (n = 10) was performed. Failure of spiral artery physiologic transformation and presence of cell activation was determined using immunohistochemistry of placental basal plates containing a median of 4 (minimum: 1; maximum: 9) vessels per placenta. Endothelial/trophoblast cell activation was defined by the expression of intercellular adhesion molecule-1. Investigators examining microscopic sections were blinded to clinical diagnosis. Pairwise comparisons among placenta groups were performed with Fisher exact test and Wilcoxon rank sum test using a Bonferroni-adjusted level of significance (.025). RESULTS We found that 87% (94/108) of placentas having spiral arteries with failure of physiologic transformation (actin-positive and cytokeratin-negative) in the basal plate, and 0% (0/15) of placentas having only spiral arteries with complete physiologic transformation (cytokeratin-positive and actin-negative), had arterial endothelial and/or interstitial extravillous trophoblasts reactive with the intercellular adhesion molecule-1 activation marker (P < .001). A significant correlation (R2 = 0.84) was found between expression of spiral artery endothelial and interstitial extravillous trophoblast intercellular adhesion molecule-1 (P < .001) in activated placentas. Lesions of atherosis were found in 31.9% (30/94) of placentas with complete and/or partial failure of physiologic transformation of spiral arteries that were intercellular adhesion molecule-1-positive, in none of the 14 placentas with failure of physiologic transformation that were intercellular adhesion molecule-1-negative, and in none of the 15 placentas with complete spiral artery physiologic transformation without failure (P = .001). All placentas (30/30, 100%) with atherosis were identified in placentas having concomitant spiral artery endothelial and interstitial extravillous trophoblast activation. CONCLUSION Failure of spiral artery physiologic transformation in the placental basal plate is associated with interstitial extravillous trophoblast and arterial endothelial activation along with increased frequency of spiral artery atherosis. These findings may be used to improve the characterization of different disorders of the placental bed such as in refining the existing tools for the early prediction of risk for preterm, preeclamptic, and other abnormal pregnancies.
Collapse
Affiliation(s)
- Carlos A Labarrere
- CBL Partners for Life, Indianapolis, IN; California Medical Innovations Institute, San Diego, CA.
| | | | - Elaine Bammerlin
- Indiana University Health Methodist Research Institute, Indianapolis, IN
| | - James W Hardin
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC
| | - Yeon M Kim
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | | | | | - Roberto Romero
- Center for Molecular Medicine and Genetics, Detroit, MI; Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
| |
Collapse
|
15
|
Shao J, Zhao M, Tong M, Wei J, Wise MR, Stone P, Chamley L, Chen Q. Increased levels of HMGB1 in trophoblastic debris may contribute to preeclampsia. Reproduction 2016; 152:775-784. [PMID: 27658754 DOI: 10.1530/rep-16-0083] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/22/2016] [Indexed: 01/01/2023]
Abstract
Preeclampsia is triggered by an as yet unknown toxin from the placenta. Antiphospholipid antibodies (aPL), a strong risk factor for preeclampsia, have been shown to induce the production of toxic trophoblastic debris from the placenta. High mobility group box 1 (HMGB1) is a proinflammatory danger signal, and the expression of it has been reported to be increased in preeclampsia. This study examined whether aPL or preeclamptic sera increase the expression of HMGB1 in the syncytiotrophoblast or trophoblastic debris. Trophoblastic debris from normal placental explants that had been cultured with aPL or preeclamptic sera was exposed to endothelial cells. Endothelial cell activation was quantified by cell-surface ICAM-1 expression and U937 monocyte adhesion. The expression of HMGB1 in placental explants and trophoblastic debris that had been treated with aPL or preeclamptic sera was measured by immunohistochemistry and western blotting. The expression of the receptor for advanced glycation end products (RAGE) in endothelial cells was quantified by western blotting. Compared with controls, the expression of HMGB1 in the cytoplasm of the syncytiotrophoblast and trophoblastic debris was increased by treating placental explants with aPL or preeclamptic sera. The increased levels of HMGB1 contributed to endothelial cell activation, mediated in part by the RAGE. Preeclamptic sera and aPL both induced an increase in the cytoplasmic levels of the danger signal HMGB1 in trophoblastic debris. This increased HMGB1 in trophoblastic debris may be one of the toxic factors released from the placenta in preeclampsia.
Collapse
Affiliation(s)
- Jun Shao
- The Hospital of Obstetrics & GynaecologyFudan University, China.,Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Mingzhi Zhao
- The Hospital of Obstetrics & GynaecologyFudan University, China .,Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Mancy Tong
- Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Jia Wei
- Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Michelle R Wise
- Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Peter Stone
- Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Lawrence Chamley
- Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| | - Qi Chen
- The Hospital of Obstetrics & GynaecologyFudan University, China .,Department of Obstetrics & GynaecologyThe University of Auckland, New Zealand
| |
Collapse
|
16
|
Chen Q, Sousa JD, Snowise S, Chamley L, Stone P. Reduction in the severity of early onset severe preeclampsia during gestation may be associated with changes in endothelial cell activation: A pathological case report. Hypertens Pregnancy 2016; 35:32-41. [PMID: 26852788 DOI: 10.3109/10641955.2015.1100309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Early severe preeclampsia with changes consistent with the Hemolysis elevated liver enzymes low platelet count (HELLP) variant and severe fetal growth restriction rarely resolves prior to delivery. Established clinical disease is preceded by endothelial dysfunction and inflammation. Endothelial activation is reported in vitro to be raised in the presence of necrotic trophoblastic debris which is deported into the maternal circulation in preeclampsia. We report on an early severe preeclamptic patient admitted at 24 weeks gestation. Maternal serum was taken at day 2, 16, 30 of admission and 45 days postpartum. 20% maternal serum or trophoblastic debris from first trimester placental explants that had been cultured with 10% maternal serum was exposed to endothelial cells. Endothelial cell activation was quantified by the cell surface ICAM-1 expression and U937 monocyte adhesion assay. The clinical condition of this patient improved including the blood pressure, liver function, and platelet count by the 3rd day after antihypertensive treatment and remained normal until delivery at 37 weeks. ICAM-1 expression and U937 moncyte adhesion assay of endothelial cells was significantly increased following exposure of the endothelial cells to the maternal serum or trophoblastic debris from placentae treated with maternal serum drawn on day 2. However, ICAM-1 expression and the monocyte adhesion assay were significantly reduced following exposure of endothelial cells to maternal serum or trophoblastic debris from placenta treated with maternal serum drawn on day 16 or 30. Our data suggest unknown factor(s) in the maternal serum triggered endothelial cell activation when the clinical symptoms were present. The improvement in the clinical condition occurred along with the changes in endothelial cell activation.
Collapse
Affiliation(s)
- Q Chen
- a Department of Obstetrics & Gynaecology , The University of Auckland , Auckland , New Zealand.,b The Hospital of Obstetrics & Gynaecology , Fudan University , Shanghai , China
| | - J De Sousa
- c Maternal Fetal Medicine, Auckland City Hospital , Auckland , New Zealand
| | - S Snowise
- c Maternal Fetal Medicine, Auckland City Hospital , Auckland , New Zealand
| | - L Chamley
- a Department of Obstetrics & Gynaecology , The University of Auckland , Auckland , New Zealand
| | - P Stone
- a Department of Obstetrics & Gynaecology , The University of Auckland , Auckland , New Zealand.,c Maternal Fetal Medicine, Auckland City Hospital , Auckland , New Zealand
| |
Collapse
|
17
|
Elevated venous thromboembolism risk in preeclampsia: molecular mechanisms and clinical impact. Biochem Soc Trans 2015; 43:696-701. [PMID: 26551715 DOI: 10.1042/bst20140310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Indexed: 11/17/2022]
Abstract
Venous thromboembolism (VTE) remains a leading cause of maternal death and morbidity in the developed world. Strategies for prevention of VTE in pregnancy have been the subject of recent guidelines and consensus statements. These guidelines recommend thrombosis prevention in women who have risk factors associated with an elevated VTE risk. Preeclampsia is characterized by maternal hypertension and proteinuria developing after 20 weeks gestation, complicating up to 7% of pregnancies and is associated with a massive annual morbidity and mortality burden. Women with preeclampsia have been shown to be at increased risk of VTE with studies to date suggesting that this risk may be up to 5-fold greater than the risk of pregnancy-associated VTE in the general population. Despite the fact that preeclampsia is so common and potentially devastating, our understanding of its pathogenesis and potential therapeutic strategies remain poor. In addition, the mechanisms underlying the prothrombotic phenotype in preeclampsia are also poorly characterized although a number of potential mechanisms have been postulated. Derangements of platelet and endothelial activation and impairment of endogenous anti-coagulant pathways have been reported and may contribute to the observed VTE risk. Recently, evidence for the role of neutrophil extracellular traps (NETs) and cell-free DNA in the pathogenesis of VTE has emerged and some evidence exists to suggest that this may be of relevance in preeclampsia. Future studies aimed at understanding the diagnostic and potential therapeutic relevance of this procoagulant state are likely to be of enormous clinical benefit for pregnant women affected with this potentially devastating condition.
Collapse
|
18
|
DeSousa J, Tong M, Wei J, Chamley L, Stone P, Chen Q. The anti-inflammatory effect of calcium for preventing endothelial cell activation in preeclampsia. J Hum Hypertens 2015; 30:303-8. [PMID: 26155993 DOI: 10.1038/jhh.2015.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/28/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Preeclampsia is a disorder of pregnancy characterized by endothelial activation. It is believed to be a response to a 'toxin(s)' from the placenta including trophoblastic debris and inflammatory cytokines. Calcium is known to reduce the risk of preeclampsia but the mechanism of its protective effect remains unknown. In this study, we investigated the potential mechanism(s) of calcium supplementation for preventing endothelial activation induced by trophoblastic debris. Trophoblastic debris was harvested from preeclamptic placentae and also from first-trimester placentae, which had been treated with preeclamptic sera. Endothelial cells were then cultured with trophoblastic debris in the presence of calcium. Endothelial activation was measured by quantifying endothelial cell-surface intercellular adhesion molecule-1 (ICAM-1) and by U937 monocyte adhesion to endothelial cells. The expression of ICAM-1 and U937 adhesion to endothelial cells were significantly reduced following exposure of endothelial cells to trophoblastic debris from preeclamptic placenta or from first-trimester placentae treated with preeclamptic sera in the presence of calcium compared with treatment without calcium. The expression of ICAM-1 was also significantly reduced following exposure of endothelial cells to trophoblastic debris with the nitric oxide donor or following treatment of endothelial cells with interleukin (IL)-1β in the presence of calcium. Our study demonstrated that calcium supplementation prevented endothelial cell activation induced by trophoblastic debris from preeclamptic placentae. The nitric oxide synthase (NOS) pathway and anti-inflammatory effects are involved in the action of calcium on endothelial cell activation. These findings may suggest, at least in part, the protective mechanism of calcium supplementation on preeclampsia.
Collapse
Affiliation(s)
- J DeSousa
- Maternal Fetal Medicine, Auckland City Hospital, Auckland, New Zealand
| | - M Tong
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - J Wei
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - L Chamley
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - P Stone
- Maternal Fetal Medicine, Auckland City Hospital, Auckland, New Zealand.,Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Q Chen
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand.,The Hospital of Obstetrics and Gynaecology, Fudan University, Shanghai, China
| |
Collapse
|
19
|
The reduction of circulating levels of IL-6 in pregnant women with preeclampsia by magnesium sulphate and nifedipine: In vitro evidence for potential mechanisms. Placenta 2015; 36:661-6. [DOI: 10.1016/j.placenta.2015.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/24/2015] [Accepted: 03/25/2015] [Indexed: 11/23/2022]
|
20
|
Trophoblast debris extruded from preeclamptic placentae activates endothelial cells: a mechanism by which the placenta communicates with the maternal endothelium. Placenta 2014; 35:839-47. [PMID: 25096950 DOI: 10.1016/j.placenta.2014.07.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/25/2014] [Accepted: 07/15/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Preeclampsia is characterized by maternal endothelial dysfunction. While the mechanisms leading to preeclampsia are unclear, a factor(s) from the placenta is responsible for triggering the disease. One placental factor implicated in triggering preeclampsia is trophoblast debris which may transmit pathogenic signals from the placenta to endothelial cells. In this study, we investigated whether trophoblast debris from preeclamptic placentae triggered endothelial cell activation. METHODS Trophoblast debris from preeclamptic or normotensive placentae, or trophoblast debris from normal placental explants that had been cultured with preeclamptic (n = 14) or normotensive sera (n = 14) was exposed to endothelial cells. Activation of the endothelial cells was quantified by cell surface ICAM-1 and U937 adhesion to endothelial cells. The levels of IL-1β, pro-caspase-1 and active caspase-1 in the trophoblast debris were measured. RESULTS Compared to controls, the levels of ICAM-1 and U937 adhesion to endothelial cells were significantly increased following exposure of the endothelial cells to trophoblast debris from preeclamptic placentae or placentae treated with preeclamptic sera. The levels IL-1β, pro-caspase-1 and active caspase-1 were significantly increased in both trophoblast debris from preeclamptic placentae and placentae treated with preeclamptic sera. DISCUSSION These results provide the first direct evidence that trophoblast debris produced from preeclamptic placentae or placentae treated with preeclamptic sera can activate the endothelium. CONCLUSIONS Trophoblast debris from preeclamptic but not normotensive placentae can induce endothelial cell activation. This may be one mechanism by which the preeclamptic placenta communicates with the maternal endothelium to induce activation of the endothelium.
Collapse
|
21
|
Calcium supplementation prevents endothelial cell activation: possible relevance to preeclampsia. J Hypertens 2014; 31:1828-36. [PMID: 23822977 DOI: 10.1097/hjh.0b013e328362ba1a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Preeclampsia is a leading cause of maternal and fetal mortality and morbidity. A hallmark of preeclampsia is endothelial cell dysfunction/activation in response to 'toxins' from the placenta. Necrotic trophoblastic debris (NTD) is one possible placental toxin and other activators of endothelial cells include inflammatory cytokines. Calcium supplementation appears to protect 'at-risk' women from developing preeclampsia but how is unclear. METHODS Placental explants were cultured with interleukin-6 (IL-6) in varied concentrations of calcium. The resultant trophoblastic debris was exposed to endothelial cells. Endothelial cells were exposed to activators including NTD, IL-6, and preeclamptic sera in the presence of varied concentrations of calcium and activation monitored by quantifying cell surface markers by ELISA. RESULTS Raising the levels of calcium did not prevent the IL-6-induced shedding of NTD from placental explants but did prevent the activation of endothelial cells in response to IL-6, preeclamptic sera, or NTD. Reducing the level of calcium directly induced the activation of endothelial cells. Inhibiting nitric oxide synthetase ablated the ability of high calcium levels to protect endothelial cell activation. The activity of endothelial cell nitric oxide synthetase was blocked with L-N-nitroarginine methyl ester. CONCLUSION Our results demonstrate calcium levels do not affect the shedding of trophoblastic debris but are important to endothelial cell activation and supplemental calcium may reverse the activation of the endothelium in preeclamptic women. These results may in part explain the benefits of calcium supplementation in the reduction of risk for developing preeclampsia and provide in-vitro mechanistic support for the use of calcium supplementation in at-risk women.
Collapse
|