1
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
2
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
3
|
Xu S, Yin M, Koroleva M, Mastrangelo MA, Zhang W, Bai P, Little PJ, Jin ZG. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging (Albany NY) 2017; 8:1064-82. [PMID: 27249230 PMCID: PMC4931854 DOI: 10.18632/aging.100975] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 12/31/2022]
Abstract
SIRT6 is an important member of sirtuin family that represses inflammation, aging and DNA damage, three of which are causing factors for endothelial dysfunction. SIRT6 expression is decreased in atherosclerotic lesions from ApoE−/− mice and human patients. However, the role of SIRT6 in regulating vascular endothelial function and atherosclerosis is not well understood. Here we show that SIRT6 protects against endothelial dysfunction and atherosclerosis. Global and endothelium-specific SIRT6 knockout mice exhibited impaired endothelium-dependent vasorelaxation. Moreover, SIRT6+/− haploinsufficient mice fed a high-fat diet (HFD) also displayed impaired endothelium-dependent vasorelaxation. Importantly, SIRT6+/−;ApoE−/− mice after HFD feeding exhibited exacerbated atherosclerotic lesion development, concurrent with increased expression of the proinflammatory cytokine VCAM-1. Loss- and gain-of-SIRT6 function studies in cultured human endothelial cells (ECs) showed that SIRT6 attenuated monocyte adhesion to ECs. RNA-sequencing profiling revealed that SIRT6 overexpression decreased the expression of multiple atherosclerosis-related genes, including proatherogenic gene TNFSF4 (tumor necrosis factor superfamily member 4). Chromatin immunoprecipitation assays showed that SIRT6 decreased TNFSF4 gene expression by binding to and deacetylating H3K9 at TNFSF4 gene promoter. Collectively, these findings demonstrate that SIRT6 play a pivotal role in maintaining endothelial function and increased SIRT6 activity could be a new therapeutic strategy to combat atherosclerotic disease.
Collapse
Affiliation(s)
- Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Meimei Yin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Marina Koroleva
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Michael A Mastrangelo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism Research Group, Debrecen, Hungary.,Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence (PACE), Woolloongabba QLD 4102, Australia
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14620, USA
| |
Collapse
|
4
|
Liu Z, Wang J, Huang X, Li Z, Liu P. Deletion of sirtuin 6 accelerates endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice. Transl Res 2016; 172:18-29.e2. [PMID: 26924042 DOI: 10.1016/j.trsl.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023]
Abstract
Sirtuin 6 (SIRT6) is a chromatin-associated deacetylase that plays a leading role in genomic stability and aging. However, the precise role of SIRT6 in atherosclerosis, an aging-associated cardiovascular disease, remains elusive. This study aims at defining the role of SIRT6 in atherosclerotic lesion development. SIRT6 messenger RNA and protein expression are markedly decreased in atherosclerotic aortas of apolipoprotein E-deficient (ApoE(-/-)) mice fed a high-cholesterol diet. SIRT6 was knocked down in ApoE(-/-) mice using small hairpin RNAs (shRNAs) lentivirus injection. SIRT6-shRNA-treated ApoE(-/-) mice showed impaired endothelium-dependent vasodilation, increased plaque size (in aortic sinus, aortic root and en face aorta), and augmented plaque vulnerability (evidenced by increased necrotic core areas and macrophage accumulation and reduced collagen content). At the cellular level, SIRT6 depletion by RNA interference in human umbilical vein endothelial cells significantly increased monocyte adhesion to endothelial cells by inducing the expression of intracellular adhesion molecule-1. Consistently, intracellular adhesion molecule-1 expression was significantly upregulated in aortic endothelium of SIRT6-shRNA-treated ApoE(-/-) mice compared with controls. In sum, the aforementioned findings suggest that SIRT6 is a primary negative regulation factor in endothelial dysfunction and atherosclerosis development. As a result, SIRT6 is a promising therapeutic target for treating atherosclerosis and its cardiovascular complications.
Collapse
Affiliation(s)
- Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiaojiao Wang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyang Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhuoming Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; National and Local United Engineering Lab of Druggability and New Drugs Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction Foundation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Zhai XY, Yan P, Zhang J, Song HF, Yin WJ, Gong H, Li H, Wu J, Xie J, Li RK. Knockdown of SIRT6 Enables Human Bone Marrow Mesenchymal Stem Cell Senescence. Rejuvenation Res 2016; 19:373-384. [PMID: 26654351 DOI: 10.1089/rej.2015.1770] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autologous bone marrow mesenchymal stem cell (BM-MSC) transplantation is a novel strategy for treating ischemic heart disease. However, limited benefits have been reported in aging patients. Rejuvenation of aged human BM-MSCs (hBM-MSCs) could be a means to improve the efficacy of stem cell transplantation in older patients. While it has been shown that sirtuin 6 (SIRT6) is an important antiaging factor in various cells, the role of SIRT6 in hBM-MSCs remains unknown. The hBM-MSCs from different ages were cultured for quantifying SIRT6 expression by mRNA and Western blotting. The cell proliferative and migration abilities were evaluated by BrdU staining, cell growth curves, and scratch assay. Senescence-associated β-galactosidase (SA-β-Gal) activity and aging-associated p16 (cyclin-dependent kinase inhibitor 2A) expression were also quantified. The knockdown of SIRT6 in hBM-MSCs was used to investigate its impact on aging. SIRT6 expression increased with age, while the proliferative and migration abilities of aged hBM-MSCs were decreased compared with young cells. Knockdown of SIRT6 impaired the proliferative, migration, and oxidative stress resistance potentials of BM-MSCs. SA-β-Gal activity and p16 expression were increased in aged cells compared with young ones and in siRNA SIRT6 knockdown cells compared with their controls. Aging results in compensatory overexpression of SIRT6 in hBM-MSCs. Downregulation of SIRT6 in these cells resulted in less cell proliferation and migration but increased SA-β-Gal activity and p16 expression. These results suggest that SIRT6 regulates the aging process in hBM-MSCs and could serve as a target for their rejuvenation.
Collapse
Affiliation(s)
- Xiao-Yan Zhai
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China .,2 Department of Anatomy, Shanxi Chinese Traditional Medical University , Taiyuan, China
| | - Ping Yan
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Jie Zhang
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Hui-Fang Song
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Wen-Juan Yin
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Hui Gong
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Hao Li
- 3 Department of Critical Care Medicine, The Second Hospital, Shanxi Medical University , Taiyuan, China
| | - Jun Wu
- 4 Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network , Toronto, Canada
| | - Jun Xie
- 1 Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University , Taiyuan, China
| | - Ren-Ke Li
- 4 Division of Cardiovascular Surgery, Toronto General Research Institute, University Health Network , Toronto, Canada
| |
Collapse
|
6
|
Yin X, Gao Y, Shi HS, Song L, Wang JC, Shao J, Geng XH, Xue G, Li JL, Hou YN. Overexpression of SIRT6 in the hippocampal CA1 impairs the formation of long-term contextual fear memory. Sci Rep 2016; 6:18982. [PMID: 26732053 PMCID: PMC4702175 DOI: 10.1038/srep18982] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/02/2015] [Indexed: 12/31/2022] Open
Abstract
Histone modifications have been implicated in learning and memory. Our previous transcriptome data showed that expression of sirtuins 6 (SIRT6), a member of Histone deacetylases (HDACs) family in the hippocampal cornu ammonis 1 (CA1) was decreased after contextual fear conditioning. However, the role of SIRT6 in the formation of memory is still elusive. In the present study, we found that contextual fear conditioning inhibited translational expression of SIRT6 in the CA1. Microinfusion of lentiviral vector-expressing SIRT6 into theCA1 region selectively enhanced the expression of SIRT6 and impaired the formation of long-term contextual fear memory without affecting short-term fear memory. The overexpression of SIRT6 in the CA1 had no effect on anxiety-like behaviors or locomotor activity. Also, we also found that SIRT6 overexpression significantly inhibited the expression of insulin-like factor 2 (IGF2) and amounts of proteins and/or phosphoproteins (e.g. Akt, pAkt, mTOR and p-mTOR) related to the IGF2 signal pathway in the CA1. These results demonstrate that the overexpression of SIRT6 in the CA1 impaired the formation of long-term fear memory, and SIRT6 in the CA1 may negatively modulate the formation of contextual fear memory via inhibiting the IGF signaling pathway.
Collapse
Affiliation(s)
- Xi Yin
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Yuan Gao
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Hai-Shui Shi
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China.,Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Li Song
- Department of Biochemistry and Molecular Biology, College of basic medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Jie-Chao Wang
- Department of vasculocardiology, Hebei Province Geriatric Hospital, Shijiazhuang, 050011, China
| | - Juan Shao
- Department of Senile Disease, the Third Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xu-Hong Geng
- Department of Functional region of Diagnosis, Hebei Medical University Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Gai Xue
- Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Jian-Li Li
- Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| | - Yan-Ning Hou
- Department of Pharmacy, the Bethune International Peace Hospital of PLA, Shijiazhuang 050082, China
| |
Collapse
|
7
|
Zwaans BMM, Lombard DB. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming. Dis Model Mech 2014; 7:1023-32. [PMID: 25085992 PMCID: PMC4142723 DOI: 10.1242/dmm.016287] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect). Despite the inefficiency of ATP generation through glycolysis, the breakdown of glucose into lactate provides cancer cells with a number of advantages, including the ability to withstand fluctuations in oxygen levels, and the production of intermediates that serve as building blocks to support rapid proliferation. Recent evidence from many cancer types supports the notion that pervasive metabolic reprogramming in cancer and stromal cells is a crucial feature of neoplastic transformation. Two key transcription factors that play major roles in this metabolic reprogramming are hypoxia inducible factor-1 (HIF1) and MYC. Sirtuin-family deacetylases regulate diverse biological processes, including many aspects of tumor biology. Recently, the sirtuin SIRT6 has been shown to inhibit the transcriptional output of both HIF1 and MYC, and to function as a tumor suppressor. In this Review, we highlight the importance of HIF1 and MYC in regulating tumor metabolism and their regulation by sirtuins, with a main focus on SIRT6.
Collapse
Affiliation(s)
- Bernadette M M Zwaans
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David B Lombard
- Department of Pathology and Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
The role of SIRT1 in ocular aging. Exp Eye Res 2013; 116:17-26. [PMID: 23892278 DOI: 10.1016/j.exer.2013.07.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/27/2022]
Abstract
The sirtuins are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases that helps regulate the lifespan of diverse organisms. The human genome encodes seven different sirtuins (SIRT1-7), which share a common catalytic core domain but possess distinct N- and C-terminal extensions. Dysfunction of some sirtuins have been associated with age-related diseases, such as cancer, type II diabetes, obesity-associated metabolic diseases, neurodegeneration, and cardiac aging, as well as the response to environmental stress. SIRT1 is one of the targets of resveratrol, a polyphenolic SIRT1 activator that has been shown to increase the lifespan and to protect various organs against aging. A number of animal studies have been conducted to examine the role of sirtuins in ocular aging. Here we review current knowledge about SIRT1 and ocular aging. The available data indicate that SIRT1 is localized in the nucleus and cytoplasm of cells forming all normal ocular structures, including the cornea, lens, iris, ciliary body, and retina. Upregulation of SIRT1 has been shown to have an important protective effect against various ocular diseases, such as cataract, retinal degeneration, optic neuritis, and uveitis, in animal models. These results suggest that SIRT1 may provide protection against diseases related to oxidative stress-induced ocular damage, including cataract, age-related macular degeneration, and optic nerve degeneration in glaucoma patients.
Collapse
|