1
|
Hu D, Cui Y, Hou X, Wang X, Shen Z, Pang H, Ge Y, Ning H. Drp1-Dependent Mitochondrial Fission Contributes to Lactic Acid-Induced Chicken Cardiomyocyte Damage. J Biochem Mol Toxicol 2025; 39:e70128. [PMID: 39756064 DOI: 10.1002/jbt.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/07/2025]
Abstract
Enhanced glycolysis and elevated lactic acid (LA) production are observed during sudden death syndrome (SDS) in broilers. However, the mechanism underlying LA-induced cardiomyocyte damage and heart failure in fast-growing broilers remains unclear. In this study, chicken embryo cardiomyocytes (CECs) were cultured and treated with LA to investigate LA-induced CEC injury and its mechanism, aiming to develop strategies to prevent LA-induced SDS in broilers. Results showed that LA inhibited CEC proliferation and contraction whereas inducing apoptosis. Furthermore, LA disrupted mitochondrial ultrastructure, reduced mitochondrial membrane potential, activated mitophagy, and disturbed mitochondrial dynamics. Treatment with Mdivi-1, a selective Drp1 inhibitor, improved CEC viability, restored mitochondrial network integrity, reduced reactive oxygen species production, and inhibited LA-induced apoptosis. These findings suggest that LA-induced cardiomyocyte injury during SDS in broilers is associated with mitochondrial damage and increased mitochondrial fission. The inhibition of mitochondrial hyperfission by Mdivi-1 effectively preserves CEC morphology, structure, and function, playing a critical role in preventing LA-induced damage. This study provides a foundation for strategies to prevent and control SDS in broilers.
Collapse
Affiliation(s)
- Dongfang Hu
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yunli Cui
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xueke Hou
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xueying Wang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Zihui Shen
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Huiqing Pang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Hongmei Ning
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
2
|
Deisl C, Chung JH, Hilgemann DW. Longitudinal diffusion barriers imposed by myofilaments and mitochondria in murine cardiac myocytes. J Gen Physiol 2023; 155:e202213329. [PMID: 37555782 PMCID: PMC10412754 DOI: 10.1085/jgp.202213329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Using optical and electrical methods, we document that diffusion in the cytoplasm of BL6 murine cardiomyocytes becomes restricted >20-fold as molecular weight increases from 30 to 2,000, roughly as expected for pores with porin channel dimensions. Bodipy-FL ATP diffuses >40-fold slower than in free water at 25°C. From several fluorophores analyzed, bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. Unbound fluorophores diffuse at 0.5-8 × 10-7 cm2/s (5-80 μm2/s). Analysis of Na/K pump and veratridine-modified Na channel currents suggests that Na diffusion is nearly unrestricted at 35°C (time constant for equilibration with the pipette tip, ∼20 s). Using multiple strategies, we estimate that at 35°C, ATP diffuses four to eight times slower than in free water. To address whether restrictions are caused more by protein or membrane networks, we verified first that a protein gel, 10 g% gelatin, restricts diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is less restricted than in intact myocytes. Notably, myofilaments extracted similarly from skeletal (diaphragm) myocytes are less restrictive. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similar to diffusion in intact myocytes. Restrictions are strain-dependent, being twofold greater in BL6 myocytes than in CD1/J6/129svJ myocytes. Furthermore, longitudinal diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, VDAC1, than in WT CD1/J6/129svJ myocytes. Thus, mitochondria networks restrict long-range diffusion while presumably optimizing nucleotide transfer between myofilaments and mitochondria. We project that diffusion restrictions imposed by both myofilaments and the outer mitochondrial membrane are important determinants of total free cytoplasmic AMP and ADP (∼10 μM). However, the capacity of diffusion to deliver ATP to myofilaments remains ∼100-fold greater than ATP consumption.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, Southwestern Medical Center, Dallas, TX, USA
| | - Jay H. Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
3
|
Deisl C, Chung JA, Hilgemann DW. Pore-like diffusion barriers in murine cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522313. [PMID: 36712045 PMCID: PMC9881867 DOI: 10.1101/2023.01.02.522313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Using both optical and electrical methods, we document that solute diffusion in the cytoplasm of BL6 murine cardiac myocytes becomes restricted >30-fold as molecular weight increases from 30 to 2000, roughly as expected for pores with dimensions of cardiac porin channels. The Bodipy-FL ATP analogue diffuses ∼50-fold slower in BL6 cardiac cytoplasm than in free water. From several fluorophores analyzed, our estimates of bound fluorophore fractions range from 0.1 for a 2 kD FITC-labeled polyethylene glycol to 0.93 for sulforhodamine. We estimate that diffusion coefficients of unbound fluorophores range from 0.5 to 8 x 10 -7 cm 2 /s. Analysis of Na/K pump and veratridine-modified Na channel currents confirms that Na diffusion is nearly unrestricted (time constant for equilibration with the pipette tip, ∼20 s). Using three different approaches, we estimate that ATP diffuses 8 to 10-times slower in the cytoplasm of BL6 myocytes than in free water. To address whether restrictions are caused more by cytoplasmic protein or membrane networks, we verified first that a protein gel, 10 gram% gelatin, restricts solute diffusion with strong dependence on molecular weight. Solute diffusion in membrane-extracted cardiac myofilaments, confined laterally by suction into large-diameter pipette tips, is however less restricted than in intact myocytes. Notably, myofilaments from equivalently extracted skeletal (diaphragm) myocytes restrict diffusion less than cardiac myofilaments. Solute diffusion in myocytes with sarcolemma permeabilized by β-escin (80 µM) is similarly restricted as in intact myocytes. Diffusion restriction in cardiac myocytes is strain-dependent, being about two-fold greater in BL6 myocytes than in myocytes with a CD1/J6/129svJ background. Furthermore, diffusion is 2.5-fold more restricted in CD1/J6/129svJ myocytes lacking the mitochondrial porin, Vdac1, than in WT CD1/J6/129svJ myocytes. We conclude that both myofilaments and mitochondria networks restrict diffusion in cardiac myocytes. As a result, long-range solute diffusion may preferentially occur via passage through porin channels and intramembrane mitochondrial spaces, where diffusion is less restricted than in myofilament spaces.
Collapse
Affiliation(s)
- Christine Deisl
- Department of Physiology, Southwestern Medical Center, Dallas, TX 75235-9040 USA
| | - Jay A Chung
- Laboratory of Obesity and Aging Research, Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Donald W Hilgemann
- Department of Physiology, Southwestern Medical Center, Dallas, TX 75235-9040 USA
| |
Collapse
|
4
|
Kopylova GV, Matyushenko AM, Berg VY, Levitsky DI, Bershitsky SY, Shchepkin DV. Acidosis modifies effects of phosphorylated tropomyosin on the actin-myosin interaction in the myocardium. J Muscle Res Cell Motil 2021; 42:343-353. [PMID: 33389411 DOI: 10.1007/s10974-020-09593-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Phosphorylation of α-tropomyosin (Tpm1.1), a predominant Tpm isoform in the myocardium, is one of the regulatory mechanisms of the heart contractility. The Tpm 1.1 molecule has one site of phosphorylation, Ser283. The degree of the Tpm phosphorylation decreases with age and also changes in heart pathologies. Myocardial pathologies, in particular ischemia, are usually accompanied by pH lowering in the cardiomyocyte cytosol. We studied the effects of acidosis on the structural and functional properties of the pseudo-phosphorylated form of Tpm1.1 with the S283D substitution. We found that in acidosis, the interaction of the N- and C-ends of the S283D Tpm molecules decreases, whereas that of WT Tpm does not change. The pH lowering increased thermostability of the complex of F-actin with S283D Tpm to a greater extent than with WT Tpm. Using an in vitro motility assay with NEM- modified myosin as a load, we assessed the effect of the Tpm pseudo-phosphorylation on the force of the actin-myosin interaction. In acidosis, the force generated by myosin in the interaction with thin filaments containing S283D Tpm was higher than with those containing WT Tpm. Also, the pseudo-phosphorylation increased the myosin ability to resist a load. We conclude that ischemia changes the effect of the phosphorylated Tpm on the contractile function of the myocardium.
Collapse
Affiliation(s)
- Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia.
| | - Alexander M Matyushenko
- Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Valentina Y Berg
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia
| | - Dmitrii I Levitsky
- Research Center of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, 119071, Moscow, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049, Yekaterinburg, Russia
| |
Collapse
|
5
|
Ning H, Cui Y, Song X, Chen L, Yin Z, Hua L, Ren F, Suo Y, Wang X, Zhang H, Hu D, Ge Y. iTRAQ-based proteomic analysis reveals key proteins affecting cardiac function in broilers that died of sudden death syndrome. Poult Sci 2020; 98:6472-6482. [PMID: 31509194 PMCID: PMC8913949 DOI: 10.3382/ps/pez532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 08/31/2019] [Indexed: 12/26/2022] Open
Abstract
Sudden death syndrome (SDS), which is a cardiac-related condition commonly observed in chickens selected for rapid growth, causes significant economic losses to the global poultry industry. Its pathogenesis in broilers is poorly understood, and little is known about the proteome of the heart tissue of SDS broilers. A quantitative proteomic approach using isobaric tags for relative and absolute quantification labeling of peptides was used to characterize the protein expression profiles in the left ventricle of SDS broilers. These proteins were further analyzed by bioinformatics, and two proteins were validated by western blot analysis. We identified 186 differentially expressed proteins (DEPs), of which 72 were upregulated, and 114 were downregulated in the SDS group. Functional annotation suggested that 7 DEPs were related to cardiac muscle contraction, and another 7 DEPs were related to cardiac energy metabolism. Protein interaction network predictions indicated that differences in cardiac muscle contraction between SDS and healthy groups were regulated by troponin T, tropomyosin alpha-1 chain, fast myosin heavy chain HCIII, myosin-1B, coronin, and myoglobin, whereas differences in cardiac energy metabolism and biosynthesis of amino acids were regulated by gamma-enolase, phosphoglycerate mutase, NADH-ubiquinone oxidoreductase chain 2, serine/threonine-protein kinase, myoglobin, and alpha-amylase. Our expression profiles provide useful information and new insights into key proteins to elucidate SDS for further studies.
Collapse
Affiliation(s)
- Hongmei Ning
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yunli Cui
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaochao Song
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingli Chen
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Zhihong Yin
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Liushuai Hua
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Fei Ren
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yu Suo
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinrui Wang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hongli Zhang
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Dongfang Hu
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China.,Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yaming Ge
- College of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
6
|
Hilgemann DW. Control of cardiac contraction by sodium: Promises, reckonings, and new beginnings. Cell Calcium 2019; 85:102129. [PMID: 31835176 DOI: 10.1016/j.ceca.2019.102129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
Several generations of cardiac physiologists have verified that basal cardiac contractility depends strongly on the transsarcolemmal Na gradient, and the underlying molecular mechanisms that link cardiac excitation-contraction coupling (ECC) to the Na gradient have been elucidated in good detail for more than 30 years. In brief, small increases of cytoplasmic Na push cardiac (NCX1) Na/Ca exchangers to increase contractility by increasing the myocyte Ca load. Accordingly, basal cardiac contractility is expected to be physiologically regulated by pathways that modify the cardiac Na gradient and the function of Na transporters. Assuming that this expectation is correct, it remains to be elucidated how in detail signaling pathways affecting the cardiac Na gradient are controlled in response to changing cardiac output requirements. Some puzzle pieces that may facilitate progress are outlined in this short review. Key open issues include (1) whether the concept of local Na gradients is viable, (2) how in detail Na channels, Na transporters and Na/K pumps are regulated by lipids and metabolic processes, (3) the physiological roles of Na/K pump inactivation, and (4) the possibility that key diffusible signaling molecules remain to be discovered.
Collapse
Affiliation(s)
- Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
| |
Collapse
|
7
|
Richards MA, Simon JN, Ma R, Loonat AA, Crabtree MJ, Paterson DJ, Fahlman RP, Casadei B, Fliegel L, Swietach P. Nitric oxide modulates cardiomyocyte pH control through a biphasic effect on sodium/hydrogen exchanger-1. Cardiovasc Res 2019; 116:1958-1971. [PMID: 31742355 PMCID: PMC7567331 DOI: 10.1093/cvr/cvz311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 11/14/2022] Open
Abstract
AIMS When activated, Na+/H+ exchanger-1 (NHE1) produces some of the largest ionic fluxes in the heart. NHE1-dependent H+ extrusion and Na+ entry strongly modulate cardiac physiology through the direct effects of pH on proteins and by influencing intracellular Ca2+ handling. To attain an appropriate level of activation, cardiac NHE1 must respond to myocyte-derived cues. Among physiologically important cues is nitric oxide (NO), which regulates a myriad of cardiac functions, but its actions on NHE1 are unclear. METHODS AND RESULTS NHE1 activity was measured using pH-sensitive cSNARF1 fluorescence after acid-loading adult ventricular myocytes by an ammonium prepulse solution manoeuvre. NO signalling was manipulated by knockout of its major constitutive synthase nNOS, adenoviral nNOS gene delivery, nNOS inhibition, and application of NO-donors. NHE1 flux was found to be activated by low [NO], but inhibited at high [NO]. These responses involved cGMP-dependent signalling, rather than S-nitros(yl)ation. Stronger cGMP signals, that can inhibit phosphodiesterase enzymes, allowed [cAMP] to rise, as demonstrated by a FRET-based sensor. Inferring from the actions of membrane-permeant analogues, cGMP was determined to activate NHE1, whereas cAMP was inhibitory, which explains the biphasic regulation by NO. Activation of NHE1-dependent Na+ influx by low [NO] also increased the frequency of spontaneous Ca2+ waves, whereas high [NO] suppressed these aberrant forms of Ca2+ signalling. CONCLUSIONS Physiological levels of NO stimulation increase NHE1 activity, which boosts pH control during acid-disturbances and results in Na+-driven cellular Ca2+ loading. These responses are positively inotropic but also increase the likelihood of aberrant Ca2+ signals, and hence arrhythmia. Stronger NO signals inhibit NHE1, leading to a reversal of the aforementioned effects, ostensibly as a potential cardioprotective intervention to curtail NHE1 overdrive.
Collapse
Affiliation(s)
- Mark A Richards
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Jillian N Simon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruichong Ma
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Aminah A Loonat
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - David J Paterson
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre for Research Excellence, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
8
|
Lutz NW, Bernard M. A method for multiparametric statistical quantification of the heterogeneity of free Na + concentration by 19 F MR spectroscopy: Proof of principle in silico and in vitro. NMR IN BIOMEDICINE 2019; 32:e4117. [PMID: 31297903 DOI: 10.1002/nbm.4117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 06/10/2023]
Abstract
Sodium(I) (Na+ ) is one of the most important cations in mammalian tissues. Since Na+ plays a key role in basic cell function, noninvasive methods for measuring intracellular concentrations of free sodium ions in biological tissue have been developed on the basis of 19 F NMR spectroscopy. However, intracellular Na+ levels are often not uniform throughout a tissue volume (or voxel) being measured. In such cases, [Na+ ] heterogeneity is not reflected in results obtained by the classical technique, and may even result in biased average values. For this reason, we have designed an approach for quantifying [Na+ ] heterogeneity. First, the 19 F MRS resonance from FCrown-1 serving as a "Na+ probe" is transformed into a [Na+ ] curve. Then the digital points of the resulting [Na+ ] profile are used to construct a histogram with specially developed algorithms. From each [Na+ ] histogram, at least eight quantitative parameters describing the underlying statistical [Na+ ] distribution were computed: weighted median, weighted mean, standard deviation, range, mode(s), kurtosis, skewness, and entropy. In addition to our new paradigm, we present a first validation based on (i) computer simulations and (ii) experimentally obtained 19 F MR spectra of model solutions. This basic proof of principle warrants future in vivo experiments, in particular because of its ability to provide quantitative information complementary to that made available by commonly used 23 Na MRI: (i) multiparametric statistical characterization of [Na+ ] distributions; (ii) total [Na+ ] heterogeneity analysis not intrinsically limited by the size of any MRI voxels; and (iii) analysis of unequivocally intracellular [Na+ ], as opposed to measurement of a combination of intra- and extracellular [Na+ ].
Collapse
Affiliation(s)
- Norbert W Lutz
- School of Medicine, CRMBM, Aix-Marseille University, Marseille, France
| | - Monique Bernard
- School of Medicine, CRMBM, Aix-Marseille University, Marseille, France
| |
Collapse
|
9
|
Skogestad J, Lines GT, Louch WE, Sejersted OM, Sjaastad I, Aronsen JM. Evidence for heterogeneous subsarcolemmal Na + levels in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2019; 316:H941-H957. [PMID: 30657726 DOI: 10.1152/ajpheart.00637.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The intracellular Na+ concentration ([Na+]) regulates cardiac contractility. Previous studies have suggested that subsarcolemmal [Na+] is higher than cytosolic [Na+] in cardiac myocytes, but this concept remains controversial. Here, we used electrophysiological experiments and mathematical modeling to test whether there are subsarcolemmal pools with different [Na+] and dynamics compared with the bulk cytosol in rat ventricular myocytes. A Na+ dependency curve for Na+-K+-ATPase (NKA) current was recorded with symmetrical Na+ solutions, i.e., the same [Na+] in the superfusate and internal solution. This curve was used to estimate [Na+] sensed by NKA in other experiments. Three experimental observations suggested that [Na+] is higher near NKA than in the bulk cytosol: 1) when extracellular [Na+] was high, [Na+] sensed by NKA was ~6 mM higher than the internal solution in quiescent cells; 2) long trains of Na+ channel activation almost doubled this gradient; compared with an even intracellular distribution of Na+, the increase of [Na+] sensed by NKA was 10 times higher than expected, suggesting a local Na+ domain; and 3) accumulation of Na+ near NKA after trains of Na+ channel activation dissipated very slowly. Finally, mathematical models assuming heterogeneity of [Na+] between NKA and the Na+ channel better reproduced experimental data than the homogeneous model. In conclusion, our data suggest that NKA-sensed [Na+] is higher than [Na+] in the bulk cytosol and that there are differential Na+ pools in the subsarcolemmal space, which could be important for cardiac contractility and arrhythmogenesis. NEW & NOTEWORTHY Our data suggest that the Na+-K+-ATPase-sensed Na+ concentration is higher than the Na+ concentration in the bulk cytosol and that there are differential Na+ pools in the subsarcolemmal space, which could be important for cardiac contractility and arrhythmogenesis. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/heterogeneous-sodium-in-ventricular-myocytes/ .
Collapse
Affiliation(s)
- J Skogestad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - G T Lines
- Simula Research Laboratory, Center for Cardiological Innovation , Oslo , Norway
| | - W E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research, University of Oslo , Oslo , Norway
| | - O M Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - I Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research, University of Oslo , Oslo , Norway
| | - J M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,Bjørknes College , Oslo , Norway
| |
Collapse
|
10
|
Artamonov MV, Sonkusare SK, Good ME, Momotani K, Eto M, Isakson BE, Le TH, Cope EL, Derewenda ZS, Derewenda U, Somlyo AV. RSK2 contributes to myogenic vasoconstriction of resistance arteries by activating smooth muscle myosin and the Na +/H + exchanger. Sci Signal 2018; 11:11/554/eaar3924. [PMID: 30377223 DOI: 10.1126/scisignal.aar3924] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Smooth muscle contraction is triggered when Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates the regulatory light chain of myosin (RLC20). However, blood vessels from Mlck-deficient mouse embryos retain the ability to contract, suggesting the existence of additional regulatory mechanisms. We showed that the p90 ribosomal S6 kinase 2 (RSK2) also phosphorylated RLC20 to promote smooth muscle contractility. Active, phosphorylated RSK2 was present in mouse resistance arteries under normal basal tone, and phosphorylation of RSK2 increased with myogenic vasoconstriction or agonist stimulation. Resistance arteries from Rsk2-deficient mice were dilated and showed reduced myogenic tone and RLC20 phosphorylation. RSK2 phosphorylated Ser19 in RLC in vitro. In addition, RSK2 phosphorylated an activating site in the Na+/H+ exchanger (NHE-1), resulting in cytosolic alkalinization and an increase in intracellular Ca2+ that promotes vasoconstriction. NHE-1 activity increased upon myogenic constriction, and the increase in intracellular pH was suppressed in Rsk2-deficient mice. In pressured arteries, RSK2-dependent activation of NHE-1 was associated with increased intracellular Ca2+ transients, which would be expected to increase MLCK activity, thereby contributing to basal tone and myogenic responses. Accordingly, Rsk2-deficient mice had lower blood pressure than normal littermates. Thus, RSK2 mediates a procontractile signaling pathway that contributes to the regulation of basal vascular tone, myogenic vasoconstriction, and blood pressure and may be a potential therapeutic target in smooth muscle contractility disorders.
Collapse
Affiliation(s)
- Mykhaylo V Artamonov
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Ko Momotani
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda-shi, Yamaguchi 756-0884, Japan
| | - Masumi Eto
- Department of Molecular Physiology and Biophysics, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.,Faculty of Veterinary Medicine, Okayama University of Science, 1-13 Ikoinooka-oka, Imabari, Ehime 794-0085, Japan
| | - Brant E Isakson
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Thu H Le
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.,Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Eric L Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Avril V Somlyo
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
11
|
Ford KL, Moorhouse EL, Bortolozzi M, Richards MA, Swietach P, Vaughan-Jones RD. Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes. Cardiovasc Res 2018; 113:984-995. [PMID: 28339694 PMCID: PMC5852542 DOI: 10.1093/cvr/cvx033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 02/17/2017] [Indexed: 11/30/2022] Open
Abstract
Aims Spontaneous Ca2+ waves in cardiomyocytes are potentially arrhythmogenic. A
powerful controller of Ca2+ waves is the cytoplasmic H+
concentration ([H+]i), which fluctuates spatially and temporally
in conditions such as myocardial ischaemia/reperfusion. H+-control of
Ca2+ waves is poorly understood. We have therefore investigated how
[H+]i co-ordinates their initiation and frequency. Methods and results Spontaneous Ca2+ waves were imaged (fluo-3) in rat isolated ventricular
myocytes, subjected to modest Ca2+-overload. Whole-cell intracellular
acidosis (induced by acetate-superfusion) stimulated wave frequency. Pharmacologically
blocking sarcolemmal Na+/H+ exchange (NHE1) prevented this
stimulation, unveiling inhibition by H+. Acidosis also increased
Ca2+ wave velocity. Restricting acidosis to one end of a myocyte, using a
microfluidic device, inhibited Ca2+ waves in the acidic zone (consistent with
ryanodine receptor inhibition), but stimulated wave emergence elsewhere in the cell.
This remote stimulation was absent when NHE1 was selectively inhibited in the acidic
zone. Remote stimulation depended on a locally evoked, NHE1-driven rise of
[Na+]i that spread rapidly downstream. Conclusion Acidosis influences Ca2+ waves via inhibitory Hi+ and stimulatory Nai+ signals (the latter facilitating intracellular
Ca2+-loading through modulation of sarcolemmal
Na+/Ca2+ exchange activity). During spatial
[H+]i-heterogeneity, Hi+-inhibition dominates in acidic regions, while rapid
Nai+ diffusion stimulates waves in downstream, non-acidic
regions. Local acidosis thus simultaneously inhibits and stimulates arrhythmogenic
Ca2+-signalling in the same myocyte. If the principle of remote
H+-stimulation of Ca2+ waves also applies in multicellular
myocardium, it raises the possibility of electrical disturbances being driven remotely
by adjacent ischaemic areas, which are known to be intensely acidic.
Collapse
Affiliation(s)
- Kerrie L Ford
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Emma L Moorhouse
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Mario Bortolozzi
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK.,Department of Physics and Astronomy "G. Galilei", University of Padua, 35121 Padua, Italy
| | - Mark A Richards
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| | - Richard D Vaughan-Jones
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Oxford, OX1 3PT, UK
| |
Collapse
|
12
|
Zylbertal A, Yarom Y, Wagner S. The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study. Front Comput Neurosci 2017; 11:85. [PMID: 28970791 PMCID: PMC5609115 DOI: 10.3389/fncom.2017.00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/04/2017] [Indexed: 12/02/2022] Open
Abstract
Changes in intracellular Na+ concentration ([Na+]i) are rarely taken into account when neuronal activity is examined. As opposed to Ca2+, [Na+]i dynamics are strongly affected by longitudinal diffusion, and therefore they are governed by the morphological structure of the neurons, in addition to the localization of influx and efflux mechanisms. Here, we examined [Na+]i dynamics and their effects on neuronal computation in three multi-compartmental neuronal models, representing three distinct cell types: accessory olfactory bulb (AOB) mitral cells, cortical layer V pyramidal cells, and cerebellar Purkinje cells. We added [Na+]i as a state variable to these models, and allowed it to modulate the Na+ Nernst potential, the Na+-K+ pump current, and the Na+-Ca2+ exchanger rate. Our results indicate that in most cases [Na+]i dynamics are significantly slower than [Ca2+]i dynamics, and thus may exert a prolonged influence on neuronal computation in a neuronal type specific manner. We show that [Na+]i dynamics affect neuronal activity via three main processes: reduction of EPSP amplitude in repeatedly active synapses due to reduction of the Na+ Nernst potential; activity-dependent hyperpolarization due to increased activity of the Na+-K+ pump; specific tagging of active synapses by extended Ca2+ elevation, intensified by concurrent back-propagating action potentials or complex spikes. Thus, we conclude that [Na+]i dynamics should be considered whenever synaptic plasticity, extensive synaptic input, or bursting activity are examined.
Collapse
Affiliation(s)
- Asaph Zylbertal
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University and the Edmond and Lily Safra Center for Brain SciencesJerusalem, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of HaifaHaifa, Israel
| |
Collapse
|
13
|
Abstract
Sachse et al. highlight work that reveals a Na+-dependent inactivation mechanism in the Na+/K+ pump.
Collapse
Affiliation(s)
- Frank B Sachse
- Department of Bioengineering and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Robert Clark
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wayne R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Lu FM, Hilgemann DW. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes. J Gen Physiol 2017; 149:727-749. [PMID: 28606910 PMCID: PMC5496509 DOI: 10.1085/jgp.201711780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 11/20/2022] Open
Abstract
The Na/K pump exports cytoplasmic Na ions while importing K ions, and its activity is thought to be affected by restricted intracellular Na diffusion in cardiac myocytes. Lu and Hilgemann find instead that the pump can enter an inactivated state and that inactivation can be relieved by cytoplasmic Na. Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when cytoplasmic Na rises and suppresses pump activity when cytoplasmic Na declines.
Collapse
Affiliation(s)
- Fang-Min Lu
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Donald W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
15
|
Belardinelli L, Maleckar MM, Giles WR. Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na +: Is There a Need for Flipped Learning? Circ Arrhythm Electrophysiol 2017; 10:e004955. [PMID: 28213509 DOI: 10.1161/circep.117.004955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Luiz Belardinelli
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada
| | - Mary M Maleckar
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada
| | - Wayne R Giles
- From the InCarda Therapeutics, Inc, Clinical Research and Development, Brisbane, CA (L.B.); Allen Institute for Cell Science, Seattle, WA (M.M.M.); and Faculties of Kinesiology and Medicine (W.R.G.), The University of Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Cardona K, Trenor B, Giles WR. Changes in Intracellular Na+ following Enhancement of Late Na+ Current in Virtual Human Ventricular Myocytes. PLoS One 2016; 11:e0167060. [PMID: 27875582 PMCID: PMC5119830 DOI: 10.1371/journal.pone.0167060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 12/19/2022] Open
Abstract
The slowly inactivating or late Na+ current, INa-L, can contribute to the initiation of both atrial and ventricular rhythm disturbances in the human heart. However, the cellular and molecular mechanisms that underlie these pro-arrhythmic influences are not fully understood. At present, the major working hypothesis is that the Na+ influx corresponding to INa-L significantly increases intracellular Na+, [Na+]i; and the resulting reduction in the electrochemical driving force for Na+ reduces and (may reverse) Na+/Ca2+ exchange. These changes increase intracellular Ca2+, [Ca2+]i; which may further enhance INa-L due to calmodulin-dependent phosphorylation of the Na+ channels. This paper is based on mathematical simulations using the O'Hara et al (2011) model of baseline or healthy human ventricular action potential waveforms(s) and its [Ca2+]i homeostasis mechanisms. Somewhat surprisingly, our results reveal only very small changes (≤ 1.5 mM) in [Na+]i even when INa-L is increased 5-fold and steady-state stimulation rate is approximately 2 times the normal human heart rate (i.e. 2 Hz). Previous work done using well-established models of the rabbit and human ventricular action potential in heart failure settings also reported little or no change in [Na+]i when INa-L was increased. Based on our simulations, the major short-term effect of markedly augmenting INa-L is a significant prolongation of the action potential and an associated increase in the likelihood of reactivation of the L-type Ca2+ current, ICa-L. Furthermore, this action potential prolongation does not contribute to [Na+]i increase.
Collapse
Affiliation(s)
- Karen Cardona
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| | - Wayne R. Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Himeno Y, Asakura K, Cha CY, Memida H, Powell T, Amano A, Noma A. A human ventricular myocyte model with a refined representation of excitation-contraction coupling. Biophys J 2016. [PMID: 26200878 DOI: 10.1016/j.bpj.2015.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cardiac Ca(2+)-induced Ca(2+) release (CICR) occurs by a regenerative activation of ryanodine receptors (RyRs) within each Ca(2+)-releasing unit, triggered by the activation of L-type Ca(2+) channels (LCCs). CICR is then terminated, most probably by depletion of Ca(2+) in the junctional sarcoplasmic reticulum (SR). Hinch et al. previously developed a tightly coupled LCC-RyR mathematical model, known as the Hinch model, that enables simulations to deal with a variety of functional states of whole-cell populations of a Ca(2+)-releasing unit using a personal computer. In this study, we developed a membrane excitation-contraction model of the human ventricular myocyte, which we call the human ventricular cell (HuVEC) model. This model is a hybrid of the most recent HuVEC models and the Hinch model. We modified the Hinch model to reproduce the regenerative activation and termination of CICR. In particular, we removed the inactivated RyR state and separated the single step of RyR activation by LCCs into triggering and regenerative steps. More importantly, we included the experimental measurement of a transient rise in Ca(2+) concentrations ([Ca(2+)], 10-15 μM) during CICR in the vicinity of Ca(2+)-releasing sites, and thereby calculated the effects of the local Ca(2+) gradient on CICR as well as membrane excitation. This HuVEC model successfully reconstructed both membrane excitation and key properties of CICR. The time course of CICR evoked by an action potential was accounted for by autonomous changes in an instantaneous equilibrium open probability of couplons. This autonomous time course was driven by a core feedback loop including the pivotal local [Ca(2+)], influenced by a time-dependent decay in the SR Ca(2+) content during CICR.
Collapse
Affiliation(s)
- Yukiko Himeno
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Keiichi Asakura
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan; Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | - Chae Young Cha
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan; Oxford Centre for Diabetes Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Hiraku Memida
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Trevor Powell
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Akira Amano
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Akinori Noma
- Biosimulation Research Center, College of Life Sciences, Ritsumeikan University, Shiga, Japan.
| |
Collapse
|
18
|
Garcia A, Liu CC, Cornelius F, Clarke RJ, Rasmussen HH. Glutathionylation-Dependence of Na(+)-K(+)-Pump Currents Can Mimic Reduced Subsarcolemmal Na(+) Diffusion. Biophys J 2016; 110:1099-109. [PMID: 26958887 DOI: 10.1016/j.bpj.2016.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/18/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
The existence of a subsarcolemmal space with restricted diffusion for Na(+) in cardiac myocytes has been inferred from a transient peak electrogenic Na(+)-K(+) pump current beyond steady state on reexposure of myocytes to K(+) after a period of exposure to K(+)-free extracellular solution. The transient peak current is attributed to enhanced electrogenic pumping of Na(+) that accumulated in the diffusion-restricted space during pump inhibition in K(+)-free extracellular solution. However, there are no known physical barriers that account for such restricted Na(+) diffusion, and we examined if changes of activity of the Na(+)-K(+) pump itself cause the transient peak current. Reexposure to K(+) reproduced a transient current beyond steady state in voltage-clamped ventricular myocytes as reported by others. Persistence of it when the Na(+) concentration in patch pipette solutions perfusing the intracellular compartment was high and elimination of it with K(+)-free pipette solution could not be reconciled with restricted subsarcolemmal Na(+) diffusion. The pattern of the transient current early after pump activation was dependent on transmembrane Na(+)- and K(+) concentration gradients suggesting the currents were related to the conformational poise imposed on the pump. We examined if the currents might be accounted for by changes in glutathionylation of the β1 Na(+)-K(+) pump subunit, a reversible oxidative modification that inhibits the pump. Susceptibility of the β1 subunit to glutathionylation depends on the conformational poise of the Na(+)-K(+) pump, and glutathionylation with the pump stabilized in conformations equivalent to those expected to be imposed on voltage-clamped myocytes supported this hypothesis. So did elimination of the transient K(+)-induced peak Na(+)-K(+) pump current when we included glutaredoxin 1 in patch pipette solutions to reverse glutathionylation. We conclude that transient K(+)-induced peak Na(+)-K(+) pump current reflects the effect of conformation-dependent β1 pump subunit glutathionylation, not restricted subsarcolemmal diffusion of Na(+).
Collapse
Affiliation(s)
- Alvaro Garcia
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia; School of Chemistry, University of Sydney, Sydney, Australia
| | - Chia-Chi Liu
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia
| | | | - Ronald J Clarke
- School of Chemistry, University of Sydney, Sydney, Australia
| | - Helge H Rasmussen
- North Shore Heart Research Group, Kolling Institute, University of Sydney, Sydney, Australia.
| |
Collapse
|
19
|
Giles WR, Carmeliet EE. Editorial commentary: This sodium current may be late, but it is important. Trends Cardiovasc Med 2016; 26:123-5. [DOI: 10.1016/j.tcm.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 12/18/2022]
|
20
|
Hulikova A, Swietach P. Nuclear proton dynamics and interactions with calcium signaling. J Mol Cell Cardiol 2015; 96:26-37. [PMID: 26183898 PMCID: PMC4915819 DOI: 10.1016/j.yjmcc.2015.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/02/2015] [Accepted: 07/07/2015] [Indexed: 01/14/2023]
Abstract
Biochemical signals acting on the nucleus can regulate gene expression. Despite the inherent affinity of nucleic acids and nuclear proteins (e.g. transcription factors) for protons, little is known about the mechanisms that regulate nuclear pH (pHnuc), and how these could be exploited to control gene expression. Here, we show that pHnuc dynamics can be imaged using the DNA-binding dye Hoechst 33342. Nuclear pores allow the passage of medium-sized molecules (calcein), but protons must first bind to mobile buffers in order to gain access to the nucleoplasm. Fixed buffering residing in the nucleus of permeabilized cells was estimated to be very weak on the basis of the large amplitude of pHnuc transients evoked by photolytic H+-uncaging or exposure to weak acids/bases. Consequently, the majority of nuclear pH buffering is sourced from the cytoplasm in the form of mobile buffers. Effective proton diffusion was faster in nucleoplasm than in cytoplasm, in agreement with the higher mobile-to-fixed buffering ratio in the nucleus. Cardiac myocyte pHnuc changed in response to maneuvers that alter nuclear Ca2 + signals. Blocking Ca2 + release from inositol-1,4,5-trisphosphate receptors stably alkalinized the nucleus. This Ca2 +-pH interaction may arise from competitive binding to common chemical moieties. Competitive binding to mobile buffers may couple the efflux of Ca2 +via nuclear pores with a counterflux of protons. This would generate a stable pH gradient between cytoplasm and nucleus that is sensitive to the state of nuclear Ca2 + signaling. The unusual behavior of protons in the nucleus provides new mechanisms for regulating cardiac nuclear biology. Facilitated diffusion aboard mobile buffers is the only means by which protons enter the nucleus. The relative scarcity of fixed buffers residing in the nucleus accelerates proton diffusivity. Nuclear Ca2 + signals can regulate nuclear pH and generate stable gradients relative to cytoplasm.
Collapse
Affiliation(s)
- Alzbeta Hulikova
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, United Kingdom
| | - Pawel Swietach
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Parks Road, Oxford OX1 3PT, United Kingdom.
| |
Collapse
|