1
|
Wang T, Liao S, Lu P, He Z, Cheng S, Wang T, Cheng Z, An Y, Wang M, Shu C. Improved porosity promotes reendothelialization and smooth muscle remodeling in decellularized tissue-engineered vascular grafts. Mater Today Bio 2025; 30:101402. [PMID: 39790489 PMCID: PMC11714392 DOI: 10.1016/j.mtbio.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling. Our findings revealed that elastase treatment induced scattered cracks and holes in the elastic fiber layers of dTEVGs. Porous dTEVGs demonstrated increased cell infiltration in rat subcutaneous tissue. In the rat AVG models, mildly elastase-treated dTEVGs significantly improved cell infiltration and graft remodeling, including adequate smooth muscle cell (SMC) repopulation, impressive reendothelization and regeneration of the extracellular matrix, without stenosis, dilation or disintegration of the grafts. This study demonstrates that porous dTEVGs promote reendothelization, smooth muscle remodeling and extracellular matrix regeneration while retaining a stable graft structure, enhancing durability and puncture resistance in hemodialysis.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Sheng Liao
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Zhenyu He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Siyuan Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Tianjian Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Zibo Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Yangyang An
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Mo Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
2
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
3
|
Wen T, Duan Y, Gao D, Zhang X, Zhang X, Liang L, Yang Z, Zhang P, Zhang J, Sun J, Feng Y, Zheng Q, Han H, Yan X. miR-342-5p promotes vascular smooth muscle cell phenotypic transition through a negative-feedback regulation of Notch signaling via targeting FOXO3. Life Sci 2023:121828. [PMID: 37270171 DOI: 10.1016/j.lfs.2023.121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
AIM Under various pathological conditions such as cancer, vascular smooth muscle cells (vSMCs) transit their contractile phenotype into phenotype(s) characterized by proliferation and secretion, a process called vSMC phenotypic transition (vSMC-PT). Notch signaling regulates vSMC development and vSMC-PT. This study aims to elucidate how the Notch signal is regulated. MAIN METHODS Gene-modified mice with a SM22α-CreERT2 transgene were generated to activate/block Notch signaling in vSMCs. Primary vSMCs and MOVAS cells were cultured in vitro. RNA-seq, qRT-PCR and Western blotting were used to evaluated gene expression level. EdU incorporation, Transwell and collagen gel contraction assays were conducted to determine the proliferation, migration and contraction, respectively. KEY FINDINGS Notch activation upregulated, while Notch blockade downregulated, miR-342-5p and its host gene Evl in vSMCs. However, miR-342-5p overexpression promoted vSMC-PT as shown by altered gene expression profile, increased migration and proliferation, and decreased contraction, while miR-342-5p blockade exhibited the opposite effects. Moreover, miR-342-5p overexpression significantly suppressed Notch signaling, and Notch activation partially abolished miR-342-5p-induced vSMC-PT. Mechanically, miR-342-5p directly targeted FOXO3, and FOXO3 overexpression rescued miR-342-5p-induced Notch repression and vSMC-PT. In a simulated tumor microenvironment, miR-342-5p was upregulated by tumor cell-derived conditional medium (TCM), and miR-342-5p blockade abrogated TCM-induced vSMC-PT. Meanwhile, conditional medium from miR-342-5p-overexpressing vSMCs significantly enhanced tumor cell proliferation, while miR-342-5p blockade had the opposite effects. Consistently, in a co-inoculation tumor model, miR-342-5p blockade in vSMCs significantly delayed tumor growth. SIGNIFICANCE miR-342-5p promotes vSMC-PT through a negative-feedback regulation of Notch signaling via downregulating FOXO3, which could be a potential target for cancer therapy.
Collapse
Affiliation(s)
- Ting Wen
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yanyan Duan
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Dan Gao
- Faculty of Life Sciences, Northwest University, Xi'an 710069, China; State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Xinxin Zhang
- College of Pulmonary and Critical Care Medicine, The 8th Medical Centre of Chinese PLA General Hospital, Beijing 100091, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Jiaxing Sun
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yixuan Feng
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Guo Q, Chen G, Cheng H, Qing Y, Truong L, Ma Q, Wang Y, Cheng J. Temporal regulation of notch activation improves arteriovenous fistula maturation. J Transl Med 2022; 20:543. [PMID: 36419038 PMCID: PMC9682688 DOI: 10.1186/s12967-022-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) maturation is a process involving remodeling of venous arm of the AVFs. It is a challenge to balance adaptive AVF remodeling and neointima formation. In this study we temporally controlled Notch activation to promote AVF maturation while avoiding neointima formation. METHODS Temporal Notch activation was controlled by regulating the expression of Notch transcription factor, RBP-Jκ, or dnMAML1 (dominant negative MAML2) in vascular smooth muscle cells (VSMCs). AVF mouse model was created and VSMC phenotype dynamic changes during AVF remodeling were determined. RESULTS Activated Notch was found in the nuclei of neointimal VSMCs in AVFs from uremic mice. We found that the VSMCs near the anastomosis became dedifferentiated and activated after AVF creation. These dedifferentiated VSMCs regained smooth muscle contractile markers later during AVF remodeling. However, global or VSMC-specific KO of RBP-Jκ at early stage (before or 1 week after AVF surgery) blocked VSMC differentiation and neointima formation in AVFs. These un-matured AVFs showed less intact endothelium and increased infiltration of inflammatory cells. Consequently, the VSMC fate in the neointima was completely shut down, leading to an un-arterialized AVF. In contrast, KO of RBP-Jκ at late stage (3 weeks after AVF surgery), it could not block neointima formation and vascular stenosis. Inhibition of Notch activation at week 1 or 2, could maintain VSMC contractile markers expression and facilitate AVF maturation. CONCLUSIONS This work uncovers the molecular and cellular events in each segment of AVF remodeling and found that neither sustained increasing nor blocking of Notch signaling improves AVF maturation. It highlights a novel strategy to improve AVF patency: temporally controlled Notch activation can achieve a balance between adaptive AVF remodeling and neointima formation to improve AVF maturation. TRANSLATIONAL PERSPECTIVE Adaptive vascular remodeling is required for AVF maturation. The balance of wall thickening of the vein and neointima formation in AVF determines the fate of AVF function. Sustained activation of Notch signaling in VSMCs promotes neointima formation, while deficiency of Notch signaling at early stage during AVF remodeling prevents VSMC accumulation and differentiation from forming a functional AVFs. These responses also delay EC regeneration and impair EC barrier function with increased inflammation leading to failed vascular remodeling of AVFs. Thus, a strategy to temporal regulate Notch activation will improve AVF maturation.
Collapse
Affiliation(s)
- Qunying Guo
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Ministry of Health and Guangdong Province, Guangzhou, China ,grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Guang Chen
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA ,grid.33199.310000 0004 0368 7223 Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Hunter Cheng
- grid.240145.60000 0001 2291 4776Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ying Qing
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Luan Truong
- grid.63368.380000 0004 0445 0041Department of Pathology, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Quan Ma
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Wang
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jizhong Cheng
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
5
|
Notch signaling regulates vessel structure and function via Hspg2. Gene 2022; 826:146439. [PMID: 35339643 DOI: 10.1016/j.gene.2022.146439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 03/18/2022] [Indexed: 11/20/2022]
Abstract
The abnormal structure of tumor blood vessels is an important reason for the low efficacy of anti-tumor drugs. Notch signaling is an evolutionarily highly conserved signaling pathway that plays an important role in vessel development. However, the role and mechanism of Notch signaling in the formation of vascular structure is not fully understood. In this study, we demonstrated that blocking Notch signaling in endothelial cells (ECs) leads to obstructed tumor blood vessel basement membrane formation and the reduction of blood perfusion, as well as blood-retinal barrier (BRB) and blood-brain barrier (BBB) destruction in healthy mice. Endothelial Notch overactivation exacerbates the increases in tumor blood vessel basement membrane and blood perfusion ratio, and promotes recruitment of retinal vascular smooth muscle cells in neonatal mice. Notch signaling also regulates the formation of adhesion junctions (AJs) in ECs. In addition, we confirmed that Notch signaling regulates the AJs of ECs by regulating the expression of downstream gene Hspg2. This research is of great theoretical and practical significance for understanding the mechanism of tumor vascular structure formation as well as the search for new targets for vascular-targeted therapy.
Collapse
|
6
|
Yuan B, Liu H, Pan X, Dong X, Qu LF, Sun J, Pan LL. LSD1 downregulates p21 expression in vascular smooth muscle cells and promotes neointima formation. Biochem Pharmacol 2022; 198:114947. [PMID: 35143753 DOI: 10.1016/j.bcp.2022.114947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/23/2022] [Accepted: 02/03/2022] [Indexed: 01/10/2023]
Abstract
Neointima formation is characterized by the proliferation of vascular smooth muscle cells (VSMC). Although lysine-specific demethylase 1 (LSD1) has critical functions in several diseases, its role in neointima formation remains to be clarified. In this study, we aimed to explore the crucial role of LSD1 on neointima formation using a carotid artery injury model in mice. We observed that aberrant LSD1 expression was increased in human and mouse stenotic arteries and platelet-derived growth factor-BB (PDGF-BB)-treated VSMC. Furthermore, LSD1 knockdown significantly mitigated neointima formation in vivo and inhibited PDGF-BB-induced VSMC proliferation in vitro. We further uncovered that LSD1 overexpression exhibited opposite phenotypes in vivo and in vitro. Finally, LSD1 knockdown inhibited VSMC proliferation by increasing p21 expression, which is associated with LSD1 mediated di-methylated histone H3 on lysine 4 (H3K4me2) modification. Taken together, our data suggest that LSD1 may be a potential therapeutic target for the treatment of neointima formation.
Collapse
Affiliation(s)
- Baohui Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - He Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoliang Dong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Le-Feng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
7
|
Chen H, Xu X, Liu Z, Wu Y. MiR-22-3p Suppresses Vascular Remodeling and Oxidative Stress by Targeting CHD9 during the Development of Hypertension. J Vasc Res 2021; 58:180-190. [PMID: 33794525 DOI: 10.1159/000514311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/06/2021] [Indexed: 11/19/2022] Open
Abstract
Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Movement
- Cell Proliferation
- Disease Models, Animal
- Gene Expression Regulation
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/pathology
- Hypertension/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Oxidative Stress
- Rats, Inbred SHR
- Rats, Sprague-Dawley
- Signal Transduction
- Vascular Remodeling
- Rats
Collapse
Affiliation(s)
- Hanqing Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiru Xu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhengqing Liu
- Department of Endocrine, Suzhou Ninth People's Hospital, Suzhou, China
| | - Yong Wu
- Department of Cardiovascular Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Stassen OMJA, Ristori T, Sahlgren CM. Notch in mechanotransduction - from molecular mechanosensitivity to tissue mechanostasis. J Cell Sci 2020; 133:133/24/jcs250738. [PMID: 33443070 DOI: 10.1242/jcs.250738] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue development and homeostasis are controlled by mechanical cues. Perturbation of the mechanical equilibrium triggers restoration of mechanostasis through changes in cell behavior, while defects in these restorative mechanisms lead to mechanopathologies, for example, osteoporosis, myopathies, fibrosis or cardiovascular disease. Therefore, sensing mechanical cues and integrating them with the biomolecular cell fate machinery is essential for the maintenance of health. The Notch signaling pathway regulates cell and tissue fate in nearly all tissues. Notch activation is directly and indirectly mechanosensitive, and regulation of Notch signaling, and consequently cell fate, is integral to the cellular response to mechanical cues. Fully understanding the dynamic relationship between molecular signaling, tissue mechanics and tissue remodeling is challenging. To address this challenge, engineered microtissues and computational models play an increasingly large role. In this Review, we propose that Notch takes on the role of a 'mechanostat', maintaining the mechanical equilibrium of tissues. We discuss the reciprocal role of Notch in the regulation of tissue mechanics, with an emphasis on cardiovascular tissues, and the potential of computational and engineering approaches to unravel the complex dynamic relationship between mechanics and signaling in the maintenance of cell and tissue mechanostasis.
Collapse
Affiliation(s)
- Oscar M J A Stassen
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland.,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Tommaso Ristori
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Cecilia M Sahlgren
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, 20500 Turku, Finland .,Turku Bioscience Centre, Åbo Akademi University and University of Turku, 20520 Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|