1
|
Postema EG. Eyespot peek-a-boo: Leaf rolls enhance the antipredator effect of insect eyespots. J Anim Ecol 2025; 94:814-822. [PMID: 39722121 PMCID: PMC12056355 DOI: 10.1111/1365-2656.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024]
Abstract
Animal colour patterns are often accompanied by specific, synergistic behaviours to most effectively defend prey against visual predators. Given the inherent context-dependence of colour perception, understanding how these colour-behaviour synergies function in a species' natural environment is crucial. For example, refuge-building species create a unique visual environment where most (or all) of the body is obscured unless closely inspected. How these built environments affect the perception of defensive colour patterns by predators is not well understood. Using artificial caterpillars that resemble a refuge-building species with conspicuous markings (Papilio troilus; Lepidoptera: Papilionidae), I tested the hypothesis that leaf rolls amplify the antipredator effect of this species' eyespots. I compared wild avian predation rates on 659 artificial swallowtail-like caterpillars from four treatment groups: eyespotted and non-eyespotted, and presented in leaf rolls or on open leaves of live host plants. In support of my hypothesis, eyespots only reduced predation for larvae in leaf rolls. On open leaves, eyespots had no antipredator effect. I also found that leaf rolls reduced predation in general for both eyespotted and non-eyespotted prey. These results highlight the importance of considering relevant behaviours in studies of animal coloration whenever possible, including behaviours that influence colour perception indirectly (e.g. through habitat use or modification).
Collapse
Affiliation(s)
- Elizabeth G. Postema
- Field Museum of Natural HistoryChicagoIllinoisUSA
- Department of Entomology and Nematology, Animal Behavior Graduate GroupUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
2
|
Mizuno A, Lagisz M, Pollo P, Yang Y, Soma M, Nakagawa S. A systematic review and meta-analysis of eyespot anti-predator mechanisms. eLife 2024; 13:RP96338. [PMID: 39665815 PMCID: PMC11637465 DOI: 10.7554/elife.96338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Eyespot patterns have evolved in many prey species. These patterns were traditionally explained by the eye mimicry hypothesis, which proposes that eyespots resembling vertebrate eyes function as predator avoidance. However, it is possible that eyespots do not mimic eyes: according to the conspicuousness hypothesis, eyespots are just one form of vivid signals where only conspicuousness matters. They might work simply through neophobia or unfamiliarity, without necessarily implying aposematism or the unprofitability to potential predators. To test these hypotheses and explore factors influencing predators' responses, we conducted a meta-analysis with 33 empirical papers that focused on bird responses to both real lepidopterans and artificial targets with conspicuous patterns (i.e. eyespots and non-eyespots). Supporting the latter hypothesis, the results showed no clear difference in predator avoidance efficacy between eyespots and non-eyespots. When comparing geometric pattern characteristics, bigger pattern sizes and smaller numbers of patterns were more effective in preventing avian predation. This finding indicates that single concentric patterns have stronger deterring effects than paired ones. Taken together, our study supports the conspicuousness hypothesis more than the eye mimicry hypothesis. Due to the number and species coverage of published studies so far, the generalisability of our conclusion may be limited. The findings highlight that pattern conspicuousness is key to eliciting avian avoidance responses, shedding a different light on this classic example of signal evolution.
Collapse
Affiliation(s)
- Ayumi Mizuno
- Department of Biology, Faculty of Science, Hokkaido UniversitySapporoJapan
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
- Department of Biological Sciences, Faculty of Science, The University of AlbertaEdmontonCanada
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
| | - Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
| | - Masayo Soma
- Department of Biology, Faculty of Science, Hokkaido UniversitySapporoJapan
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South WalesSydneyAustralia
- Department of Biological Sciences, Faculty of Science, The University of AlbertaEdmontonCanada
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate UniversityOnnaJapan
| |
Collapse
|
3
|
Yu H, Deng X, Xiao F, Shi H. Hainan four-eyed turtles actively select suitable stones to masquerade according to their own morphology. Ecol Evol 2024; 14:e11693. [PMID: 38952662 PMCID: PMC11216812 DOI: 10.1002/ece3.11693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Masquerade is a form of camouflage in which animals use their body size, shape, and coloration to resemble inanimate objects in their environment to deceive predators. However, there is a lack of experimental evidence to show that animals actively choose objects that match these body parameters. To explore how the Hainan four-eyed turtle, Sacalia insulensis, masquerades using suitable stones, we used indoor video surveillance technology to study the preferences of juvenile S. insulensis for stones of different sizes, shapes, and colors. The results indicated that under normal conditions, during the day, juvenile S. insulensis preferred larger oval or round stones, while at night, they preferred oval stones that were closer to their own size, with no significant preference for stone color during either time. When disturbed (by a researcher swinging their arm back and forth above the experimental setup every hour to mimic a predator), the turtles showed a preference for brown stones that were closer to their size and oval in shape. These findings suggest that juvenile S. insulensis prefer stones that resemble their carapace size and shape to masquerade when undisturbed, and that this preference is reinforced when they masquerade to reduce the risk of predation. The preference for stones that resemble their carapace color is significant only when there is a disturbance. To the best of our knowledge, this is the first study to provide evidence that vertebrates can selectively choose objects that resemble their own morphology for masquerading to reduce predation risk.
Collapse
Affiliation(s)
- Hongmin Yu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Xinyi Deng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
- Haikou No.1 Middle SchoolHaikouChina
| | - Fanrong Xiao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| |
Collapse
|
4
|
Yu H, Lin Z, Xiao F. Role of body size and shape in animal camouflage. Ecol Evol 2024; 14:e11434. [PMID: 38746542 PMCID: PMC11090776 DOI: 10.1002/ece3.11434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 01/06/2025] Open
Abstract
Animal camouflage serves a dual purpose in that it enhances both predation efficiency and anti-predation strategies, such as background matching, disruptive coloration, countershading, and masquerade, for predators and prey, respectively. Although body size and shape determine the appearance of animals, potentially affecting their camouflage effectiveness, research over the past two centuries has primarily focused on animal coloration. Over the past two decades, attention has gradually shifted to the impact of body size and shape on camouflage. In this review, we discuss the impact of animal body size and shape on camouflage and identify research issues and challenges. A negative correlation between background matching effectiveness and an animal's body size has been reported, whereas flatter body shapes enhance background matching. The effectiveness of disruptive coloration is also negatively correlated with body size, whereas irregular body shapes physically disrupt the body outline, reducing the visibility of true edges and making it challenging for predators to identify prey. Countershading is most likely in larger mammals with smaller individuals, whereas body size is unrelated to countershading in small-bodied taxa. Body shape influences a body reflectance, affecting the form of countershading coloration exhibited by animals. Animals employing masquerade achieve camouflage by resembling inanimate objects in their habitats in terms of body size and shape. Empirical and theoretical research has found that body size affects camouflage strategies by determining key aspects of an animal's appearance and predation risk and that body shape plays a role in the form and effectiveness of camouflage coloration. However, the mechanisms underlying these adaptations remain elusive, and a relative dearth of research on other camouflage strategies. We underscore the necessity for additional research to investigate the interplay between animal morphology and camouflage strategies and their coevolutionary development, and we recommend directions for future research.
Collapse
Affiliation(s)
- Hongmin Yu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Zhixue Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| | - Fanrong Xiao
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life SciencesHainan Normal UniversityHaikouChina
| |
Collapse
|
5
|
Ontogenetic change in the effectiveness of camouflage: growth versus pattern matching in Fowler's toad. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Barnett JB, Yeager J, McEwen BL, Kinley I, Anderson HM, Guevara J. Size-dependent colouration balances conspicuous aposematism and camouflage. J Evol Biol 2022. [PMID: 36514842 DOI: 10.1111/jeb.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Colour is an important component of many different defensive strategies, but signal efficacy and detectability will also depend on the size of the coloured structures, and how pattern size interacts with the background. Consequently, size-dependent changes in colouration are common among many different species as juveniles and adults frequently use colour for different purposes in different environmental contexts. A widespread strategy in many species is switching from crypsis to conspicuous aposematic signalling as increasing body size can reduce the efficacy of camouflage, while other antipredator defences may strengthen. Curiously, despite being chemically defended, the gold-striped frog (Lithodytes lineatus, Leptodactylidae) appears to do the opposite, with bright yellow stripes found in smaller individuals, whereas larger frogs exhibit dull brown stripes. Here, we investigated whether size-dependent differences in colour support distinct defensive strategies. We first used visual modelling of potential predators to assess how colour contrast varied among frogs of different sizes. We found that contrast peaked in mid-sized individuals while the largest individuals had the least contrasting patterns. We then used two detection experiments with human participants to evaluate how colour and body size affected overall detectability. These experiments revealed that larger body sizes were easier to detect, but that the colours of smaller frogs were more detectable than those of larger frogs. Taken together our data support the hypothesis that the primary defensive strategy changes from conspicuous aposematism to camouflage with increasing size, implying size-dependent differences in the efficacy of defensive colouration. We discuss our data in relation to theories of size-dependent aposematism and evaluate the evidence for and against a possible size-dependent mimicry complex with sympatric poison frogs (Dendrobatidae).
Collapse
Affiliation(s)
- James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Ontario, Hamilton, Canada
| | - Justin Yeager
- Biodiversidad Medio Ambiente y Salud (BIOMAS), Direccion General de Investigacion, Universidad de las Américas, Quito, Ecuador
| | - Brendan L McEwen
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Ontario, Hamilton, Canada
| | - Isaac Kinley
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Ontario, Hamilton, Canada
| | - Hannah M Anderson
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Ontario, Hamilton, Canada
| | - Jennifer Guevara
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Ontario, Hamilton, Canada.,Grupo de Investigación Ecosistemas Tropicales y Cambio Global, Facultad Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| |
Collapse
|
7
|
|