1
|
Holbrook-Smith D, Trouillon J, Sauer U. Metabolomics and Microbial Metabolism: Toward a Systematic Understanding. Annu Rev Biophys 2024; 53:41-64. [PMID: 38109374 DOI: 10.1146/annurev-biophys-030722-021957] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Over the past decades, our understanding of microbial metabolism has increased dramatically. Metabolomics, a family of techniques that are used to measure the quantities of small molecules in biological samples, has been central to these efforts. Advances in analytical chemistry have made it possible to measure the relative and absolute concentrations of more and more compounds with increasing levels of certainty. In this review, we highlight how metabolomics has contributed to understanding microbial metabolism and in what ways it can still be deployed to expand our systematic understanding of metabolism. To that end, we explain how metabolomics was used to (a) characterize network topologies of metabolism and its regulation networks, (b) elucidate the control of metabolic function, and (c) understand the molecular basis of higher-order phenomena. We also discuss areas of inquiry where technological advances should continue to increase the impact of metabolomics, as well as areas where our understanding is bottlenecked by other factors such as the availability of statistical and modeling frameworks that can extract biological meaning from metabolomics data.
Collapse
Affiliation(s)
| | - Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland;
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland;
| |
Collapse
|
2
|
Somathilaka SS, Balasubramaniam S, Martins DP, Li X. Revealing gene regulation-based neural network computing in bacteria. BIOPHYSICAL REPORTS 2023; 3:100118. [PMID: 37649578 PMCID: PMC10462848 DOI: 10.1016/j.bpr.2023.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/26/2023] [Indexed: 09/01/2023]
Abstract
Bacteria are known to interpret a range of external molecular signals that are crucial for sensing environmental conditions and adapting their behaviors accordingly. These external signals are processed through a multitude of signaling transduction networks that include the gene regulatory network (GRN). From close observation, the GRN resembles and exhibits structural and functional properties that are similar to artificial neural networks. An in-depth analysis of gene expression dynamics further provides a new viewpoint of characterizing the inherited computing properties underlying the GRN of bacteria despite being non-neuronal organisms. In this study, we introduce a model to quantify the gene-to-gene interaction dynamics that can be embedded in the GRN as weights, converting a GRN to gene regulatory neural network (GRNN). Focusing on Pseudomonas aeruginosa, we extracted the GRNN associated with a well-known virulence factor, pyocyanin production, using an introduced weight extraction technique based on transcriptomic data and proving its computing accuracy using wet-lab experimental data. As part of our analysis, we evaluated the structural changes in the GRNN based on mutagenesis to determine its varying computing behavior. Furthermore, we model the ecosystem-wide cell-cell communications to analyze its impact on computing based on environmental as well as population signals, where we determine the impact on the computing reliability. Subsequently, we establish that the individual GRNNs can be clustered to collectively form computing units with similar behaviors to single-layer perceptrons with varying sigmoidal activation functions spatio-temporally within an ecosystem. We believe that this will lay the groundwork toward molecular machine learning systems that can see artificial intelligence move toward non-silicon devices, or living artificial intelligence, as well as giving us new insights into bacterial natural computing.
Collapse
Affiliation(s)
- Samitha S. Somathilaka
- VistaMilk Research Centre, Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
- School of Computing, University of Nebraska-Lincoln, Lincoln, Nebraska
| | | | - Daniel P. Martins
- VistaMilk Research Centre, Walton Institute for Information and Communication Systems Science, South East Technological University, Waterford, Ireland
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
3
|
Balasubramaniam S, Somathilaka S, Sun S, Ratwatte A, Pierobon M. Realizing Molecular Machine Learning through Communications for Biological AI: Future Directions and Challenges. IEEE NANOTECHNOLOGY MAGAZINE 2023; 17:10-20. [PMID: 38855043 PMCID: PMC11160936 DOI: 10.1109/mnano.2023.3262099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are weaving their way into the fabric of society, where they are playing a crucial role in numerous facets of our lives. As we witness the increased deployment of AI and ML in various types of devices, we benefit from their use into energy-efficient algorithms for low powered devices. In this paper, we investigate a scale and medium that is far smaller than conventional devices as we move towards molecular systems that can be utilized to perform machine learning functions, i.e., Molecular Machine Learning (MML). Fundamental to the operation of MML is the transport, processing, and interpretation of information propagated by molecules through chemical reactions. We begin by reviewing the current approaches that have been developed for MML, before we move towards potential new directions that rely on gene regulatory networks inside biological organisms as well as their population interactions to create neural networks. We then investigate mechanisms for training machine learning structures in biological cells based on calcium signaling and demonstrate their application to build an Analog to Digital Converter (ADC). Lastly, we look at potential future directions as well as challenges that this area could solve.
Collapse
Affiliation(s)
| | - Samitha Somathilaka
- School of Computing, University of Nebraska-Lincoln, NE, USA
- Walton Institute, South East Technological University, Ireland
| | - Sehee Sun
- School of Computing, University of Nebraska-Lincoln, NE, USA
| | - Adrian Ratwatte
- School of Computing, University of Nebraska-Lincoln, NE, USA
| | | |
Collapse
|
4
|
Liu R, De Sotto RB, Ling H. MvaT negatively regulates pyocin S5 expression in Pseudomonas aeruginosa. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:102-107. [PMID: 39416449 PMCID: PMC11446386 DOI: 10.1016/j.biotno.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 10/19/2024]
Abstract
Regulatory mechanisms that direct the synthesis and release of pyocin S5, a surface-acting bacteriocin produced by Pseudomonas aeruginosa, are relatively unknown. This study aims to identify transcription factors that regulate pyocin S5 expression in P. aeruginosa PAO1. We captured the transcription factor MvaT using the promoter region upstream of S5 gene (S5P). Further, we demonstrated specific binding of MvaT and its paralog MvaU to S5P using a gel-shift assay. Lastly, we showed that MvaT negatively regulates the S5 gene expression by gene deletion and transcriptomic analysis. Our findings provide valuable insights into the regulation of pyocin S5 production, which paves the way to develop novel therapeutics against P. aeruginosa infections.
Collapse
Affiliation(s)
- Ruirui Liu
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ryan Bartolome De Sotto
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
5
|
Chagas MDS, Medeiros F, dos Santos MT, de Menezes MA, Carvalho-Assef APD, da Silva FAB. An updated gene regulatory network reconstruction of multidrug-resistant Pseudomonas aeruginosa CCBH4851. Mem Inst Oswaldo Cruz 2022; 117:e220111. [PMID: 36259790 PMCID: PMC9565603 DOI: 10.1590/0074-02760220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/09/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Healthcare-associated infections due to multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa are significant public health issues worldwide. A system biology approach can help understand bacterial behaviour and provide novel ways to identify potential therapeutic targets and develop new drugs. Gene regulatory networks (GRN) are examples of in silico representation of interaction between regulatory genes and their targets. OBJECTIVES In this work, we update the MDR P. aeruginosa CCBH4851 GRN reconstruction and analyse and discuss its structural properties. METHODS We based this study on the gene orthology inference methodology using the reciprocal best hit method. The P. aeruginosa CCBH4851 genome and GRN, published in 2019, and the P. aeruginosa PAO1 GRN, published in 2020, were used for this update reconstruction process. FINDINGS Our result is a GRN with a greater number of regulatory genes, target genes, and interactions compared to the previous networks, and its structural properties are consistent with the complexity of biological networks and the biological features of P. aeruginosa. MAIN CONCLUSIONS Here, we present the largest and most complete version of P. aeruginosa GRN published to this date, to the best of our knowledge.
Collapse
Affiliation(s)
- Márcia da Silva Chagas
- Fundação Oswaldo Cruz-Fiocruz, Programa de Computação Científica, Rio de Janeiro, RJ, Brasil,+ Corresponding authors: /
| | - Fernando Medeiros
- Fundação Oswaldo Cruz-Fiocruz, Instituto Nacional de Infectologia, Laboratório de Pesquisa Clínica em Doenças Febris Agudas, Rio de Janeiro, RJ, Brasil
| | | | | | | | | |
Collapse
|
6
|
Freyre-González JA, Escorcia-Rodríguez JM, Gutiérrez-Mondragón LF, Martí-Vértiz J, Torres-Franco CN, Zorro-Aranda A. System Principles Governing the Organization, Architecture, Dynamics, and Evolution of Gene Regulatory Networks. Front Bioeng Biotechnol 2022; 10:888732. [PMID: 35646858 PMCID: PMC9135355 DOI: 10.3389/fbioe.2022.888732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic biology aims to apply engineering principles for the rational, systematical design and construction of biological systems displaying functions that do not exist in nature or even building a cell from scratch. Understanding how molecular entities interconnect, work, and evolve in an organism is pivotal to this aim. Here, we summarize and discuss some historical organizing principles identified in bacterial gene regulatory networks. We propose a new layer, the concilion, which is the group of structural genes and their local regulators responsible for a single function that, organized hierarchically, coordinate a response in a way reminiscent of the deliberation and negotiation that take place in a council. We then highlight the importance that the network structure has, and discuss that the natural decomposition approach has unveiled the system-level elements shaping a common functional architecture governing bacterial regulatory networks. We discuss the incompleteness of gene regulatory networks and the need for network inference and benchmarking standardization. We point out the importance that using the network structural properties showed to improve network inference. We discuss the advances and controversies regarding the consistency between reconstructions of regulatory networks and expression data. We then discuss some perspectives on the necessity of studying regulatory networks, considering the interactions’ strength distribution, the challenges to studying these interactions’ strength, and the corresponding effects on network structure and dynamics. Finally, we explore the ability of evolutionary systems biology studies to provide insights into how evolution shapes functional architecture despite the high evolutionary plasticity of regulatory networks.
Collapse
Affiliation(s)
- Julio A Freyre-González
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Juan M Escorcia-Rodríguez
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Luis F Gutiérrez-Mondragón
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
- Undergraduate Program in Genomic Sciences, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Jerónimo Martí-Vértiz
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Camila N Torres-Franco
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Andrea Zorro-Aranda
- Regulatory Systems Biology Research Group, Program of Systems Biology, Center for Genomic Sciences, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Chemical Engineering, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
7
|
Rajput A, Tsunemoto H, Sastry AV, Szubin R, Rychel K, Sugie J, Pogliano J, Palsson BO. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res 2022; 50:3658-3672. [PMID: 35357493 PMCID: PMC9023270 DOI: 10.1093/nar/gkac187] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/28/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
The transcriptional regulatory network (TRN) of Pseudomonas aeruginosa coordinates cellular processes in response to stimuli. We used 364 transcriptomes (281 publicly available + 83 in-house generated) to reconstruct the TRN of P. aeruginosa using independent component analysis. We identified 104 independently modulated sets of genes (iModulons) among which 81 reflect the effects of known transcriptional regulators. We identified iModulons that (i) play an important role in defining the genomic boundaries of biosynthetic gene clusters (BGCs), (ii) show increased expression of the BGCs and associated secretion systems in nutrient conditions that are important in cystic fibrosis, (iii) show the presence of a novel ribosomally synthesized and post-translationally modified peptide (RiPP) BGC which might have a role in P. aeruginosa virulence, (iv) exhibit interplay of amino acid metabolism regulation and central metabolism across different carbon sources and (v) clustered according to their activity changes to define iron and sulfur stimulons. Finally, we compared the identified iModulons of P. aeruginosa with those previously described in Escherichia coli to observe conserved regulons across two Gram-negative species. This comprehensive TRN framework encompasses the majority of the transcriptional regulatory machinery in P. aeruginosa, and thus should prove foundational for future research into its physiological functions.
Collapse
Affiliation(s)
- Akanksha Rajput
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hannah Tsunemoto
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Joseph Sugie
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joe Pogliano
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|