1
|
Yin Z, Wang Y, Feng X, Liu C, Guan X, Liu S, Long Z, Miao Z, He F, Cheng R, Han Y, Li K. Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB-12 promote infected wound healing via regulation of the wound microenvironment. Microb Biotechnol 2024; 17:e70031. [PMID: 39422648 PMCID: PMC11488118 DOI: 10.1111/1751-7915.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Infected wounds can result in complex clinical complications and delayed healing, presenting a significant global public health challenge. This study explored the effects of topical application of two probiotics, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animalis subsp. lactis BB-12, on the microenvironment of infected wounds and their impact on wound healing. LGG and BB-12 were applied separately and topically on the Staphylococcus aureus (S. aureus)-infected skin wounds of the rat model on a daily basis. Both probiotics significantly accelerated wound healing, demonstrated by enhanced granulation tissue formation and increased collagen deposition, with BB-12 showing superior efficacy. LGG and BB-12 both effectively inhibited neutrophil infiltration and decreased the expression of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Notably, BB-12 markedly reduced IL-6 levels, while LGG significantly lowered TNF-α, transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). Additionally, both probiotics promoted macrophage polarization towards the anti-inflammatory M2 phenotype. Microbiota analysis revealed that LGG and BB-12 significantly decreased the abundance of pathogenic bacteria (e.g. Staphylococcus and Proteus) and increased the proportion of beneficial bacteria (e.g. Corynebacterium). Particularly, BB-12 was more effective in reducing Staphylococcus abundance, whereas LGG excelled in promoting Corynebacterium growth. These findings suggest the ability of LGG and BB-12 to modulate the wound microenvironment, enhance wound healing and provide valuable insights for the management of infected wounds.
Collapse
Affiliation(s)
- Zhe Yin
- Sichuan University—The Hong Kong Polytechnic University Institute for Disaster Management and ReconstructionChengduChina
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
- Department of GastroenterologyAffiliated Tumor Hospital of Xinjiang Medical UniversityUrumqiChina
| | - Yilin Wang
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
| | - Xiaojuan Feng
- Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Changqing Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
| | - Xiaoyang Guan
- School of Fashion and TextilesThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| | - Shuyan Liu
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
| | - Zhanyi Long
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
| | - Zhonghua Miao
- Department of Clinical Nutrition, West China Second HospitalSichuan UniversityChengduChina
| | - Fang He
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Ruyue Cheng
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth HospitalSichuan UniversityChengduChina
| | - Yanting Han
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduChina
| |
Collapse
|
2
|
Tsifintaris M, Kiousi DE, Repanas P, Kamarinou CS, Kavakiotis I, Galanis A. Probio-Ichnos: A Database of Microorganisms with In Vitro Probiotic Properties. Microorganisms 2024; 12:1955. [PMID: 39458265 PMCID: PMC11509836 DOI: 10.3390/microorganisms12101955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Probiotics are live microorganisms that, when consumed in adequate amounts, exert health benefits on the host by regulating intestinal and extraintestinal homeostasis. Common probiotic microorganisms include lactic acid bacteria (LAB), yeasts, and Bacillus species. Here, we present Probio-ichnos, the first manually curated, literature-based database that collects and comprehensively presents information on the microbial strains exhibiting in vitro probiotic characteristics (i.e., resistance to acid and bile, attachment to host epithelia, as well as antimicrobial, immunomodulatory, antiproliferative, and antioxidant activity), derived from human, animal or plant microbiota, fermented dairy or non-dairy food products, and environmental sources. Employing a rigorous methodology, we conducted a systematic search of the PubMed database utilizing the keyword 'probiotic' within the abstracts or titles, resulting in a total of 27,715 studies. Upon further manual filtering, 2207 studies presenting in vitro experiments and elucidating strain-specific probiotic attributes were collected and used for data extraction. The Probio-ichnos database consists of 12,993 entries on the in vitro probiotic characteristics of 11,202 distinct strains belonging to 470 species and 143 genera. Data are presented using a binary categorization approach for the presence of probiotic attributes according to the authors' conclusions. Additionally, information about the availability of the whole-genome sequence (WGS) of strains is included in the database. Overall, the Probio-ichnos database aims to streamline the navigation of the available literature to facilitate targeted validation and comparative investigation of the probiotic properties of the microbial strains.
Collapse
Affiliation(s)
- Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Panagiotis Repanas
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Christina S. Kamarinou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization—DIMITRA, 14123 Lycovrissi, Greece
| | - Ioannis Kavakiotis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.T.); (D.E.K.); (P.R.); (C.S.K.); (I.K.)
| |
Collapse
|
3
|
Wu S, Feng T, Tang W, Qi C, Gao J, He X, Wang J, Zhou H, Fang Z. metaProbiotics: a tool for mining probiotic from metagenomic binning data based on a language model. Brief Bioinform 2024; 25:bbae085. [PMID: 38487846 PMCID: PMC10940841 DOI: 10.1093/bib/bbae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024] Open
Abstract
Beneficial bacteria remain largely unexplored. Lacking systematic methods, understanding probiotic community traits becomes challenging, leading to various conclusions about their probiotic effects among different publications. We developed language model-based metaProbiotics to rapidly detect probiotic bins from metagenomes, demonstrating superior performance in simulated benchmark datasets. Testing on gut metagenomes from probiotic-treated individuals, it revealed the probioticity of intervention strains-derived bins and other probiotic-associated bins beyond the training data, such as a plasmid-like bin. Analyses of these bins revealed various probiotic mechanisms and bai operon as probiotic Ruminococcaceae's potential marker. In different health-disease cohorts, these bins were more common in healthy individuals, signifying their probiotic role, but relevant health predictions based on the abundance profiles of these bins faced cross-disease challenges. To better understand the heterogeneous nature of probiotics, we used metaProbiotics to construct a comprehensive probiotic genome set from global gut metagenomic data. Module analysis of this set shows that diseased individuals often lack certain probiotic gene modules, with significant variation of the missing modules across different diseases. Additionally, different gene modules on the same probiotic have heterogeneous effects on various diseases. We thus believe that gene function integrity of the probiotic community is more crucial in maintaining gut homeostasis than merely increasing specific gene abundance, and adding probiotics indiscriminately might not boost health. We expect that the innovative language model-based metaProbiotics tool will promote novel probiotic discovery using large-scale metagenomic data and facilitate systematic research on bacterial probiotic effects. The metaProbiotics program can be freely downloaded at https://github.com/zhenchengfang/metaProbiotics.
Collapse
Affiliation(s)
- Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Feng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Waijiao Tang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cancan Qi
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiaxuan Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhencheng Fang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhou T, Xiao L, Zuo Z, Zhao F. MAMI: a comprehensive database of mother-infant microbiome and probiotic resources. Nucleic Acids Res 2024; 52:D738-D746. [PMID: 37819042 PMCID: PMC10767955 DOI: 10.1093/nar/gkad813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Extensive evidence has demonstrated that the human microbiome and probiotics confer great impacts on human health, particularly during critical developmental stages such as pregnancy and infancy when microbial communities undergo remarkable changes and maturation. However, a major challenge in understanding the microbial community structure and interactions between mothers and infants lies in the current lack of comprehensive microbiome databases specifically focused on maternal and infant health. To address this gap, we have developed an extensive database called MAMI (Microbiome Atlas of Mothers and Infants) that archives data on the maternal and neonatal microbiome, as well as abundant resources on edible probiotic strains. By leveraging this resource, we can gain profound insights into the dynamics of microbial communities, contributing to lifelong wellness for both mothers and infants through precise modulation of the developing microbiota. The functionalities incorporated into MAMI provide a unique perspective on the study of the mother-infant microbiome, which not only advance microbiome-based scientific research but also enhance clinical practice. MAMI is publicly available at https://bioinfo.biols.ac.cn/mami/.
Collapse
Affiliation(s)
- Tian Zhou
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Fangqing Zhao
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Magdy Wasfy R, Mbaye B, Borentain P, Tidjani Alou M, Murillo Ruiz ML, Caputo A, Andrieu C, Armstrong N, Million M, Gerolami R. Ethanol-Producing Enterocloster bolteae Is Enriched in Chronic Hepatitis B-Associated Gut Dysbiosis: A Case-Control Culturomics Study. Microorganisms 2023; 11:2437. [PMID: 37894093 PMCID: PMC10608849 DOI: 10.3390/microorganisms11102437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is a global health epidemic that causes fatal complications, leading to liver cirrhosis and hepatocellular carcinoma. The link between HBV-related dysbiosis and specific bacterial taxa is still under investigation. Enterocloster is emerging as a new genus (formerly Clostridium), including Enterocloster bolteae, a gut pathogen previously associated with dysbiosis and human diseases such as autism, multiple sclerosis, and inflammatory bowel diseases. Its role in liver diseases, especially HBV infection, is not reported. METHODS The fecal samples of eight patients with chronic HBV infection and ten healthy individuals were analyzed using the high-throughput culturomics approach and compared to 16S rRNA sequencing. Quantification of ethanol, known for its damaging effect on the liver, produced from bacterial strains enriched in chronic HBV was carried out by gas chromatography-mass spectrometry. RESULTS Using culturomics, 29,120 isolated colonies were analyzed by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-TOF); 340 species were identified (240 species in chronic HBV samples, 254 species in control samples) belonging to 169 genera and 6 phyla. In the chronic HBV group, 65 species were already known in the literature; 48 were associated with humans but had not been previously found in the gut, and 17 had never been associated with humans previously. Six species were newly isolated in our study. By comparing bacterial species frequency, three bacterial genera were serendipitously found with significantly enriched bacterial diversity in patients with chronic HBV: Enterocloster, Clostridium, and Streptococcus (p = 0.0016, p = 0.041, p = 0.053, respectively). However, metagenomics could not identify this enrichment, possibly concerning its insufficient taxonomical resolution (equivocal assignment of operational taxonomic units). At the species level, the significantly enriched species in the chronic HBV group almost all belonged to class Clostridia, such as Clostridium perfringens, Clostridium sporogenes, Enterocloster aldenensis, Enterocloster bolteae, Enterocloster clostridioformis, and Clostridium innocuum. Two E. bolteae strains, isolated from two patients with chronic HBV infection, showed high ethanol production (27 and 200 mM). CONCLUSIONS Culturomics allowed us to identify Enterocloster species, specifically, E. bolteae, enriched in the gut microbiota of patients with chronic HBV. These species had never been isolated in chronic HBV infection before. Moreover, ethanol production by E. bolteae strains isolated from the chronic HBV group could contribute to liver disease progression. Additionally, culturomics might be critical for better elucidating the relationship between dysbiosis and chronic HBV infection in the future.
Collapse
Affiliation(s)
- Reham Magdy Wasfy
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Babacar Mbaye
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Patrick Borentain
- Unité Hépatologie, Hôpital de la Timone, APHM, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Maryam Tidjani Alou
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Maria Leticia Murillo Ruiz
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
| | - Aurelia Caputo
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Claudia Andrieu
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Nicholas Armstrong
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Matthieu Million
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| | - Rene Gerolami
- IHU Méditerranée Infection, 13005 Marseille, France (M.T.A.); (C.A.)
- MEPHI, IRD, Aix-Marseille Université, 13005 Marseille, France
- Unité Hépatologie, Hôpital de la Timone, APHM, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille (APHM), 13005 Marseille, France
| |
Collapse
|