1
|
Gesteiro N, Malvar RA, Butrón A, Holland JB, Souto XC, López-Malvar A, Santiago R. Genome-Wide Association Study and Genomic Predictions for Hydroxycinnamate Concentrations in Maize Stover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2289-2298. [PMID: 39804708 PMCID: PMC11884732 DOI: 10.1021/acs.jafc.4c07467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/18/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025]
Abstract
Hydroxycinnamates, like ferulate (FA) and p-coumarate (pCA), are important components of maize cell walls, which influence pest resistance, ruminal digestibility, and biofuel production. Increasing their concentration has been linked to increased pest resistance, but also may lead to a decrease in nutritional value or bioethanol production efficiency. Therefore, improving forage quality or biofuel production without compromising plant resistance and a thorough understanding of the biosynthesis and deposition of these compounds is necessary, especially in stover, which is the feedstock for second-generation biofuel production and determines animal forage quality. This study aimed to identify genomic regions associated with hydroxycinnamates and to develop genomic prediction models to determine the best selection approach to modify hydroxycinnamate content. Although heritability estimates for hydroxycinnamates were moderate, direct phenotypic selection is discouraged because hydroxycinnamate quantification is laborious and time-consuming. Negative genotypic correlations were observed between animal digestibility and pCA content and positive with diferulates content, suggesting differing effects compared to previous studies on maize pith. However, no colocalizations with digestibility QTLs were found, highlighting the need for further research. Given the moderate predictive capacity of GBLUP prediction models, genotypic selection is proposed as the most promising alternative for modifying hydroxycinnamate content.
Collapse
Affiliation(s)
- Noemi Gesteiro
- UA
MBG-UVIGO, Misión Biológica
de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España
| | - Rosa A. Malvar
- UA
MBG-UVIGO, Misión Biológica
de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España
| | - Ana Butrón
- UA
MBG-UVIGO, Misión Biológica
de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España
| | - James B. Holland
- U.S.
Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina 27695, United States
| | - Xosé C. Souto
- E.E.
Forestal, Dpto. Ingeniería Recursos Naturales y Medio Ambiente, Pontevedra 36005, Spain
| | - Ana López-Malvar
- Facultad
de Biología, Dept. Biología Vegetal & Ciencias Suelo,
Unidad Asociada MBG-UVIGO, Universidad de
Vigo, Lagoas Marcosende, Vigo 36310, España
| | - Rogelio Santiago
- UA
MBG-UVIGO, Misión Biológica
de Galicia (CSIC), Pazo de Salcedo, Pontevedra 36143, España
| |
Collapse
|
2
|
Lu S, Wang Q, Yin J, Zheng S, Gao T, Zhou X, Zhang J, Xing Y, Ma Y, Wang M, Zhou D, Lu M, Liu W, Wang P, Zhang Z. Screening and Validation of Leaf Width-Related Genes in Inbred Maize Lines. Life (Basel) 2024; 14:1057. [PMID: 39337842 PMCID: PMC11432761 DOI: 10.3390/life14091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Leaf width is a key determinant of planting density and photosynthetic efficiency. In an effort to determine which genes regulate maize plant leaf width, we performed a genome-wide association study (GWAS) of 1.49 × 106 single nucleotide polymorphisms (SNPs) in 80 sequenced backbone inbred maize lines in Jilin Province, China, based upon phenotypic leaf width data from two years. In total, 14 SNPs were identified as being significantly related to leaf width (p < 0.000001), with these SNPs being located on chromosomes 1, 2, 3, 5, 6, 7, 8, and 9. A total of five candidate genes were identified within a mean linkage disequilibrium (LD) distance of 9.7 kb, with a significant SNP being identified within the Zm00001d044327 candidate gene. RNA was then isolated from 12 different inbred maize lines from this GWAS study cohort and was used to conduct qPCR analyses which revealed significant differences in Zm00001d044327 expression among strains exhibiting significant differences in leaf width. Based on an assessment of EMS mutant lines harboring a conserved amino acid stop mutation and two non-synonymous mutations in Zm00001d044327 that exhibited a narrow leaf width, these data suggested that Zm00001d044327 is a key regulator of maize leaf width.
Collapse
Affiliation(s)
- Shi Lu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Qi Wang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Junqi Yin
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Shubo Zheng
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Tingting Gao
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Xudong Zhou
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Jianxin Zhang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Yuexian Xing
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Yingjie Ma
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Min Wang
- Jilin Jinong Hi-tech Inc., Ltd., Kemao Street, No.303, Gongzhuling 136100, China
| | - Delong Zhou
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Ming Lu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Wenguo Liu
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| | - Piwu Wang
- College of Agronomy, Jilin Agricultural University, Xincheng Street, No.1288, Changchun 130118, China
| | - Zhijun Zhang
- Jilin Academy of Agricultural Sciences (Northeast Innovation Center of Agricultural Science and Technology in China), Shengtai Street, No.1363, Changchun 130033, China
| |
Collapse
|
3
|
Gesteiro N, Cao A, Santiago R, Malvar RA, Butrón A. Genomics of maize resistance to kernel contamination with fumonisins using a multiparental advanced generation InterCross maize population (MAGIC). BMC PLANT BIOLOGY 2021; 21:596. [PMID: 34915847 PMCID: PMC8675497 DOI: 10.1186/s12870-021-03380-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/17/2021] [Indexed: 06/01/2023]
Abstract
Maize kernel is exposed to several fungal species, most notably Fusarium verticillioides, which can contaminate maize kernels with fumonisins. In an effort to increase genetic gains and avoid the laborious tasks of conventional breeding, the use of marker-assisted selection or genomic selection programs was proposed. To this end, in the present study a Genome Wide Association Study (GWAS) was performed on 339 RILs of a Multiparental Advanced Generation InterCross (MAGIC) population that had previously been used to locate Quantitative Trait Locus (QTL) for resistance to Fusarium Ear Rot (FER). Six QTLs for fumonisin content were detected in the bins 3.08, 4.07, 4.10, 7.03-7.04, 9.04-9.05 and 10.04-10.5. Five of the six QTLs collocate in regions where QTLs for FER were also found. However, the genetic variation for fumonisin content in kernel is conditioned by many other QTLs of small effect that could show QTL x environment interaction effects. Although a genomic selection approach to directly reduce fumonisin content in the kernel could be suitable, improving resistance to fumonisin content by genomic selection for FER would be more advisable.
Collapse
Affiliation(s)
- Noemi Gesteiro
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| | - Ana Cao
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| | - Rogelio Santiago
- Departamento Biología Vegetal y Ciencias del Suelo, Facultad de Biología, Universidad de Vigo, Unidad Asociada Agrobiología Ambiental, Calidad de Suelos y Plantas, As Lagoas Marcosende, 36310 Vigo, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Box 28, 36080, Pontevedra, Spain
| |
Collapse
|
4
|
Caicedo M, Munaiz ED, Malvar RA, Jiménez JC, Ordas B. Precision Mapping of a Maize MAGIC Population Identified a Candidate Gene for the Senescence-Associated Physiological Traits. Front Genet 2021; 12:716821. [PMID: 34671382 PMCID: PMC8521056 DOI: 10.3389/fgene.2021.716821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
Senescence is an important trait in maize (Zea mais L.), a key crop that provides nutrition values and a renewable source of bioenergy worldwide. Genome-wide association studies (GWAS) can be used to identify causative genetic variants that influence the major physiological measures of senescence, which is used by plants as a defense mechanism against abiotic and biotic stresses affecting its performance. We measured four physiological and two agronomic traits that affect senescence. Six hundred seventy-two recombinant inbred lines (RILs) were evaluated in two consecutive years. Thirty-six candidate genes were identified by genome-wide association study (GWAS), and 11 of them were supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport, and sink activity. We identified a candidate gene, Zm00001d043586, significantly associated with chlorophyll, and independently studied its transcription expression in an independent panel. Our results showed that Zm00001d043586 affects chlorophyl rate degradation, a key determinant of senescence, at late plant development stages. These results contribute to better understand the genetic relationship of the important trait senescence with physiology related parameters in maize and provide new putative molecular markers that can be used in marker assisted selection for line development.
Collapse
Affiliation(s)
- Marlon Caicedo
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Eduardo D Munaiz
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| | - Rosa A Malvar
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| | - José C Jiménez
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Cuauhtémoc, Mexico
| | - Bernardo Ordas
- National Research Council of Spain (CSIC) Misión Biológica de Galicia, Pontevedra, Spain
| |
Collapse
|
5
|
Conklin PA, Johnston R, Conlon BR, Shimizu R, Scanlon MJ. Plant homeodomain proteins provide a mechanism for how leaves grow wide. Development 2020; 147:dev.193623. [PMID: 32994171 PMCID: PMC7595687 DOI: 10.1242/dev.193623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
The mechanisms whereby leaf anlagen undergo proliferative growth and expansion to form wide, flat leaves are unclear. The maize gene NARROWSHEATH1 (NS1) is a WUSCHEL-related homeobox3 (WOX3) homolog expressed at the margins of leaf primordia, and is required for mediolateral outgrowth. To investigate the mechanisms of NS1 function, we used chromatin immunoprecipitation and laser-microdissection RNA-seq of leaf primordial margins to identify gene targets bound and modulated by NS1. Microscopic analyses of cell division and gene expression in expanding leaves, and reverse genetic analyses of homologous NS1 target genes in Arabidopsis, reveal that NS1 controls mediolateral outgrowth by repression of a growth inhibitor and promotion of cell division at primordial leaf margins. Intriguingly, homologous WOX gene products are expressed in stem cell-organizing centers and traffic to adjoining cells to activate stem-cell identity non-autonomously. In contrast, WOX3/NS1 does not traffic, and stimulates cell divisions in the same cells in which it is transcribed. Highlighted Article: The NS1 homeodomain transcription factor regulates lateral organ outgrowth from shoot meristems and leaf primordial margins by repressing the expression of negative growth regulators.
Collapse
Affiliation(s)
- Phillip A Conklin
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Robyn Johnston
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,The Elshire Group Limited, Palmerston North 4472, New Zealand
| | - Brianne R Conlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Rena Shimizu
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Samayoa LF, Cao A, Santiago R, Malvar RA, Butrón A. Genome-wide association analysis for fumonisin content in maize kernels. BMC PLANT BIOLOGY 2019; 19:166. [PMID: 31029090 PMCID: PMC6486958 DOI: 10.1186/s12870-019-1759-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/04/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant breeding has been proposed as one of the most effective and environmentally safe methods to control fungal infection and to reduce fumonisin accumulation. However, conventional breeding can be hampered by the complex genetic architecture of resistance to fumonisin accumulation and marker-assisted selection is proposed as an efficient alternative. In the current study, GWAS has been performed for the first time for detecting high-resolution QTL for resistance to fumonisin accumulation in maize kernels complementing published GWAS results for Fusarium ear rot. RESULTS Thirty-nine SNPs significantly associated with resistance to fumonisin accumulation in maize kernels were found and clustered into 17 QTL. Novel QTLs for fumonisin content would be at bins 3.02, 5.02, 7.05 and 8.07. Genes with annotated functions probably implicated in resistance to pathogens based on previous studies have been highlighted. CONCLUSIONS Breeding approaches to fix favorable functional variants for genes implicated in maize immune response signaling may be especially useful to reduce kernel contamination with fumonisins without significantly interfering in mycelia development and growth and, consequently, in the beneficial endophytic behavior of Fusarium verticillioides.
Collapse
Affiliation(s)
- L. F. Samayoa
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Present address at department of Crop Science, North Carolina State University, Raleigh, NC 27695 USA
| | - A. Cao
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Facultad de Biología, Department Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| | - R. Santiago
- Facultad de Biología, Department Biología Vegetal y Ciencias del Suelo, Universidad de Vigo, As Lagoas Marcosende, 36310 Vigo, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| | - R. A. Malvar
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| | - A. Butrón
- Misión Biológica de Galicia (MBG - CSIC), Box 28, 36080 Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (BVE1-UVIGO), Unidad Asociada a la MBG – CSIC, 36143 Pontevedra, Spain
| |
Collapse
|
7
|
Maldonado C, Mora F, Scapim CA, Coan M. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS One 2019; 14:e0212925. [PMID: 30840677 PMCID: PMC6402688 DOI: 10.1371/journal.pone.0212925] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/12/2019] [Indexed: 11/18/2022] Open
Abstract
Traits related to plant lodging and architecture are important determinants of plant productivity in intensive maize cultivation systems. Motivated by the identification of genomic associations with the leaf angle, plant height (PH), ear height (EH) and the EH/PH ratio, we characterized approximately 7,800 haplotypes from a set of high-quality single nucleotide polymorphisms (SNPs), in an association panel consisting of tropical maize inbred lines. The proportion of the phenotypic variations explained by the individual SNPs varied between 7%, for the SNP S1_285330124 (located on chromosome 9 and associated with the EH/PH ratio), and 22%, for the SNP S1_317085830 (located on chromosome 6 and associated with the leaf angle). A total of 40 haplotype blocks were significantly associated with the traits of interest, explaining up to 29% of the phenotypic variation for the leaf angle, corresponding to the haplotype hapLA4.04, which was stable over two growing seasons. Overall, the associations for PH, EH and the EH/PH ratio were environment-specific, which was confirmed by performing a model comparison analysis using the information criteria of Akaike and Schwarz. In addition, five stable haplotypes (83%) and 15 SNPs (75%) were identified for the leaf angle. Finally, approximately 62% of the associated haplotypes (25/40) did not contain SNPs detected in the association study using individual SNP markers. This result confirms the advantage of haplotype-based genome-wide association studies for examining genomic regions that control the determining traits for architecture and lodging in maize plants.
Collapse
Affiliation(s)
- Carlos Maldonado
- Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Freddy Mora
- Institute of Biological Sciences, University of Talca, Talca, Chile
| | - Carlos A. Scapim
- Universidade Estadual de Maringá, Departamento de Agronomia, Maringá, PR, Brazil
| | - Marlon Coan
- Universidade Estadual de Maringá, Departamento de Agronomia, Maringá, PR, Brazil
| |
Collapse
|
8
|
Lu S, Zhang M, Zhang Z, Wang Z, Wu N, Song Y, Wang P. Screening and verification of genes associated with leaf angle and leaf orientation value in inbred maize lines. PLoS One 2018; 13:e0208386. [PMID: 30532152 PMCID: PMC6285979 DOI: 10.1371/journal.pone.0208386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/18/2018] [Indexed: 11/21/2022] Open
Abstract
Leaf angle and leaf orientation value are important traits affecting planting density and photosynthetic efficiency. To identify the genes involved in controlling leaf angle and leaf orientation value, we utilized 1.49×10(6) single nucleotide polymorphism (SNP) markers obtained after sequencing 80 backbone inbred maize lines in Jilin Province, based on phenotype data from two years, and analyzed these two traits in a genome-wide association study (GWAS). A total of 33 SNPs were significantly associated (P<0.000001) with the two target traits. Twenty-two SNPs were significantly associated with leaf angle and distributed on chromosomes 1, 3, 4, 5, 6, 7, 8, and 9, explaining 21.62% of the phenotypic variation. Eleven SNPs were significantly associated with leaf orientation value and distributed on chromosomes 1, 3, 4, 5, 6, 7, and 9, explaining 29.63% of the phenotypic variation. Within the mean linkage disequilibrium (LD) distance of 9.7 kb for the significant SNP locus, 22 leaf angle candidate genes were detected, and 3 of these candidate genes harbored significant SNPs, with phenotype contribution rates greater than 10%. Two candidate genes at distances less than 100 bp from significant SNPs showed phenotype contribution rates greater than 8%. Seven leaf orientation value candidate genes were detected: 3 of these candidate genes harbored significant SNPs, with phenotype contribution rates greater than 10%. Eight inbred maize lines with significant differences in leaf angle and leaf orientation value were selected to test candidate gene expression levels from 182 recombinant inbred lines (RILs). The 5 leaf angle candidate genes and 3 leaf orientation value candidate genes were verified using quantitative real-time PCR (qRT-PCR). The results showed significant differences in the expression levels of the above eight genes between inbred maize lines with significant differences in leaf angle and leaf orientation value.
Collapse
Affiliation(s)
- Shi Lu
- Jilin Agricultural University, Chang Chun, China
| | - Mo Zhang
- Jilin Agricultural University, Chang Chun, China
| | - Zhuo Zhang
- Jilin Agricultural University, Chang Chun, China
| | - Zhenhui Wang
- Jilin Agricultural University, Chang Chun, China
| | - Nan Wu
- Jilin Agricultural University, Chang Chun, China
| | - Yang Song
- Jilin Agricultural University, Chang Chun, China
| | - Piwu Wang
- Jilin Agricultural University, Chang Chun, China
| |
Collapse
|
9
|
Kuki MC, Scapim CA, Rossi ES, Mangolin CA, do Amaral Júnior AT, Pinto RJB. Genome wide association study for gray leaf spot resistance in tropical maize core. PLoS One 2018; 13:e0199539. [PMID: 29953466 PMCID: PMC6023161 DOI: 10.1371/journal.pone.0199539] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/08/2018] [Indexed: 12/30/2022] Open
Abstract
Gray leaf spot is a maize foliar disease with worldwide distribution and can drastically reduce the production in susceptible genotypes. Published works indicate that resistance to gray leaf spot is a complex trait controlled by multiple genes, with additive effect and influenced by environment. The aim of this study was to identify genomic regions, including putative genes, associated with resistance to gray leaf spot under natural conditions of disease occurrence. A genome wide association study was conducted with 355,972 single nucleotide polymorphism markers on a phenotypic data composed by 157 tropical maize inbred lines, evaluated at Maringá -Brazil. Seven single nucleotide polymorphisms were significantly associated with gray leaf spot, some of which were localized to previously reported quantitative trait loci regions. Three gene models linked to the associated single nucleotide polymorphism were expressed at flowering time and tissue related with gray leaf spot infection, explaining a considerable proportion of the phenotypic variance, ranging from 0.34 to 0.38. The gene model GRMZM2G073465 (bin 10.07) encodes a cysteine protease3 protein, gene model GRMZM2G007188 (bin 1.02) expresses a rybosylation factor-like protein and the gene model GRMZM2G476902 (bin 4.08) encodes an armadillo repeat protein. These three proteins are related with plant defense pathway. Once these genes are validated in next studies, they will be useful for marker-assisted selection and can help improve the understanding of maize resistance to gray leaf spot.
Collapse
Affiliation(s)
- Maurício Carlos Kuki
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Carlos Alberto Scapim
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | - Evandrei Santos Rossi
- Departamento de Agronomia, Universidade Estadual de Maringá, Maringá, Paraná, Brasil
| | | | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | | |
Collapse
|
10
|
Abstract
MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.
Collapse
Affiliation(s)
- Lisa Harper
- Maize Genetics and Genomics Database, USDA-ARS, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA.
| | - Jack Gardiner
- Maize Genetics and Genomics Database, USDA-ARS, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - Carson Andorf
- Maize Genetics and Genomics Database, USDA-ARS, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, 50011, USA
| | - Carolyn J Lawrence
- Department of Genetics, Development and Cell Biology, Roy J Carver Co-Laboratory, Iowa State University, Ames, IA, 50010, USA
| |
Collapse
|
11
|
Andorf CM, Cannon EK, Portwood JL, Gardiner JM, Harper LC, Schaeffer ML, Braun BL, Campbell DA, Vinnakota AG, Sribalusu VV, Huerta M, Cho KT, Wimalanathan K, Richter JD, Mauch ED, Rao BS, Birkett SM, Sen TZ, Lawrence-Dill CJ. MaizeGDB update: new tools, data and interface for the maize model organism database. Nucleic Acids Res 2015; 44:D1195-201. [PMID: 26432828 PMCID: PMC4702771 DOI: 10.1093/nar/gkv1007] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 11/24/2022] Open
Abstract
MaizeGDB is a highly curated, community-oriented database and informatics service to researchers focused on the crop plant and model organism Zea mays ssp. mays. Although some form of the maize community database has existed over the last 25 years, there have only been two major releases. In 1991, the original maize genetics database MaizeDB was created. In 2003, the combined contents of MaizeDB and the sequence data from ZmDB were made accessible as a single resource named MaizeGDB. Over the next decade, MaizeGDB became more sequence driven while still maintaining traditional maize genetics datasets. This enabled the project to meet the continued growing and evolving needs of the maize research community, yet the interface and underlying infrastructure remained unchanged. In 2015, the MaizeGDB team completed a multi-year effort to update the MaizeGDB resource by reorganizing existing data, upgrading hardware and infrastructure, creating new tools, incorporating new data types (including diversity data, expression data, gene models, and metabolic pathways), and developing and deploying a modern interface. In addition to coordinating a data resource, the MaizeGDB team coordinates activities and provides technical support to the maize research community. MaizeGDB is accessible online at http://www.maizegdb.org.
Collapse
Affiliation(s)
- Carson M Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Ethalinda K Cannon
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Jack M Gardiner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Lisa C Harper
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Mary L Schaeffer
- USDA-ARS Plant Genetics Research Unit, University of Missouri, Columbia, MO 65211, USA Division of Plant Sciences, Department of Agronomy, University of Missouri, Columbia, MO 65211, USA
| | - Bremen L Braun
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA
| | - Darwin A Campbell
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | - Miranda Huerta
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Kyoung Tak Cho
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Kokulapalan Wimalanathan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011, USA
| | - Jacqueline D Richter
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Emily D Mauch
- Interdepartmental Genetics and Genomics, Iowa State University, Ames, IA 50011, USA
| | - Bhavani S Rao
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Scott M Birkett
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Taner Z Sen
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Carolyn J Lawrence-Dill
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA 50011, USA Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
12
|
Wang Y, Zeng H, Zhou X, Huang F, Peng W, Liu L, Xiong W, Shi X, Luo M. Transformation of rice with large maize genomic DNA fragments containing high content repetitive sequences. PLANT CELL REPORTS 2015; 34:1049-1061. [PMID: 25700981 DOI: 10.1007/s00299-015-1764-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/28/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
Large and complex maize BIBAC inserts, even with a length of about 164 kb and repeat sequences of 88.1%, were transferred into rice. The BIBAC vector has been established to clone large DNA fragments and directly transfer them into plants. Previously, we have constructed a maize B73 BIBAC library and demonstrated that the BIBAC clones were stable in Agrobacterium. In this study, we demonstrated that the maize BIBAC clones could be used for rice genetic transformation through Agrobacterium-mediated method, although the average transformation efficiency for the BIBAC clones (0.86%) is much lower than that for generally used binary vectors containing small DNA fragments (15.24%). The 164-kb B73 genomic DNA insert of the BIBAC clone B2-6 containing five maize gene models and 88.1% of repetitive sequences was transferred into rice. In 18.75% (3/16) of the T1, 13.79% (4/29) of the T2, and 5.26% (1/19) of the T3 generation transgenic rice plants positive for the GUS and HYG marker genes, all the five maize genes can be detected. To our knowledge, this is the largest and highest content of repeat sequence-containing DNA fragment that was successfully transferred into plants. Gene expression analysis (RT-PCR) showed that the expression of three out of five genes could be detected in the leaves of the transgenic rice plants. Our study showed a potential to massively use maize genome resource for rice breeding by mass transformation of rice with large maize genomic DNA fragment BIBAC clones.
Collapse
Affiliation(s)
- Yafei Wang
- National Key Laboratory of Crop Genetic Improvement and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Samayoa LF, Malvar RA, Olukolu BA, Holland JB, Butrón A. Genome-wide association study reveals a set of genes associated with resistance to the Mediterranean corn borer (Sesamia nonagrioides L.) in a maize diversity panel. BMC PLANT BIOLOGY 2015; 15:35. [PMID: 25652257 PMCID: PMC4340109 DOI: 10.1186/s12870-014-0403-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/22/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND Corn borers are the primary maize pest; their feeding on the pith results in stem damage and yield losses. In this study, we performed a genome-wide association study (GWAS) to identify SNPs associated with resistance to Mediterranean corn borer in a maize diversity panel using a set of more than 240,000 SNPs. RESULTS Twenty five SNPs were significantly associated with three resistance traits: 10 were significantly associated with tunnel length, 4 with stem damage, and 11 with kernel resistance. Allelic variation at each significant SNP was associated with from 6 to 9% of the phenotypic variance. A set of genes containing or physically close to these SNPs are proposed as candidate genes for borer resistance, supported by their involvement in plant defense-related mechanisms in previously published evidence. The linkage disequilibrium decayed (r(2) < 0.10) rapidly within short distance, suggesting high resolution of GWAS associations. CONCLUSIONS Most of the candidate genes found in this study are part of signaling pathways, others act as regulator of expression under biotic stress condition, and a few genes are encoding enzymes with antibiotic effect against insects such as the cystatin1 gene and the defensin proteins. These findings contribute to the understanding the complex relationship between plant-insect interactions.
Collapse
Affiliation(s)
- Luis Fernando Samayoa
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| | - Bode A Olukolu
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - James B Holland
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina, 27695, USA.
- U.S. Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, 27695, USA.
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), P.O. Box 28, 36080, Pontevedra, Spain.
| |
Collapse
|