1
|
Quinn-Bohmann N, Carr AV, Diener C, Gibbons SM. Moving from genome-scale to community-scale metabolic models for the human gut microbiome. Nat Microbiol 2025; 10:1055-1066. [PMID: 40217129 DOI: 10.1038/s41564-025-01972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/26/2025] [Indexed: 05/08/2025]
Abstract
Metabolic models of individual microorganisms or small microbial consortia have become standard research tools in the bioengineering and systems biology fields. However, extending metabolic modelling to diverse microbial communities, such as those in the human gut, remains a practical challenge from both modelling and experimental validation perspectives. In complex communities, metabolic models accounting for community dynamics, or those that consider multiple objectives, may provide optimal predictions over simpler steady-state models, but require a much higher computational cost. Here we describe some of the strengths and limitations of microbial community-scale metabolic models and argue for a robust validation framework for developing personalized, mechanistic and accurate predictions of microbial community metabolic behaviours across environmental contexts. Ultimately, quantitatively accurate microbial community-scale metabolic models could aid in the design and testing of personalized prebiotic, probiotic and dietary interventions that optimize for translationally relevant outcomes.
Collapse
Affiliation(s)
- Nick Quinn-Bohmann
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Alex V Carr
- Institute for Systems Biology, Seattle, WA, USA
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA
| | - Christian Diener
- Institute for Systems Biology, Seattle, WA, USA.
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria.
| | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- Molecular Engineering Graduate Program, University of Washington, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
Kundu P, Beura S, Mondal S, Das AK, Ghosh A. Machine learning for the advancement of genome-scale metabolic modeling. Biotechnol Adv 2024; 74:108400. [PMID: 38944218 DOI: 10.1016/j.biotechadv.2024.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/13/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Constraint-based modeling (CBM) has evolved as the core systems biology tool to map the interrelations between genotype, phenotype, and external environment. The recent advancement of high-throughput experimental approaches and multi-omics strategies has generated a plethora of new and precise information from wide-ranging biological domains. On the other hand, the continuously growing field of machine learning (ML) and its specialized branch of deep learning (DL) provide essential computational architectures for decoding complex and heterogeneous biological data. In recent years, both multi-omics and ML have assisted in the escalation of CBM. Condition-specific omics data, such as transcriptomics and proteomics, helped contextualize the model prediction while analyzing a particular phenotypic signature. At the same time, the advanced ML tools have eased the model reconstruction and analysis to increase the accuracy and prediction power. However, the development of these multi-disciplinary methodological frameworks mainly occurs independently, which limits the concatenation of biological knowledge from different domains. Hence, we have reviewed the potential of integrating multi-disciplinary tools and strategies from various fields, such as synthetic biology, CBM, omics, and ML, to explore the biochemical phenomenon beyond the conventional biological dogma. How the integrative knowledge of these intersected domains has improved bioengineering and biomedical applications has also been highlighted. We categorically explained the conventional genome-scale metabolic model (GEM) reconstruction tools and their improvement strategies through ML paradigms. Further, the crucial role of ML and DL in omics data restructuring for GEM development has also been briefly discussed. Finally, the case-study-based assessment of the state-of-the-art method for improving biomedical and metabolic engineering strategies has been elaborated. Therefore, this review demonstrates how integrating experimental and in silico strategies can help map the ever-expanding knowledge of biological systems driven by condition-specific cellular information. This multiview approach will elevate the application of ML-based CBM in the biomedical and bioengineering fields for the betterment of society and the environment.
Collapse
Affiliation(s)
- Pritam Kundu
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Satyajit Beura
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Suman Mondal
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Amit Kumar Das
- Department of Bioscience and Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amit Ghosh
- School School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India; P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
3
|
Tarzi C, Zampieri G, Sullivan N, Angione C. Emerging methods for genome-scale metabolic modeling of microbial communities. Trends Endocrinol Metab 2024; 35:533-548. [PMID: 38575441 DOI: 10.1016/j.tem.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
Genome-scale metabolic models (GEMs) are consolidating as platforms for studying mixed microbial populations, by combining biological data and knowledge with mathematical rigor. However, deploying these models to answer research questions can be challenging due to the increasing number of available computational tools, the lack of universal standards, and their inherent limitations. Here, we present a comprehensive overview of foundational concepts for building and evaluating genome-scale models of microbial communities. We then compare tools in terms of requirements, capabilities, and applications. Next, we highlight the current pitfalls and open challenges to consider when adopting existing tools and developing new ones. Our compendium can be relevant for the expanding community of modelers, both at the entry and experienced levels.
Collapse
Affiliation(s)
- Chaimaa Tarzi
- School of Computing, Engineering and Digital Technologies, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK
| | - Guido Zampieri
- Department of Biology, University of Padova, Padova, 35122, Veneto, Italy
| | - Neil Sullivan
- Complement Genomics Ltd, Station Rd, Lanchester, Durham, DH7 0EX, County Durham, UK
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK; Centre for Digital Innovation, Teesside University, Southfield Rd, Middlesbrough, TS1 3BX, North Yorkshire, UK; National Horizons Centre, Teesside University, 38 John Dixon Ln, Darlington, DL1 1HG, North Yorkshire, UK.
| |
Collapse
|
4
|
Khaleque HN, Nazem-Bokaee H, Gumulya Y, Carlson RP, Kaksonen AH. Simulating compatible solute biosynthesis using a metabolic flux model of the biomining acidophile, Acidithiobacillus ferrooxidans ATCC 23270. Res Microbiol 2024; 175:104115. [PMID: 37572823 DOI: 10.1016/j.resmic.2023.104115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Halotolerant, acidophilic, bioleaching microorganisms are crucial to biomining operations that utilize saline water. Compatible solutes play an important role in the adaptation of these microorganisms to saline environments. Acidithiobacillus ferrooxidans ATCC 23270, an iron- and sulfur-oxidizing acidophilic bacterium, synthesizes trehalose as its native compatible solute but is still sensitive to salinity. Recently, halotolerant bioleaching bacteria were found to use ectoine as their key compatible solute. Previously, bioleaching bacteria were recalcitrant to genetic manipulation; however, recent advancements in genetic tools and techniques allow successful genetic modification of A. ferrooxidans ATCC 23270. Therefore, this study aimed to test, in silico, the effect of native and synthetic compatible solute biosynthesis by A. ferrooxidans ATCC 23270 on its growth and metabolism. Metabolic network flux modelling was used to provide a computational framework for the prediction of metabolic fluxes during production of native and synthetic compatible solutes by A. ferrooxidans ATCC 23270, in silico. Complete pathways for trehalose biosynthesis by the bacterium are proposed and captured in the updated metabolic model including a newly discovered UDP-dependent trehalose synthesis pathway. Finally, the effect of nitrogen sources on compatible solute production was simulated and showed that using nitrogen gas as the sole nitrogen source enables the ectoine-producing 'engineered' microbe to oxidize up to 20% more ferrous iron in comparison to the native microbe that only produces trehalose. Therefore, the predictive outcomes of the model have the potential to guide the design and optimization of a halotolerant strain of A. ferrooxidans ATCC 23270 for saline bioleaching operations.
Collapse
Affiliation(s)
- Himel Nahreen Khaleque
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA, Australia; Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia; School of Science, Edith Cowan University, Joondalup, WA, Australia.
| | - Hadi Nazem-Bokaee
- Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia; Australian National Herbarium, National Research Collections Australia, NCMI, CSIRO, Canberra 2601, ACT, Australia.
| | - Yosephine Gumulya
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA, Australia; Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia.
| | - Ross P Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Environment, 147 Underwood Avenue, Floreat, WA, Australia; Synthetic Biology Future Science Platform, CSIRO, Canberra 2601, ACT, Australia.
| |
Collapse
|
5
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
6
|
Frades I, Foguet C, Cascante M, Araúzo-Bravo MJ. Genome Scale Modeling to Study the Metabolic Competition between Cells in the Tumor Microenvironment. Cancers (Basel) 2021; 13:4609. [PMID: 34572839 PMCID: PMC8470216 DOI: 10.3390/cancers13184609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/31/2022] Open
Abstract
The tumor's physiology emerges from the dynamic interplay of numerous cell types, such as cancer cells, immune cells and stromal cells, within the tumor microenvironment. Immune and cancer cells compete for nutrients within the tumor microenvironment, leading to a metabolic battle between these cell populations. Tumor cells can reprogram their metabolism to meet the high demand of building blocks and ATP for proliferation, and to gain an advantage over the action of immune cells. The study of the metabolic reprogramming mechanisms underlying cancer requires the quantification of metabolic fluxes which can be estimated at the genome-scale with constraint-based or kinetic modeling. Constraint-based models use a set of linear constraints to simulate steady-state metabolic fluxes, whereas kinetic models can simulate both the transient behavior and steady-state values of cellular fluxes and concentrations. The integration of cell- or tissue-specific data enables the construction of context-specific models that reflect cell-type- or tissue-specific metabolic properties. While the available modeling frameworks enable limited modeling of the metabolic crosstalk between tumor and immune cells in the tumor stroma, future developments will likely involve new hybrid kinetic/stoichiometric formulations.
Collapse
Affiliation(s)
- Itziar Frades
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20009 San Sebastian, Spain;
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of University of Barcelona, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (C.F.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) (CB17/04/00023) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine of University of Barcelona, Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (C.F.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) (CB17/04/00023) and Metabolomics Node at Spanish National Bioinformatics Institute (INB-ISCIII-ES-ELIXIR), Instituto de Salud Carlos III (ISCIII), 28020 Madrid, Spain
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine Group, Biodonostia Health Research Institute, 20009 San Sebastian, Spain;
- Max Planck Institute of Molecular Biomedicine, 48167 Münster, Germany
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERfes), 28015 Madrid, Spain
- Translational Bioinformatics Network (TransBioNet), 8001 Barcelona, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| |
Collapse
|
7
|
Nazem-Bokaee H, Hom EFY, Warden AC, Mathews S, Gueidan C. Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling. Front Microbiol 2021; 12:667864. [PMID: 34012428 PMCID: PMC8126723 DOI: 10.3389/fmicb.2021.667864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Lichen associations, a classic model for successful and sustainable interactions between micro-organisms, have been studied for many years. However, there are significant gaps in our understanding about how the lichen symbiosis operates at the molecular level. This review addresses opportunities for expanding current knowledge on signalling and metabolic interplays in the lichen symbiosis using the tools and approaches of systems biology, particularly network modelling. The largely unexplored nature of symbiont recognition and metabolic interdependency in lichens could benefit from applying a holistic approach to understand underlying molecular mechanisms and processes. Together with ‘omics’ approaches, the application of signalling and metabolic network modelling could provide predictive means to gain insights into lichen signalling and metabolic pathways. First, we review the major signalling and recognition modalities in the lichen symbioses studied to date, and then describe how modelling signalling networks could enhance our understanding of symbiont recognition, particularly leveraging omics techniques. Next, we highlight the current state of knowledge on lichen metabolism. We also discuss metabolic network modelling as a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-dependence between symbionts. This is especially important given the growing number of lichen genomes now available and improved computational tools for reconstructing such models. We highlight the benefits and possible bottlenecks for implementing different types of network models as applied to the study of lichens.
Collapse
Affiliation(s)
- Hadi Nazem-Bokaee
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia.,CSIRO Land and Water, Canberra, ACT, Australia.,CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Erik F Y Hom
- Department of Biology and Center for Biodiversity and Conservation Research, The University of Mississippi, University City, MS, United States
| | | | - Sarah Mathews
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Cécile Gueidan
- CSIRO Australian National Herbarium, Centre for Australian National Biodiversity Research, National Research Collections Australia, NCMI, Canberra, ACT, Australia
| |
Collapse
|
8
|
|
9
|
Fang X, Lloyd CJ, Palsson BO. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat Rev Microbiol 2020; 18:731-743. [PMID: 32958892 PMCID: PMC7981288 DOI: 10.1038/s41579-020-00440-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Escherichia coli is considered to be the best-known microorganism given the large number of published studies detailing its genes, its genome and the biochemical functions of its molecular components. This vast literature has been systematically assembled into a reconstruction of the biochemical reaction networks that underlie E. coli's functions, a process which is now being applied to an increasing number of microorganisms. Genome-scale reconstructed networks are organized and systematized knowledge bases that have multiple uses, including conversion into computational models that interpret and predict phenotypic states and the consequences of environmental and genetic perturbations. These genome-scale models (GEMs) now enable us to develop pan-genome analyses that provide mechanistic insights, detail the selection pressures on proteome allocation and address stress phenotypes. In this Review, we first discuss the overall development of GEMs and their applications. Next, we review the evolution of the most complete GEM that has been developed to date: the E. coli GEM. Finally, we explore three emerging areas in genome-scale modelling of microbial phenotypes: collections of strain-specific models, metabolic and macromolecular expression models, and simulation of stress responses.
Collapse
Affiliation(s)
- Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Colton J Lloyd
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
10
|
Ansari AF, Acharya NIS, Kumaran S, Ravindra K, Reddy YBS, Dixit NM, Raut J. 110th Anniversary: High-Order Interactions Can Eclipse Pairwise Interactions in Shaping the Structure of Microbial Communities. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aamir Faisal Ansari
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | - Narendra M. Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Janhavi Raut
- Unilever R&D India Pvt, Ltd., Bangalore 560066, India
| |
Collapse
|
11
|
Mendoza SN, Olivier BG, Molenaar D, Teusink B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol 2019; 20:158. [PMID: 31391098 PMCID: PMC6685185 DOI: 10.1186/s13059-019-1769-1] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Several genome-scale metabolic reconstruction software platforms have been developed and are being continuously updated. These tools have been widely applied to reconstruct metabolic models for hundreds of microorganisms ranging from important human pathogens to species of industrial relevance. However, these platforms, as yet, have not been systematically evaluated with respect to software quality, best potential uses and intrinsic capacity to generate high-quality, genome-scale metabolic models. It is therefore unclear for potential users which tool best fits the purpose of their research. RESULTS In this work, we perform a systematic assessment of current genome-scale reconstruction software platforms. To meet our goal, we first define a list of features for assessing software quality related to genome-scale reconstruction. Subsequently, we use the feature list to evaluate the performance of each tool. To assess the similarity of the draft reconstructions to high-quality models, we compare each tool's output networks with that of the high-quality, manually curated, models of Lactobacillus plantarum and Bordetella pertussis, representatives of gram-positive and gram-negative bacteria, respectively. We additionally compare draft reconstructions with a model of Pseudomonas putida to further confirm our findings. We show that none of the tools outperforms the others in all the defined features. CONCLUSIONS Model builders should carefully choose a tool (or combinations of tools) depending on the intended use of the metabolic model. They can use this benchmark study as a guide to select the best tool for their research. Finally, developers can also benefit from this evaluation by getting feedback to improve their software.
Collapse
Affiliation(s)
- Sebastián N. Mendoza
- Systems Bioinformatics, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brett G. Olivier
- Systems Bioinformatics, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- BioQUANT/COS, Heidelberg University, Heidelberg, Germany
| | - Douwe Molenaar
- Systems Bioinformatics, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Abstract
Genome-scale metabolic models (GEMs) computationally describe gene-protein-reaction associations for entire metabolic genes in an organism, and can be simulated to predict metabolic fluxes for various systems-level metabolic studies. Since the first GEM for Haemophilus influenzae was reported in 1999, advances have been made to develop and simulate GEMs for an increasing number of organisms across bacteria, archaea, and eukarya. Here, we review current reconstructed GEMs and discuss their applications, including strain development for chemicals and materials production, drug targeting in pathogens, prediction of enzyme functions, pan-reactome analysis, modeling interactions among multiple cells or organisms, and understanding human diseases.
Collapse
Affiliation(s)
- Changdai Gu
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Gi Bae Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Won Jun Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Systems Biology and Medicine Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Metabolic and Biomolecular Engineering National Research Laboratory, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Dangi AK, Sharma B, Hill RT, Shukla P. Bioremediation through microbes: systems biology and metabolic engineering approach. Crit Rev Biotechnol 2018; 39:79-98. [DOI: 10.1080/07388551.2018.1500997] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Arun Kumar Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Russell T. Hill
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
14
|
Henkel R, Hoehndorf R, Kacprowski T, Knüpfer C, Liebermeister W, Waltemath D. Notions of similarity for systems biology models. Brief Bioinform 2018; 19:77-88. [PMID: 27742665 PMCID: PMC5862271 DOI: 10.1093/bib/bbw090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/28/2016] [Indexed: 01/23/2023] Open
Abstract
Systems biology models are rapidly increasing in complexity, size and numbers. When building large models, researchers rely on software tools for the retrieval, comparison, combination and merging of models, as well as for version control. These tools need to be able to quantify the differences and similarities between computational models. However, depending on the specific application, the notion of 'similarity' may greatly vary. A general notion of model similarity, applicable to various types of models, is still missing. Here we survey existing methods for the comparison of models, introduce quantitative measures for model similarity, and discuss potential applications of combined similarity measures. To frame model comparison as a general problem, we describe a theoretical approach to defining and computing similarities based on a combination of different model aspects. The six aspects that we define as potentially relevant for similarity are underlying encoding, references to biological entities, quantitative behaviour, qualitative behaviour, mathematical equations and parameters and network structure. We argue that future similarity measures will benefit from combining these model aspects in flexible, problem-specific ways to mimic users' intuition about model similarity, and to support complex model searches in databases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dagmar Waltemath
- Department of Systems Biology and Bioinformatics, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
15
|
Kim WJ, Kim HU, Lee SY. Current state and applications of microbial genome-scale metabolic models. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.03.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Senger RS, Yen JY, Fong SS. A review of genome-scale metabolic flux modeling of anaerobiosis in biotechnology. Curr Opin Chem Eng 2014. [DOI: 10.1016/j.coche.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|