Almutairi MH, Alrubie TM, Almutairi BO, Alamri AM, Alrefaei AF, Arafah MM, Alanazi M, Semlali A. The Expression Patterns of Human Cancer-Testis Genes Are Induced through Epigenetic Drugs in Colon Cancer Cells.
Pharmaceuticals (Basel) 2022;
15:1319. [PMID:
36355490 PMCID:
PMC9692864 DOI:
10.3390/ph15111319]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND
The expression of human germline genes is restricted to the germ cells of the gonads, which produce sperm and eggs. The germline genes involved in testis development and potentially activated in cancer cells are known as cancer-testis (CT) genes. These genes are potential therapeutic targets and biomarkers, as well as drivers of the oncogenic process. CT genes can be reactivated by treatment with drugs that demethylate DNA. The majority of the existing literature on CT gene activation focuses on X-chromosome-produced CT genes. We tested the hypothesis that epigenetic landscape changes, such as DNA methylation, can alter several CT gene expression profiles in cancer and germ cells.
METHODS
Colon cancer (CC) cell lines were treated with the DNA methyltransferase inhibitor (DNMTi) 5-aza-2'-deoxycytidine, or with the histone deacetylase inhibitor (HDACi) trichostatin A (TSA). The effects of these epigenetic treatments on the transcriptional activation of previously published CT genes (CTAG1A, SCP2D1, TKTL2, LYZL6, TEX33, and ACTRT1) and testis-specific genes (NUTM1, ASB17, ZSWIM2, ADAM2, and C10orf82) were investigated.
RESULTS
We found that treatment of CC cell lines with 5-aza-2'-deoxycytidine or TSA correlated with activation of X-encoded CT genes and non-X-encoded CT genes in somatic (non-germline) cells.
CONCLUSION
These findings confirm that a subset of CT genes can be regulated by hypomethylating drugs and subsequently provide a potential therapeutic target for cancer.
Collapse