1
|
Zaman QU, Raza A, Lozano-Juste J, Chao L, Jones MGK, Wang HF, Varshney RK. Engineering plants using diverse CRISPR-associated proteins and deregulation of genome-edited crops. Trends Biotechnol 2024; 42:560-574. [PMID: 37993299 DOI: 10.1016/j.tibtech.2023.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
The CRISPR/Cas system comprises RNA-guided nucleases, the target specificity of which is directed by Watson-Crick base pairing of target loci with single guide (sg)RNA to induce the desired edits. CRISPR-associated proteins and other engineered nucleases are opening new avenues of research in crops to induce heritable mutations. Here, we review the diversity of CRISPR-associated proteins and strategies to deregulate genome-edited (GEd) crops by considering them to be close to natural processes. This technology ensures yield without penalties, advances plant breeding, and guarantees manipulation of the genome for desirable traits. DNA-free and off-target-free GEd crops with defined characteristics can help to achieve sustainable global food security under a changing climate, but need alignment of international regulations to operate in existing supply chains.
Collapse
Affiliation(s)
- Qamar U Zaman
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China; Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jorge Lozano-Juste
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Valencia 46022, Spain
| | - Li Chao
- Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Xudong 2nd Road, Wuhan 430062, China
| | - Michael G K Jones
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia
| | - Hua-Feng Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan Yazhou-Bay Seed Laboratory, Hainan University, Sanya, 572025, China; Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, School of Tropical Crops, Hainan University, Haikou 570228, China.
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia.
| |
Collapse
|
2
|
Nie X, Wang D, Pan Y, Hua Y, Lü P, Yang Y. Discovery, classification and application of the CPISPR-Cas13 system. Technol Health Care 2024; 32:525-544. [PMID: 37545273 DOI: 10.3233/thc-230258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system is an acquired immune system of bacteria and archaea. Continued research has resulted in the identification of other Cas13 proteins. OBJECTIVE This review briefly describes the discovery, classification, and application of the CRISPR-Cas13 system, including recent technological advances in addition to factors affecting system performance. METHODS Cas13-based molecular therapy of human, animal, and plant transcriptomes was discussed, including regulation of gene expression to combat pathogenic RNA viruses. In addition, the latest progress, potential shortcomings, and challenges of the CRISPR-Cas system for treatment of animal and plant diseases are reviewed. RESULTS The CRISPR-Cas system VI is characterized by two RNA-guided higher eukaryotes and prokaryotes nucleotide-binding domains. CRISPR RNA can cleave specific RNA through the interaction between the stem-loop rich chain of uracil residues and the Cas13a protein. The CRISPR-Cas13 system has been applied for gene editing in animal and plant cells, in addition to biological detection via accurate targeting of single-stranded RNA. CONCLUSION The CRISPR-Cas13 system offers a high-throughput and convenient technology for detection of viruses and potentially the development of anti-cancer drugs in the near future.
Collapse
Affiliation(s)
- Xiaojuan Nie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Pan
- School of Experimental Animal Center, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Hua
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yanhua Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Kharbikar L, Konwarh R, Chakraborty M, Nandanwar S, Marathe A, Yele Y, Ghosh PK, Sanan-Mishra N, Singh AP. 3Bs of CRISPR-Cas mediated genome editing in plants: exploring the basics, bioinformatics and biosafety landscape. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1825-1850. [PMID: 38222286 PMCID: PMC10784264 DOI: 10.1007/s12298-023-01397-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024]
Abstract
The recent thrust in research has projected the type II clustered regularly interspaced short palindromic repeats and associated protein 9 (CRISPR-Cas9) system as an avant-garde plant genome editing tool. It facilitates the induction of site-specific double-stranded DNA cleavage by the RNA-guided DNA endonuclease (RGEN), Cas9. Elimination, addition, or alteration of sections in DNA sequence besides the creation of a knockout genotype (CRISPRko) is aided by the CRISPR-Cas9 system in its wild form (wtCas9). The inactivation of the nuclease domain generates a dead Cas9 (dCas9), which is capable of targeting genomic DNA without scissoring it. The dCas9 system can be engineered by fusing it with different effectors to facilitate transcriptional activation (CRISPRa) and transcriptional interference (CRISPRi). CRISPR-Cas thus holds tremendous prospects as a genome-manipulating stratagem for a wide gamut of crops. In this article, we present a brief on the fundamentals and the general workflow of the CRISPR-Cas system followed by an overview of the prospects of bioinformatics in propelling CRISPR-Cas research with a special thrust on the available databases and algorithms/web-accessible applications that have aided in increasing the usage and efficiency of editing. The article also provides an update on the current regulatory landscape in different countries on the CRISPR-Cas edited plants to emphasize the far-reaching impact of the genomic editing technology. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01397-3.
Collapse
Affiliation(s)
- Lalit Kharbikar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rocktotpal Konwarh
- Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| | - Monoswi Chakraborty
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Bengaluru, Karnataka India
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shweta Nandanwar
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Ashish Marathe
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Yogesh Yele
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Probir Kumar Ghosh
- ICAR - National Institute of Biotic Stress Management (NIBSM), Raipur, India
| | - Neeti Sanan-Mishra
- International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Anand Pratap Singh
- Baba Kinaram Research Foundation (BKRF), Bramsthan, Mau, Uttar Pradesh India
| |
Collapse
|
4
|
Online Databases of Genome Editing in Cardiovascular and Metabolic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:19-33. [DOI: 10.1007/978-981-19-5642-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
5
|
Devi R, Chauhan S, Dhillon TS. Genome editing for vegetable crop improvement: Challenges and future prospects. Front Genet 2022; 13:1037091. [PMID: 36482900 PMCID: PMC9723405 DOI: 10.3389/fgene.2022.1037091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Vegetable crops are known as protective foods due to their potential role in a balanced human diet, especially for vegetarians as they are a rich source of vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses threaten the crop growth, yield and quality of these crops. These crops are annual, biennial and perennial in breeding behavior. Traditional breeding strategies pose many challenges in improving economic crop traits. As in most of the cases the large number of backcrosses and stringent selection pressure is required for the introgression of the useful traits into the germplasm, which is time and labour-intensive process. Plant scientists have improved economic traits like yield, quality, biotic stress resistance, abiotic stress tolerance, and improved nutritional quality of crops more precisely and accurately through the use of the revolutionary breeding method known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9). The high mutation efficiency, less off-target consequences and simplicity of this technique has made it possible to attain novel germplasm resources through gene-directed mutation. It facilitates mutagenic response even in complicated genomes which are difficult to breed using traditional approaches. The revelation of functions of important genes with the advancement of whole-genome sequencing has facilitated the CRISPR-Cas9 editing to mutate the desired target genes. This technology speeds up the creation of new germplasm resources having better agro-economical traits. This review entails a detailed description of CRISPR-Cas9 gene editing technology along with its potential applications in olericulture, challenges faced and future prospects.
Collapse
Affiliation(s)
- Ruma Devi
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
6
|
CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Mol Biol Rep 2022; 49:7101-7110. [PMID: 35568789 DOI: 10.1007/s11033-022-07523-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system was initially identified in bacteria and archaea as a defense mechanism to confer immunity against phages. Later on, it was developed as a gene editing tool for both prokaryotic and eukaryotic cells including plant cells. METHODS AND RESULTS CRISPR/Cas9 approach has wider applications in reverse genetics as well as in crop improvement. Various characters involved in enhancing economic value and crop sustainability against biotic/abiotic stresses can be targeted through this tool. Currently, CRISPR/Cas9 gene editing mechanism has been applied on around 20 crop species for improvement in several traits including yield enhancement and resistance against biotic and abiotic stresses. In the last five years, maximum genome editing research has been validated in rice, wheat, maize and soybean. Genes targeted in these plants has been involved in causing male sterility, conferring resistance against pathogens or having certain nutritional value. CONCLUSIONS Current review summarizes various applications of CRISPR/Cas system and its future prospects in plant biotechnology targeting crop improvement with higher yield, disease tolerance and enhanced nutritional value.
Collapse
|
7
|
CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Int J Mol Sci 2022; 23:ijms23084454. [PMID: 35457271 PMCID: PMC9027422 DOI: 10.3390/ijms23084454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
To increase the potentiality of crop production for future food security, new technologies for plant breeding are required, including genome editing technology—being one of the most promising. Genome editing with the CRISPR/Cas system has attracted researchers in the last decade as a safer and easier tool for genome editing in a variety of living organisms including rice. Genome editing has transformed agriculture by reducing biotic and abiotic stresses and increasing yield. Recently, genome editing technologies have been developed quickly in order to avoid the challenges that genetically modified crops face. Developing transgenic-free edited plants without introducing foreign DNA has received regulatory approval in a number of countries. Several ongoing efforts from various countries are rapidly expanding to adopt the innovations. This review covers the mechanisms of CRISPR/Cas9, comparisons of CRISPR/Cas9 with other gene-editing technologies—including newly emerged Cas variants—and focuses on CRISPR/Cas9-targeted genes for rice crop improvement. We have further highlighted CRISPR/Cas9 vector construction model design and different bioinformatics tools for target site selection.
Collapse
|
8
|
Wang Y, Lecourieux F, Zhang R, Dai Z, Lecourieux D, Li S, Liang Z. Data Comparison and Software Design for Easy Selection and Application of CRISPR-based Genome Editing Systems in Plants. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:937-948. [PMID: 34280549 PMCID: PMC9402788 DOI: 10.1016/j.gpb.2019.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 11/18/2022]
Abstract
CRISPR-based genome editing systems have been successfully and effectively used in many organisms. However, only a few studies have reported the comparison between CRISPR/Cas9 and CRISPR/Cpf1 systems in the whole-genome applications. Although many web-based toolkits are available, there is still a shortage of comprehensive, user-friendly, and plant-specific CRISPR databases and desktop software. In this study, we identified and analyzed the similarities and differences between CRISPR/Cas9 and CRISPR/Cpf1 systems by considering the abundance of proto-spacer adjacent motif (PAM) sites, the effects of GC content, optimal proto-spacer length, potential universality within the plant kingdom, PAM-rich region (PARR) inhibiting ratio, and the effects of G-quadruplex (G-Q) structures. Using this information, we built a comprehensive CRISPR database (including 138 plant genome data sources, www.grapeworld.cn/pc/index.html), which provides search tools for the identification of CRISPR editing sites in both CRISPR/Cas9 and CRISPR/Cpf1 systems. We also developed a desktop software on the basis of the Perl/Tk tool, which facilitates and improves the detection and analysis of CRISPR editing sites at the whole-genome level on Linux and/or Windows platform. Therefore, this study provides helpful data and software for easy selection and application of CRISPR-based genome editing systems in plants.
Collapse
Affiliation(s)
- Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Science, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fatma Lecourieux
- Ecophysiology and Functional Genomics of Grapevine, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Institute for Vine and Wine Sciences Bordeaux-Aquitaine, Villenave d'Ornon 33140, France
| | - Rui Zhang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Zhanwu Dai
- Ecophysiology and Functional Genomics of Grapevine, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Institute for Vine and Wine Sciences Bordeaux-Aquitaine, Villenave d'Ornon 33140, France
| | - David Lecourieux
- Ecophysiology and Functional Genomics of Grapevine, Bordeaux Sciences Agro, INRAE, University of Bordeaux, Institute for Vine and Wine Sciences Bordeaux-Aquitaine, Villenave d'Ornon 33140, France
| | - Shaohua Li
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, the Innovative Academy of Seed Design, Chinese Academy of Science, Beijing 100093, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
9
|
|
10
|
Genome-Edited Plants: Opportunities and Challenges for an Anticipatory Detection and Identification Framework. Foods 2021; 10:foods10020430. [PMID: 33669278 PMCID: PMC7920036 DOI: 10.3390/foods10020430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
It is difficult to trace and identify genome-edited food and feed products if relevant information is not made available to competent authorities. This results in major challenges, as genetically modified organism (GMO) regulatory frameworks for food and feed that apply to countries such as the member states of the European Union (EU) require enforcement based on detection. An international anticipatory detection and identification framework for voluntary collaboration and collation of disclosed information on genome-edited plants could be a valuable tool to address these challenges caused by data gaps. Scrutinizing different information sources and establishing a level of information that is sufficient to unambiguously conclude on the application of genome editing in the plant breeding process can support the identification of genome-edited products by complementing the results of analytical detection. International coordination to set up an appropriate state-of-the-art database is recommended to overcome the difficulty caused by the non-harmonized bio-safety regulation requirements of genome-edited food and feed products in various countries. This approach helps to avoid trade disruptions and to facilitate GMO/non-GMO labeling schemes. Implementation of the legal requirements for genome-edited food and feed products in the EU and elsewhere would substantially benefit from such an anticipatory framework.
Collapse
|
11
|
Li G, Zhou Z, Liang L, Song Z, Hu Y, Cui J, Chen W, Hu K, Cheng J. Genome-wide identification and analysis of highly specific CRISPR/Cas9 editing sites in pepper (Capsicum annuum L.). PLoS One 2020; 15:e0244515. [PMID: 33373406 PMCID: PMC7771699 DOI: 10.1371/journal.pone.0244515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
The CRISPR/Cas9 system is an efficient genome editing tool that possesses the outstanding advantages of simplicity and high efficiency. Genome-wide identification and specificity analysis of editing sites is an effective approach for mitigating the risk of off-target effects of CRISPR/Cas9 and has been applied in several plant species but has not yet been reported in pepper. In present study, we first identified genome-wide CRISPR/Cas9 editing sites based on the ‘Zunla-1’ reference genome and then evaluated the specificity of CRISPR/Cas9 editing sites through whole-genome alignment. Results showed that a total of 603,202,314 CRISPR/Cas9 editing sites, including 229,909,837 (~38.11%) NGG-PAM sites and 373,292,477 (~61.89%) NAG-PAM sites, were detectable in the pepper genome, and the systematic characterization of their composition and distribution was performed. Furthermore, 29,623,855 highly specific NGG-PAM sites were identified through whole-genome alignment analysis. There were 26,699,38 (~90.13%) highly specific NGG-PAM sites located in intergenic regions, which was 9.13 times of the number in genic regions, but the average density in genic regions was higher than that in intergenic regions. More importantly, 34,251 (~96.93%) out of 35,336 annotated genes exhibited at least one highly specific NGG-PAM site in their exons, and 90.50% of the annotated genes exhibited at least 4 highly specific NGG- PAM sites, indicating that the set of highly specific CRISPR/Cas9 editing sites identified in this study was widely applicable and conducive to the minimization of the off-target effects of CRISPR/Cas9 in pepper.
Collapse
Affiliation(s)
- Guanliang Li
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ziyan Zhou
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lingrui Liang
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhao Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Yafei Hu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Junjie Cui
- Department of Horticulture, College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Weili Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Kailin Hu
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
- South China Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangzhou, China
- * E-mail:
| |
Collapse
|
12
|
Bhat MA, Bhat MA, Kumar V, Wani IA, Bashir H, Shah AA, Rahman S, Jan AT. The era of editing plant genomes using CRISPR/Cas: A critical appraisal. J Biotechnol 2020; 324:34-60. [DOI: 10.1016/j.jbiotec.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
13
|
Zhang Y, Zhao G, Ahmed FYH, Yi T, Hu S, Cai T, Liao Q. In silico Method in CRISPR/Cas System: An Expedite and Powerful Booster. Front Oncol 2020; 10:584404. [PMID: 33123486 PMCID: PMC7567020 DOI: 10.3389/fonc.2020.584404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/24/2020] [Indexed: 12/11/2022] Open
Abstract
The CRISPR/Cas system has stood in the center of attention in the last few years as a revolutionary gene editing tool with a wide application to investigate gene functions. However, the labor-intensive workflow requires a sophisticated pre-experimental and post-experimental analysis, thus becoming one of the hindrances for the further popularization of practical applications. Recently, the increasing emergence and advancement of the in silico methods play a formidable role to support and boost experimental work. However, various tools based on distinctive design principles and frameworks harbor unique characteristics that are likely to confuse users about how to choose the most appropriate one for their purpose. In this review, we will present a comprehensive overview and comparisons on the in silico methods from the aspects of CRISPR/Cas system identification, guide RNA design, and post-experimental assistance. Furthermore, we establish the hypotheses in light of the new trends around the technical optimization and hope to provide significant clues for future tools development.
Collapse
Affiliation(s)
- Yuwei Zhang
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Fatma Yislam Hadi Ahmed
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Tianfei Yi
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Shiyun Hu
- Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China
| | - Ting Cai
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Qi Liao
- Hwa Mei Hospital, University of Chinese Academy of Science, Ningbo, China.,Zhejiang Key Laboratory of Pathophysiology, Department of Preventative Medicine, Medical School of Ningbo University, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
14
|
Wan H, Li JM, Ding H, Lin SX, Tu SQ, Tian XH, Hu JP, Chang S. An Overview of Computational Tools of Nucleic Acid Binding Site Prediction for Site-specific Proteins and Nucleases. Protein Pept Lett 2019; 27:370-384. [PMID: 31746287 DOI: 10.2174/0929866526666191028162302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/24/2019] [Accepted: 09/24/2019] [Indexed: 12/26/2022]
Abstract
Understanding the interaction mechanism of proteins and nucleic acids is one of the most fundamental problems for genome editing with engineered nucleases. Due to some limitations of experimental investigations, computational methods have played an important role in obtaining the knowledge of protein-nucleic acid interaction. Over the past few years, dozens of computational tools have been used for identification of nucleic acid binding site for site-specific proteins and design of site-specific nucleases because of their significant advantages in genome editing. Here, we review existing widely-used computational tools for target prediction of site-specific proteins as well as off-target prediction of site-specific nucleases. This article provides a list of on-line prediction tools according to their features followed by the description of computational methods used by these tools, which range from various sequence mapping algorithms (like Bowtie, FetchGWI and BLAST) to different machine learning methods (such as Support Vector Machine, hidden Markov models, Random Forest, elastic network and deep neural networks). We also make suggestions on the further development in improving the accuracy of prediction methods. This survey will provide a reference guide for computational biologists working in the field of genome editing.
Collapse
Affiliation(s)
- Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ming Li
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Huang Ding
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Shuo-Xin Lin
- Department of Electrical and Computer Engineering, James Clark School of Engineering, University of Maryland, College Park, MD 20742, United States
| | - Shu-Qin Tu
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Xu-Hong Tian
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| | - Shan Chang
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| |
Collapse
|
15
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
16
|
Zheng Y, Zhang N, Martin GB, Fei Z. Plant Genome Editing Database (PGED): A Call for Submission of Information about Genome-Edited Plant Mutants. MOLECULAR PLANT 2019; 12:127-129. [PMID: 30639750 DOI: 10.1016/j.molp.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/02/2019] [Indexed: 05/19/2023]
Affiliation(s)
- Yi Zheng
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA; Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Tang Z, Chen S, Chen A, He B, Zhou Y, Chai G, Guo F, Huang J. CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5549733. [PMID: 31411686 PMCID: PMC6693189 DOI: 10.1093/database/baz093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/01/2019] [Accepted: 06/21/2019] [Indexed: 12/04/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and associated proteins (Cas) constitute CRISPR–Cas systems, which are antiphage immune systems present in numerous bacterial and most archaeal species. In recent years, CRISPR–Cas systems have been developed into reliable and powerful genome editing tools. Nevertheless, finding similar or better tools from bacteria or archaea remains crucial. This requires the exploration of different CRISPR systems, identification and characterization new Cas proteins. Archives tailored for Cas proteins are urgently needed and necessitate the prediction and grouping of Cas proteins into an information center with all available experimental evidence. Here, we constructed Cas Protein Data Bank (CasPDB), an integrated and annotated online database for Cas proteins from bacteria and archaea. The CasPDB database contains 287 reviewed Cas proteins, 257 745 putative Cas proteins and 3593 Cas operons from 32 023 bacteria species and 1802 archaea species. The database can be freely browsed and searched. The CasPDB web interface also represents all the 3593 putative Cas operons and its components. Among these operons, 328 are members of the type II CRISPR–Cas system.
Collapse
Affiliation(s)
- Zhongjie Tang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - ShaoQi Chen
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ang Chen
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bifang He
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Medicine, Guizhou University, Guiyang 550025, China
| | - Yuwei Zhou
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guoshi Chai
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - FengBiao Guo
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
18
|
Guha TK, Wai A, Hausner G. Programmable Genome Editing Tools and their Regulation for Efficient Genome Engineering. Comput Struct Biotechnol J 2017; 15:146-160. [PMID: 28179977 PMCID: PMC5279741 DOI: 10.1016/j.csbj.2016.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/24/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022] Open
Abstract
Targeted genome editing has become a powerful genetic tool for studying gene function or for modifying genomes by correcting defective genes or introducing genes. A variety of reagents have been developed in recent years that can generate targeted double-stranded DNA cuts which can be repaired by the error-prone, non-homologous end joining repair system or via the homologous recombination-based double-strand break repair pathway provided a suitable template is available. These genome editing reagents require components for recognizing a specific DNA target site and for DNA-cleavage that generates the double-stranded break. In order to reduce potential toxic effects of genome editing reagents, it might be desirable to control the in vitro or in vivo activity of these reagents by incorporating regulatory switches that can reduce off-target activities and/or allow for these reagents to be turned on or off. This review will outline the various genome editing tools that are currently available and describe the strategies that have so far been employed for regulating these editing reagents. In addition, this review will examine potential regulatory switches/strategies that can be employed in the future in order to provide temporal control for these reagents.
Collapse
Affiliation(s)
| | | | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| |
Collapse
|
19
|
Rauscher B, Heigwer F, Breinig M, Winter J, Boutros M. GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens. Nucleic Acids Res 2017; 45:D679-D686. [PMID: 27789686 PMCID: PMC5210668 DOI: 10.1093/nar/gkw997] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Over the past years, CRISPR/Cas9 mediated genome editing has developed into a powerful tool for modifying genomes in various organisms. In high-throughput screens, CRISPR/Cas9 mediated gene perturbations can be used for the systematic functional analysis of whole genomes. Discoveries from such screens provide a wealth of knowledge about gene to phenotype relationships in various biological model systems. However, a database resource to query results efficiently has been lacking. To this end, we developed GenomeCRISPR (http://genomecrispr.org), a database for genome-scale CRISPR/Cas9 screens. Currently, GenomeCRISPR contains data on more than 550 000 single guide RNAs (sgRNA) derived from 84 different experiments performed in 48 different human cell lines, comprising all screens in human cells using CRISPR/Cas published to date. GenomeCRISPR provides data mining options and tools, such as gene or genomic region search. Phenotypic and genome track views allow users to investigate and compare the results of different screens, or the impact of different sgRNAs on the gene of interest. An Application Programming Interface (API) allows for automated data access and batch download. As more screening data will become available, we also aim at extending the database to include functional genomic data from other organisms and enable cross-species comparisons.
Collapse
Affiliation(s)
- Benedikt Rauscher
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, 69120 Heidelberg, Germany
| | - Florian Heigwer
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, 69120 Heidelberg, Germany
| | - Marco Breinig
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, 69120 Heidelberg, Germany
| | - Jan Winter
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Medical Faculty Mannheim, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Brazelton VA, Zarecor S, Wright DA, Wang Y, Liu J, Chen K, Yang B, Lawrence-Dill CJ. A quick guide to CRISPR sgRNA design tools. GM CROPS & FOOD 2016; 6:266-76. [PMID: 26745836 PMCID: PMC5033207 DOI: 10.1080/21645698.2015.1137690] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Targeted genome editing is now possible in nearly any organism and is widely acknowledged as a biotech game-changer. Among available gene editing techniques, the CRISPR-Cas9 system is the current favorite because it has been shown to work in many species, does not necessarily result in the addition of foreign DNA at the target site, and follows a set of simple design rules for target selection. Use of the CRISPR-Cas9 system is facilitated by the availability of an array of CRISPR design tools that vary in design specifications and parameter choices, available genomes, graphical visualization, and downstream analysis functionality. To help researchers choose a tool that best suits their specific research needs, we review the functionality of various CRISPR design tools including our own, the CRISPR Genome Analysis Tool (CGAT; http://cropbioengineering.iastate.edu/cgat ).
Collapse
Affiliation(s)
- Vincent A Brazelton
- a Interdepartmental Genetics and Genomics Program; Iowa State University ; Ames , IA USA.,b Department of Agronomy ; Iowa State University ; Ames , IA USA
| | - Scott Zarecor
- c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA
| | - David A Wright
- c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA
| | - Yuan Wang
- d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA ;,e Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology; Iowa State University ; Ames , IA USA
| | - Jie Liu
- d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA ;,e Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology; Iowa State University ; Ames , IA USA
| | - Keting Chen
- d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA ;,e Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology; Iowa State University ; Ames , IA USA
| | - Bing Yang
- c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA
| | - Carolyn J Lawrence-Dill
- a Interdepartmental Genetics and Genomics Program; Iowa State University ; Ames , IA USA.,b Department of Agronomy ; Iowa State University ; Ames , IA USA.,c Department of Genetics ; Development and Cell Biology; Iowa State University ; Ames , IA USA.,d Interdepartmental Bioinformatics and Computational Biology Program; Iowa State University ; Ames , IA USA
| |
Collapse
|
21
|
ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis. Sci Rep 2016; 6:32713. [PMID: 27633273 PMCID: PMC5025660 DOI: 10.1038/srep32713] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022] Open
Abstract
Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.
Collapse
|
22
|
Kaur K, Gupta AK, Rajput A, Kumar M. ge-CRISPR - An integrated pipeline for the prediction and analysis of sgRNAs genome editing efficiency for CRISPR/Cas system. Sci Rep 2016; 6:30870. [PMID: 27581337 PMCID: PMC5007494 DOI: 10.1038/srep30870] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022] Open
Abstract
Genome editing by sgRNA a component of CRISPR/Cas system emerged as a preferred technology for genome editing in recent years. However, activity and stability of sgRNA in genome targeting is greatly influenced by its sequence features. In this endeavor, a few prediction tools have been developed to design effective sgRNAs but these methods have their own limitations. Therefore, we have developed "ge-CRISPR" using high throughput data for the prediction and analysis of sgRNAs genome editing efficiency. Predictive models were employed using SVM for developing pipeline-1 (classification) and pipeline-2 (regression) using 2090 and 4139 experimentally verified sgRNAs respectively from Homo sapiens, Mus musculus, Danio rerio and Xenopus tropicalis. During 10-fold cross validation we have achieved accuracy and Matthew's correlation coefficient of 87.70% and 0.75 for pipeline-1 on training dataset (T(1840)) while it performed equally well on independent dataset (V(250)). In pipeline-2 we attained Pearson correlation coefficient of 0.68 and 0.69 using best models on training (T(3169)) and independent dataset (V(520)) correspondingly. ge-CRISPR (http://bioinfo.imtech.res.in/manojk/gecrispr/) for a given genomic region will identify potent sgRNAs, their qualitative as well as quantitative efficiencies along with potential off-targets. It will be useful to scientific community engaged in CRISPR research and therapeutics development.
Collapse
Affiliation(s)
- Karambir Kaur
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh-160036, India
| | - Amit Kumar Gupta
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh-160036, India
| | - Akanksha Rajput
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh-160036, India
| | - Manoj Kumar
- Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research, Sector 39A, Chandigarh-160036, India
| |
Collapse
|
23
|
Abstract
Advances in the development of delivery, repair, and specificity strategies for the CRISPR-Cas9 genome engineering toolbox are helping researchers understand gene function with unprecedented precision and sensitivity. CRISPR-Cas9 also holds enormous therapeutic potential for the treatment of genetic disorders by directly correcting disease-causing mutations. Although the Cas9 protein has been shown to bind and cleave DNA at off-target sites, the field of Cas9 specificity is rapidly progressing, with marked improvements in guide RNA selection, protein and guide engineering, novel enzymes, and off-target detection methods. We review important challenges and breakthroughs in the field as a comprehensive practical guide to interested users of genome editing technologies, highlighting key tools and strategies for optimizing specificity. The genome editing community should now strive to standardize such methods for measuring and reporting off-target activity, while keeping in mind that the goal for specificity should be continued improvement and vigilance.
Collapse
Affiliation(s)
- Josh Tycko
- Editas Medicine, 300 Third Street, Cambridge, MA 02142, USA
| | - Vic E Myer
- Editas Medicine, 300 Third Street, Cambridge, MA 02142, USA
| | - Patrick D Hsu
- Editas Medicine, 300 Third Street, Cambridge, MA 02142, USA; Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Periwal V. A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases. Brief Bioinform 2016; 18:698-711. [DOI: 10.1093/bib/bbw052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 12/26/2022] Open
|
25
|
Wang Y, Liu X, Ren C, Zhong GY, Yang L, Li S, Liang Z. Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC PLANT BIOLOGY 2016; 16:96. [PMID: 27098585 PMCID: PMC4839089 DOI: 10.1186/s12870-016-0787-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/15/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND CRISPR/Cas9 has been recently demonstrated as an effective and popular genome editing tool for modifying genomes of humans, animals, microorganisms, and plants. Success of such genome editing is highly dependent on the availability of suitable target sites in the genomes to be edited. Many specific target sites for CRISPR/Cas9 have been computationally identified for several annual model and crop species, but such sites have not been reported for perennial, woody fruit species. In this study, we identified and characterized five types of CRISPR/Cas9 target sites in the widely cultivated grape species Vitis vinifera and developed a user-friendly database for editing grape genomes in the future. RESULTS A total of 35,767,960 potential CRISPR/Cas9 target sites were identified from grape genomes in this study. Among them, 22,597,817 target sites were mapped to specific genomic locations and 7,269,788 were found to be highly specific. Protospacers and PAMs were found to distribute uniformly and abundantly in the grape genomes. They were present in all the structural elements of genes with the coding region having the highest abundance. Five PAM types, TGG, AGG, GGG, CGG and NGG, were observed. With the exception of the NGG type, they were abundantly present in the grape genomes. Synteny analysis of similar genes revealed that the synteny of protospacers matched the synteny of homologous genes. A user-friendly database containing protospacers and detailed information of the sites was developed and is available for public use at the Grape-CRISPR website ( http://biodb.sdau.edu.cn/gc/index.html ). CONCLUSION Grape genomes harbour millions of potential CRISPR/Cas9 target sites. These sites are widely distributed among and within chromosomes with predominant abundance in the coding regions of genes. We developed a publicly-accessible Grape-CRISPR database for facilitating the use of the CRISPR/Cas9 system as a genome editing tool for functional studies and molecular breeding of grapes. Among other functions, the database allows users to identify and select multi-protospacers for editing similar sequences in grape genomes simultaneously.
Collapse
Affiliation(s)
- Yi Wang
- />Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 P.R. China
| | - Xianju Liu
- />Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 P.R. China
- />University of Chinese Academy of Sciences, Beijing, 100049 P.R. China
| | - Chong Ren
- />Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 P.R. China
| | - Gan-Yuan Zhong
- />USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456 USA
| | - Long Yang
- />College of Plant Protection, Shandong Agricultural University, Taian, 271018 China
| | - Shaohua Li
- />Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 P.R. China
| | - Zhenchang Liang
- />Beijing Key Laboratory of Grape Science and Enology and Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 P.R. China
- />Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|